COP 4610: Introduction to Operating Systems (Spring 2014)

Operating System Structures

Zhi Wang
Florida State University

Content

Operating system services
User interface

System calls

System programs
Operating system structures

Virtual machines

Objectives

To describe services provided by an operating system

To discuss various ways of structuring an operating system

Operating System Services

- Operating systems provides an environment for program execution and services to programs and users
- a set of services is helpful to (visible to) users:
user interface
program execution
/O operation
- file-system manipulation
- communication
- error detection
- another set of services exists for ensuring efficient operation of the system:
resource allocation
*accounting

protection and security

A View of Operating System Services

user and other system programs

GUI

batch

command line

user interfaces

system calls
program /o e communication Rl Vs accounting
execution operations systems allocation
error pro;icc:;uon
detection _ security
services

operating system

hardware

Operating System Services (User-Visible)

- User interface

- most operating systems have a user interface (Ul).

- e.g., command-Line (CLI), graphics user interface (GUI), or batch
Program execution

- load and execute an program in the memory

- end execution, either normally or abnormally
/O operations

* arunning program may require /O such as file or I/O device
File-system manipulation

- read, write, create and delete files and directories

- search or list files and directories

* permission management

Operating System Services (User-Visible)

- Communications
+ processes exchange information, on the same system or over a network
+via shared memory or through message passing
- Error detection
+ OS needs to be constantly aware of possible errors
- errors in CPU, memory, I/O devices, programs

- It should take appropriate actions to ensure correctness and consistency

Operating System Services (System)

Resource allocation
- allocate resources for multiple users or multiple jolbs running concurrently
- many types of resources: CPU, memory, file, /O devices
- Accounting
- to keep track of which users use how much and what kinds of resources
Protection and security
- protection provides a mechanism to control access to system resources
*access control: control access to resources
Isolation: processes should not interfere with each other
- security authenticates users and prevent invalid access to /O devices
- achain is only as strong as its weakest link

- protection is the mechanism, security towards the policy

User Operating System Interface - CLI

- CLI (or command interpreter) allows direct command entry

- aloop between fetching a command from user and executing it
- |t can be implemented in the kernel or by a system program

- In UNIX, it is usually called shells, there are many flavors of shells
- Commands are either built-in or just names of programs

- If the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

- User-friendly desktop metaphor interface
* users use mouse, keyboard, and monitor to interactive with the system
*Icons represent files, programs, actions, etc
* mouse buttons over objects in the interface cause various actions
- open file or directory (aka. folder), execute program, list attributes
- invented at Xerox PARC
- Many systems include both CLI and GUI interfaces
- Microsoft Windows is GUI with CLI “command” shell
- Apple Mac OS X as “Agua” GUI with UNIX kernel underneath

- Solaris is GLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

(] & Terminal
File Edit View Terminal Tabs Help
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O "
sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 O
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

(root@pbg-nv64-vm) - (11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh

total: 1.1C allocated + 190M reserved = 1.3C used, 1.6C available
(root@pbg-nve4-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
~-(/var/tmp/systen-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@pbg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
User tty login@ idle JCPU PCPU what
root console 15Jun0718days 1 /usr/bin/ssh-agent -- fusr/bi
n/d
root pts/3 15Jun07 18 4 w o
root pts/4 15Jun0718days W
(root@pbg-nv64-vm)-(14/pts)-(16:07 02-Jul-2007)-(global) V.
-(/var/tmp/systemn-contents/scripts)# v

The Mac OS X GUI

@ Grab File

Edit

& G \Vindcw Help

4

g *

A
=2

ano fig-di- =
m (<) = [Bd] i (8 [@ 2 8 = ™) E . B @ Q- seaien B
- i — - Faverites> Documenis= [usic= Movies= Pictwrzs> Detktons Apolications= ZPEG~ ZPBGE~ [Disk~-
I © 2007-06s10ucgrade | (3 Desktop @ Coms (@ to-dic |
ErpiY &) ZF3C) imw) bock) usBodir) Mgesie)
T MNzme & Knd Dete Maodified Size Apalicatian
4 Nerwark o FDF E24/07, 1.03PV 1% LB Skm)
o Freedom Sci L3 oSG £718/07.5:572M T7kB Inkscape
= reedom e v © Fortabe Netamrs Crazhizs Image Today. T:05PM 39248 Frevizw - .!-
— Macintash HD . o =G 1238 Inkscape V
= Uncitled v O TIFF docurm ESO I KR Fredmw =
— Untitles 2 ¢~
4 2PRG P
% ZPRGE P IFF
© iDisk s
* Poter Baar Galvin's iFod &
[Bg-2.03]
Previes | Hzx
Srefe o~
T pkg M Name: g-2.0a - "
. ag-2.3a 1
A Apalications Kind: TIFF Cocument
'\ Doouments UTi: suckcr
URL: zits:fy)
|3 Games CALVENT: PBCABLACSS_ K =
| Udlties {ZPEG S _LFE(EV ;
[tma Size: 380.0 KB (901236 bytess LD G5 Db
data: 01,236 byles
[Deskoop Jnysical: 881 KE (332,141
Favorites aytes)
b - Madifec:
4 Nusic { = - 1+ A 7
& Vovies Pl Histoty » b Seieaon Fath v Owner; bz (101
Picturac * fg-20a ¥ fg-2Ca Croup: admi1igd
i | hg-dir Permission: -nwsi-——— - (700,
' Sites Fath: /ValLmzs 2P~ 1/irp/
+ Public L as3-dir ;\o:klosil-';:in.‘ig-d]
5 Ag-2.Ja 1
| Preferences £3 ook Appliztior: reven
® Lbrary L3 imp Valume: ZP3C e
[et o ZPEG Capacity: 7354 (B
= Frae: 7343 CB
| projects . Format; SME)
| consult = Mount Poirt: /\Valmas '2P3G-1
= |6 | | C|sitems 10of € iters selected - 7343 G3aweilazle 5.1 G3 uses re

. Address Book

I aENEN &
<+ aA

- r
et

Dictionary and Theszurus

C, orerating system

windows XF
Professional Mic

Mema
|| Aople Computer In - Apple Computer Inc.
i Aoplz Computer In '

ary

op-creat-ing sys-tem

Coun

the software th 21 supports a computer s ha<c functions.
such as ssheculin g tasks, exesviing applic: dons. acd
contralling peripherzls

G-Fa 1
{Platinum) dmy

main 1-803-MY-APPLE

olher 800-275-2273

home

page hitpaffeam. appe.com

work 1 Infinite _oop
C_pert no CA 93014
United S:ztes

N0 e G0 i

]

System Calls

- System call is a programming interface to access the OS services
- Direct system call access usually requires to use assembly language
*+e.g., Int Ox80 for Linux
- System call is typically wrapped in a high-level Application Program Interface (API)
- three most common APIs:
-+ Win32 API for Windows
- POSIX API for POSIX-based systems (UNIX/Linux, Mac OS X)
- Java APl for the Java virtual machine (JVM)

- why use APlIs rather than system calls??

—xample of System Calls

- System call sequence to copy the content of one file to another file

source file »| destination file

- Example System Call Sequence A

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

—xample of Standard AP

- Consider the ReadFile() function in the WIin32 AP

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

- A description of the parameters passed to ReadFilg()
- HANDLE file—the file to be read
- LPVOID buffer—a buffer where the data will be read into and written from
- DWORD bytesToRead —the number of bytes to be read into the buffer
- LPDWORD bytesRead —the number of bytes actually read
- LPOVERLAPPED ovl—indicates if overlapped (asynchronous) I/0O is used

System Call Implementation

- Typically, a number is associated with each system call
- system-call interface maintains a table indexed by these numbers
+ e.g., Linux 3.2.35 for x86 has 349 system calls, number O to 343
- Kernel invokes intended system call and returns results
- User program needs to know nothing about syscall details
- It jJust needs to use API and understand what the API will do

- most details of OS interface hidden from programmers by the AP

Pl — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
| open ()
’ Implementation
i » of open ()
. system call

return

Standard C Library Example

C program invoking printf() liorary call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |-

return O;

)

user
node

standard C library
ernel

node
erite () >
system call

System Call Parameter Passing

- Parameters are required besides the system call number
- exact type and amount of information vary according to OS and call
- Three general methods to pass parameters to the OS
- Register:
- pass the parameters in registers
- simple, but there may be more parameters than registers
- Block:
+ parameters stored in a memory block (or table)
- address of the block passed as a parameter in a register
- taken by Linux and Solaris
- Stack:
- parameters placed, or pushed, onto the stack by the program
- popped off the stack by the operating system

- Block and stack methods don’t limit number of parameters being passed

Parameter Passing via Table

— X
register
X: parameters
for call
™ use parameters code for
load address X / from table X system

system call 13 > call 13

user program

operating system

Types of System Calls

Process control

- create process, terminate process
load, execute, end, abort
- get process attributes, set process attributes
- walt for timer or event, signal event
- allocate and free memory
File management
- create file, delete file
- open, close file
read, write, reposition

- get and set file attributes

Types of System Calls

Device management
* request device, release device
- read, write, reposition
- get device attributes, set device attributes
- logically attach or detach devices
Information maintenance
- get/set time or date
+ get/set system data
+ get/set process, file, or device attributes
- Communications
- Create, delete communication connection
- send, recelive messages
- transfer status information
- attach and detach remote devices

—xamples of Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe)
CreateFileMapping () shmget ()
MapViewOfFile () mmap ()
Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

—xample: MS-DOS

- Single-tasking

- Shell invoked when system booted
- Simple method to run program
* NO process created
* single memory space
- loads program into memory, overwriting all but the kernel

+ program exit -> shell reloaded

MS-

DOS

—Xecution

at system startup

free memory

running a program

free memory

command
interpreter

process

kernel

command
interpreter

(@)

kernel

(b)

—xample: FreeBSD

- Avariant of Unix, it supports multitasking
- Upon user login, the OS invokes user’s choice of shell

- Shell executes fork() system call to create process, then calls exec() to load
program into process

- shell waits for process to terminate or continues with user commands

Free

BS

Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

System Programs

- System programs provide a convenient environment for program development and execution

- They can be divided into:
- file operations
- status information
- programming language support
program loading and execution

- communications

Most users’ view of OS is defined by system programs, not the actual system calls

System Programs

File management
- create, delete, copy, rename, print, dump, list, and generally manipulate files and directories
- Status information
- many different types of status information
- date, time, available memory, disk space, current users
- performance, logging, and debugging information
- some systems implement a registry, database of configuration information
File modification
- text editors to create and modity files
- commands to search contents of files

- programs to perform transformations of the text

System Programs

Programming-language support
compilers, assemblers, debuggers and interpreters
Program loading and execution
absolute loaders, relocatable loaders, linkage editors, and overlay-loaders
debugging systems for higher-level and machine language
Communications
virtual connections among processes, users, and computer systems

allow users to send messages to one another’s program, log in remotely,
transfer files from one machine to another...

Operating System Structure

Important principle: to separate mechanism and policy
mechanism: how to do it
- policy: what will be done
Many structures:
- simple structure
layered structure
modules
microkernel system structure

research system: exo-kernel, multi-kernel. ..

Simple Structure

- No structure at all!
- written to provide the most functionality in the least space
- A typical example: MS-DOS
- [ts interfaces and levels of functionality are not well separated

- the kernel is not divided into modules

MS-DOS Structure

application program

resident system program ’

MS-DOS device drivers

"

ROM BIOS device drivers ’

Layered Approach

- The OS is divided into a number of layers (levels)
- Each layer built on top of lower layers
- IS this strictly enforceable in the kernel?

- The bottom layer (layer 0), is the hardware; the highest (layer N) is Ul

Layered Operating System

user interface

layer O
hardware

UNIX

Limited by hardware functionality, the original UNIX operating system had limited
structure

- UNIX OS consists of two separable layers
- systems programs
- the kernel
- everything below the system-call interface and above physical hardware

- a large number of functions for one level: file systems, CPU scheduling, memory
management ...

Interdependency between kernel components makes it impossible to structure kernel
strictly in layers

* memory manage and storage

Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

C . handling swapping block /O page replacement

N, character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Modules

Most modern operating systems implement kernel modules
* uses object-oriented design pattern
-+ each core component Is separate, and has clearly defined interfaces
- some are loadable as needed
-+ QOverall, similar to layers but with more flexible
Example: Linux, BSD, Solaris

- http://www.makelinux.net/kernel_map/

http://www.makelinux.net/kernel_map/

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable

miscellaneous
system calls

modules

executable
formats

STREAMS
modules

Microkernel System Structure

Moves as much from the kernel into “user” space
- Communication between user modules uses message passing

Benefits:
- easier to extend a microkernel
- easier to port the operating system to new architectures
- more reliable (less code is running in kernel mode)
* More secure

Detriments:
- performance overhead of user space to kernel space communication

Examples: Minux, Mach, QNX, L4...

MINIX Layered Microkernel Architecture

User Space

Driver Driver Driver -

Kernel Space

m

Mac OS X Structure

application environments
and common services

kernel

BSD

environment

Mach

—xokernel v.s. Normal Kernel

I A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel

Programs can
communicate with
hardware much more

[
direct

N

[Library] [Library

; "

o

Virtual Machines

- Avirtual machine takes layered approach to its logical conclusion
- a virtual machine encapsulates the hardware and whole software stack
- VM provides an interface identical to the underlying hardware
Host creates the illusion that the guest has its own hardware
- Each guest is provided with a (virtual) copy of underlying computer

Example: VMware, VirtualBox, QEMU, KVM, Xen, Java, .Net

Virtual Machines History and Benefits

First appeared commercially in IBM mainframes in 1972
- Multiple (different) operating systems can share the same hardware
- each VM is isolated from each other
- sharing of resource can be permitted and controlled
- commutate with each other and other physical systems via networking
Benefit
-+ consolidate low-resource use systems to fewer busier systems
- strong isolation benefits security

- useful for development, testing

Virtual Machines

non-virtual machine virtual machine

processes
processes
processes processes
* / pr%?é?frggmg kernel kernel kernel
Karnal VM1 VM2 VM3
virtual-machine
implementation
hardware RaTOWare

(a)

(b)

Para-virtualization

- Virtual machine is similar but not identical to hardware
- Guest must be modified to run on paravirtualized hardware

- Guest can be an OS, or in the case of Solaris 10 applications running in containers

VMware Architecture

application

application

application

application

guest operating
system

(free BSD)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows NT)

virtual CPU
virtual memory
virtual devices

guest operating
system

(Windows XP)

virtual CPU
virtual memory
virtual devices

virtualization layer

l

host operating system

CPU

hardware

memory

|/O devices

Solaris 10 with Two Containers

user programs

system programs
CPU resources

memaory resources

global zone

user programs
system programs
network addresses
device access
CPU resources
memory resources

zZone 1

user programs
system programs
network addresses
device access
CPU resources
memory resources

Zone 2

virtual platform
device management

zone management

Solaris kernel

network addresses

Java Virtual Machine

Java program
.class files

1->

class loader

!

Java

Interpreter

o -+

\ 4

host system

(Windows, Linux, etc.)

__/ Java API
.class files

Operating-System Debugging

- Debugging is to find and fix errors, or bugs
- OS generates log files containing error information
- dmesg and /var/log in Linux
- application failure can generate core dump file capturing process memory
-+ OS failure can generate crash dump file containing kernel memory

* Security issues?

11

Debugging is twice as hard as writing the

code in the first place. Therefore, If you write

the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

- Kernighan’s Law

Solaris 10 dtrace Following System Call

- DTrace (SystemTap, Kprobes) allows live instrumentation of kernel

- probes fire when code is executed, capturing state data and sending it to
consumers of those probes

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
0 -> XEventsQueued
0 -> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> loctl
-> loctl
-> getf
-> set active fd
<- set _active fd
<- getf
-> get udatamodel
<- get udatamodel

eNelNeNelNeNeNeNelNeNeNoNeo!
AARARARRRXNCOCOQCOcaca

-> releasef
-> clear active fd
<- clear active fd
-> cv_broadcast
<— cVv_broadcast
<- releasef
<- loctl
<- loctl
<- _XEventsQueued
<— XEventsQueued

cooooooooo-
CCCrRRRARARAARAN

—nd of Chapter 2

