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Abstract
High availability is the most important and challenging prob-
lem for cloud providers. However, virtual machine mon-
itor (VMM), a crucial component of the cloud infrastruc-
ture, has to be frequently updated and restarted to add secu-
rity patches and new features, undermining high availabil-
ity. There are two existing live update methods to improve
the cloud availability: kernel live patching and Virtual Ma-
chine (VM) live migration. However, they both have serious
drawbacks that impair their usefulness in the large cloud
infrastructure: kernel live patching cannot handle complex
changes (e.g., changes to persistent data structures); and VM
live migration may incur unacceptably long delays when
migrating millions of VMs in the whole cloud, for example,
to deploy urgent security patches.
In this paper, we propose a new method, VMM live up-

grade, that can promptly upgrade the whole VMM (KVM &
QEMU) without interrupting customer VMs. Timely upgrade
of the VMM is essential to the cloud because it is both the
main attack surface of malicious VMs and the component to
integrate new features. We have built a VMM live upgrade
system called Orthus. Orthus features three key techniques:
dual KVM, VM grafting, and device handover. Together, they
enable the cloud provider to load an upgraded KVM instance
while the original one is running and “cut-and-paste” the
VM to this new instance. In addition, Orthus can seamlessly
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hand over passthrough devices to the new KVM instance
without losing any ongoing (DMA) operations. Our evalua-
tion shows that Orthus can reduce the total migration time
and downtime by more than 99% and 90%, respectively. We
have deployed Orthus in one of the largest cloud infrastruc-
tures for a long time. It has become the most effective and
indispensable tool in our daily maintenance of hundreds of
thousands of servers and millions of VMs.
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1 Introduction
High availability is the most important but challenging prob-
lem for cloud providers. It requires the service to be accessi-
ble anywhere and anytime without perceivable downtime.
However, there are two important issues that can undermine
high availability: new features and security. Specifically, a
cloud usually provides a range of services, such as the stor-
age, database, and program language services, in addition to
running customer VMs. Features like the cloud storage need
to be integrated into the core cloud component, the VMM.
New features will only take effect after the VMM is restarted,
thus interrupting the service. Meanwhile, security demands
the system software to be frequently updated to patch newly
discovered vulnerabilities. All the major Linux distributions
push security updates weekly, if not daily. Cloud providers
have to keep their systems patched otherwise risk being
compromised. Even though there are efforts to proactively
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Methods Application Advantages Limitations

Kernel live patching Simple security fixes No downtime Cannot handle complex fixes
Maintenance headache

VMM live upgrade New cloud features
Complex fixes in the VMM

Short downtime
Scalable, no migration traffic
Passthrough device support

VMM-only update (justified)

VM live migration Whole system upgrade Update everything on the server

Not scalable, needs spare servers
Migration traffic consumes network bandwidth
Performance downgrade and long downtime
Cannot support passthrough devices

Table 1. Comparison of three live update methods

discover and fix vulnerabilities in the VMM, vulnerabilities
are inevitable given the complexity of the VMM. For example,
KVM, the VMM used by many major public cloud providers,
is a type-2 VMM running in the host Linux kernel, which
has more than 16 millions lines of source code. Therefore, it
is critical to keep the VMM updated to minimize the window
of vulnerability. In summary, both new features and security
demand a method to quickly update the cloud system with
minimal downtime.

Limitations of the existing methods: currently, there
are two live update methods available to cloud providers: ker-
nel live patching and VM live migration. They are valuable
in improving the cloud availability but have serious draw-
backs: kernel live patching applies patches to the running
kernel without rebooting the system [7, 27, 33]. However,
live patching cannot handle complex updates that, for exam-
ple, change the persistent data structures or add new features.
It is most suitable for simple security fixes, such as checking
buffer sizes. We instead aim at creating an update mecha-
nism that can not only support simple security checks but
also add new features and apply complex security patches
(e.g., the Retpoline fix for Spectre that requires recompiling
the code [39]).

VM live migration is another valuable tool used by cloud
providers to facilitate software update [10, 12]. It iteratively
copies the VM states (e.g., memory) from its current server
to an idle backup server while the VM is still running. At the
final iteration, it completely stops the VM, copies the last
changed states, and restarts the VM on the backup server.
This allows the cloud provider to update/replace everything
on the source server, including the host kernel, the VMM,
failed hardware devices, etc. The VM can be migrated back to
the source server after the update if necessary. Nevertheless,
VM live migration has three limitations that severely limit
its usefulness in large cloud datacenters:

• First, it requires spare servers to temporarily hold the
migrating VMs. These servers must be equally power-
ful in order not to degrade the VM performance. If a
large number of VMs have to be migrated simultane-
ously, it brings significant pressure to the inventory
control for spared servers. In large clouds like ours,
it is common for hundreds of thousands of or even
millions of VMs to be migrated, for example, to fix

urge security vulnerabilities. In addition, large-scale
VM migration can cause severe network congestion.

• Second, VM live migration will incur temporary per-
formance downgrade and service downtime [40]. The
more memory a VM has, the longer the migration
takes. High-end cloud customers may use hundreds
of GBs of memory per VM to run big data, massive
streaming, and other applications. These applications
are particularly sensitive to performance downgrade
and downtime. Such customers often closely monitor
the real-time system performance. VM live migration
is simply not an option for those VMs.

• Last, VM live migration cannot support passthrough
devices. Device passthrough grants a VM direct ac-
cess to the hardware devices. Passthrough devices are
widely deployed in the cloud. For example, network
adapter passthrough is often used to speed up network
traffic, and many heterogeneous computing services
rely on GPU or FPGA passthrough. Existing VM live
migration systems do not support device passthrough.

VMM live upgrade, a new method: in this paper, we
propose a third method complimentary to, but more useful
than, kernel live update and VM live migration – VMM live
upgrade, amethod to replace the live VMM. Unlike kernel live
patch, VMM live upgrade replaces the whole running VMM.
Consequently, it can apply more complex fixes to the VMM,
for example, to support a new cloud storage system. Because
VMM live upgrade is conducted on the same physical server,
it does not require spare servers to temporarily hold VMs
or introduce significant network traffic; its performance and
downtime are significantly better than VM live migration;
and it can seamlessly support passthrough devices. Table 1
compares these three methods.
VMM live upgrade replaces the VMM only. This is con-

sistent with the threat model in the cloud, where the host
kernel is well isolated from the untrusted VMs through net-
work segregation, device passthrough, and driver domains;
and the main attack surface lies in the interaction between
the VMM and VMs. This is reflected in Table 2, which lists
all the known vulnerabilities related to KVM/QEMU [3, 34].
These vulnerabilities are exposed to the VMs and pose the
most imminent threat to the cloud infrastructure.
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x86 Other
Core Emu VMX PIC Other Arch Kernel QEMU Total
17 13 14 7 22 6 2 14 95

Table 2. Distribution of reported vulnerabilities in KVM

Out of these 95 vulnerabilities, only two of them (2.1%)
lie in the main kernel; fourteen lie in QEMU, the user-space
part of the VMM; and the rest 79 lie in KVM, the kernel part
of the VMM (column 1 to 6). The distribution of those vul-
nerabilities highlights the troublesome components in the
VMM: KVM has a layered structure with a common core and
the architecture-specific layers. The core has 17 reported
vulnerabilities (column 1) and the x86 layer alone has 56
vulnerabilities (column 2 to 5). These vulnerabilities include
information leaks, race conditions, buffer overflows, etc. In
addition, most of the fourteen vulnerabilities in QEMU ap-
pear in the device emulation. Many of these vulnerabilities
are not fixable by kernel live patching: we manually exam-
ined all the eight KVM-related vulnerabilities reported in
2018 and found that only three of them can be supported
by kernel live patching. The rest five all incur changes to
persistent data structures and thus cannot be supported by
kernel live patching. Nevertheless, VMM live upgrade can
easily fix all the vulnerabilities in both KVM and QEMU, thus
eliminating most of the threats to the cloud infrastructure.

Our focus on the VMM is also justified by the fact that new
cloud features are integrated mostly through the VMM; the
host kernel is rarely involved. For example, new GPU/FPGA
devices are often passed through to VMs directly. The host
kernel does not need to drive these devices.

Our system: we have designed, built, and deployed a
VMM live upgrade system called Orthus.1 Orthus has three
key techniques: dual KVM, VM grafting, and device handover.
Dual KVM runs two instances of the KVM kernel module
side-by-side. One is currently running the VMs and the other
is the upgraded version. Instead of migrating the VM be-
tween these two instances, Orthus directly “grafts” the VM
from the original VMM to the upgraded VMM, avoiding the
lengthy memory copies and long downtime in the VM live
migration. Lastly, device handover seamlessly transfers the
ownership of passthrough devices to the new VMM with-
out losing any ongoing (DMA) operations. With these three
techniques, Orthus can quickly upgrade the VMM to apply
critical security patches and integrate new features.
Even though Orthus is designed for KVM, we believe a

similar approach can be applied to type-1 hypervisors like
Xen because Xen uses the same hardware features as KVM
(i.e., hardware virtualization support) and relies on a privi-
leged domain for device drivers. Though, the implementation
could be more complex.
Orthus has been deployed in the Alibaba Cloud, one of

the largest public cloud infrastructures, serving thousands
of clusters (each cluster consists of hundreds of servers with

1Orthus is a two-headed dog guarding the cattle in the Greek mythology.

the same hardware configurations. Each physical server can
serve up to 100 VMs). It has become the most indispensable
system in our daily operation.We rely on it to deploy security
patches and new features. The other two live update methods
are used much less frequently. Particularly, we use VM live
migration only when there is a hard requirement to replace
the node, for example, due to hardware failure. Orthus is very
scalable as it can be applied to from a single VM to hundreds
of VMs in a physical server simultaneously. In summary, this
paper makes the following contribution:

• We propose a new method called VMM live upgrade
that can live-update the whole VMM (KVM/QEMU)
without disrupting the running VMs. VMM live up-
grade is complementary to, but more useful than, the
existing live update methods.

• We have built Orthus, a VMM live upgrade system,
that can effectively “cut-and-paste” a VM from its run-
ning VMM to the upgraded VMM. In addition, Orthus
can seamlessly transit passthrough devices to the new
VMM without involving any manual efforts or losing
ongoing operations.

• We have deployed Orthus in one of the largest public
cloud infrastructures and demonstrated its effective-
ness in promptly deploying urgent security patches
(e.g., Spectre) and new features.

The rest of the paper is organized as follows. We first fur-
ther motivate the problem by measuring the negative impact
of VM live migration and discussing its limitations in Sec-
tion 2. We then present the design and evaluation of Orthus
in Section 3 and 4, respectively. Section 5 compares Orthus
to the related work, and Section 6 discusses the potential
improvements to Orthus. We conclude the paper in Section 7.

2 Background and Motivation
In this section, we describe how kernel live patching and VM
live migration are used in cloud datacenters, in particular,
their limitations that raise the need for VMM live upgrade.
High availability is the most important goal of public

clouds. Many decisions are made to improve availability.
In particular, server hardware replacement and major kernel
upgrades are rather rare; security patches and feature up-
grades to the VMM are far more frequent in order to improve
security and enable new features. Most of these updates can-
not be applied by kernel live patching because they often
involve complex changes in multiple files and changes to per-
sistent data structures. Frequent applications of kernel live
patching can also make the kernel/VMM difficult to main-
tain. On the other hand, VM live migration is too costly for
regular VMM updates, especially when a large number of
VMMs need to be updated, for example, to apply an urgent
security patch.
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Figure 1. Impact on the VM network traffic during live mi-
gration of a 16GB VM over 10GB dedicated network

2.1 Large-scale VM Migration is Impractical
Concurrently migrating lots of VMs is impractical due to the
limited availability of spare servers and network bandwidth.
A cluster in the datacenter consists of hundreds of servers
with the same hardware specification. The cloud operator
often reserves only a small number of spare servers in each
cluster for urgent/peak business needs. This significantly
limits the number of VMs that can be simultaneously mi-
grated. To upgrade the whole cluster, we need to use these
spare servers back and forth. Even worse, VM migration can
only happen when the datacenter is relatively quiet (e.g., the
midnight of the majority of cloud users) to minimize the
impact on the customer network traffic. Consequently, it is
not uncommon to take an entire month to completely update
a cluster. This poses a serious threat to the security because
the lag between the release of a security patch to the first
appearance of exploits targeting the patched vulnerabilities
is only days.

The design of Orthus allows us to concurrently upgrade as
many VMMs as possible because Orthus does not need spare
machines to temporarily hold VMs. It performs the upgrade
within the same machine with a small memory footprint.

2.2 Impact of VM Live Migration
VM live migration has three stages: pre-copy, stop-and-copy,
and post-copy. In the pre-copy stage, the VM’s memory is
iteratively copied to a backup server while the VM is still
running. Specifically, KVM keeps track of the VM’s dirty
memory (i.e., the memory changed since the last iteration of
copy) and copies that dirty memory in the next iteration. In
the stop-and-copy stage, the VM is paused and the leftover
dirty memory and other VM states are copied over to the
backup server. In the post-copy stage, the VM is resumed
on the backup server. Dirty memory tracking and copying
downgrade the performance of the VM, while stop-and-copy
incurs the downtime.

The total migration time is decided by the memory size of
the VM and the available network bandwidth for migration.
Our measurement shows that it could take as long as 12

seconds in total to migrate a VM with 16GB of memory; and
the service downtime can last up to 600ms. Fig. 1 shows the
impact on the customer network traffic when migrating the
VM. The customer traffic drops significantly immediately
after the migration starts due to the burst transmission of
the initial VM memory. The impact is minimal during the
subsequent iterations of memory copies with a big drop dur-
ing the stop-and-copy phase.2 Note that we dedicate 10Gbps
of network bandwidth for migration. The overhead thus
comes from KVM’s dirty memory tracking and the competi-
tion on the memory bandwidth. Fig. 1 only shows the result
for the migration of a single VM. A cluster-wide VM mi-
gration could lead to much worse results due to network
congestion. Importantly, VM live migration affects high-end
customers most because their VMs have larger memory sizes
and use more CPU power. Some high-end customers do not
trust the provider’s statistics; instead, they run their own
bandwidth and CPU monitoring tools to detect any service
downtime. Hundreds of milliseconds in downtime are suf-
ficient to cause severe problems for customers like stock
exchanges and banks.

Unlike VM migration, Orthus uses VM grafting to directly
move the VM to the newVMM instance, avoiding the lengthy
memory copies and downtime. Our collected data in the real
cloud environment shows that Orthus can reduce 99% of the
total migration time and 90% of the service downtime with
the same VM.

2.3 Migration of Passthrough Devices
Device passthrough gives VMs direct access to hardware
devices. It is critical for high-performance VMs and reduces
the attack surface of the host kernel because it does not need
to drive those devices. Device passthrough is used widely
in public clouds. Even though some research has studied
the migration of specific devices such as GPUs [31, 38] and
SRIOV-based network adapters, there is no generic solution
to migrate passthrough devices. Device migration needs to
save a snapshot of its internal states, including the ongoing
DMA transactions, and restore it in the target server. Cur-
rently, no hardware devices natively support live migration.
A possible solution is to detach from the current device

and attach to a same one in the target server. However, all
the ongoing transactions will be lost. This may cause, say,
network packets to be lost. In worse cases, it could corrupt
the customer data, for example, if GPUs are being used to
accelerate computation and all the pending GPU tasks are
lost. To avoid that, the cloud provider has to either notify the
customer to stop the GPU tasks or wait for the VM to termi-
nate. Neither is an ideal solution. This problem is addressed
in Orthus by the device handover, which can seamlessly
migrate all sorts of passthrough devices, including GPUs,

2We sample the data in 0.2-second intervals; therefore, there is still some
traffic during the stop-and-copy phase.
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SRIOV-based devices, and FPGAs, without losing ongoing
transactions.

3 System Design
The design of Orthus can be summarized by three key tech-
niques: dual KVM, VM grafting, and device handover. Specif-
ically, dual KVM creates two instances of the KVM kernel
module – one is called the source KVM that is currently run-
ning the VM, and the other is the target KVM, an upgraded
version of KVM. VM grafting directly moves the VM from
the source KVM to the target KVM. Lastly, device handover
seamlessly transfers the ownership of passthrough devices
to the target VM. In the rest of this section, we describe each
technique in detail.

3.1 Dual KVM
KVM is the most popular hypervisor used in public clouds,
such as Google Compute Engine and Amazon EC2. It is a
type-II hypervisor, which runs inside a host OS kernel and
relies on it for the resource management.3 KVM consists
of a few kernel modules. On the Intel platform, it consists
of kvm.ko, the architecture-independent layer of KVM, and
kvm-intel.ko, the module that manages Intel’s hardware vir-
tualization extension [14] (kvm-amd.ko on the AMD plat-
form). To load two instances of KVM, we need to resolve
name conflict of the symbols (i.e., functions and global vari-
ables) and provide an arbitration mechanism to allow them
to share the access to the virtualization hardware.

VM

KVM.ko

/dev/kvm

kVM-
intel.ko

Intel VTx
hardware

Userspace

Kernel

VM#

Thin KVM.ko

/dev/kvm0

kVM-
intel-0.ko

Intel VTx hardware

kVM-
intel-1.ko

VM##
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Replaceable Non-replaceable

VM with old image

cpu
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storage nic
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Save VM state execv (new 
qemu image)

restore VM state
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fallback
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Figure 2. Dual KVM system in Orthus

Fig. 2 shows Orthus’ dual KVM structure compared to the
original KVM design. In Orthus, we move most of kvm.ko’s
functions into kvm-intel.ko and keep kvm.ko as a very thin
layer for interfacing with the host kernel. This essentially
moves all the vulnerable parts of KVM into kvm-intel.ko. To
load two copies of kvm-intel.ko, we associate all the original
global variables in KVM with kvm-intel.ko and make all the
global functions local. When loaded, kvm-intel.ko registers
3A type-I hypervisor like Xen runs directly on the bare metal.

itself to kvm.ko by providing an array of pointers into its
related internal functions. It then creates the device node
at /dev/kvmn (n is 0, 1, ...) for QEMU to interact with the
KVM kernel module. Multiple kvm-intel.ko instances can be
loaded and work concurrently without conflicts. They can
access the virtualization hardware (e.g., Intel VTx) in a time-
shared fashion. This is feasible because Intel VTx is mostly
stateless; all the VM-related states are saved in the VM’s
VMCS data structure[13]. A typical scenario is for kvm-intel-
0.ko to run all the VMs and for kvm-intel-1.ko to contain the
upgraded version with new features and/or security patches.
We can then “graft” the VMs from kvm-intel-0.ko to kvm-
intel-1.ko one by one until all the VMs are moved to the new
version. kvm-intel-0.ko can then be unloaded to remove the
vulnerable/unused code from the kernel.

3.2 VM Grafting
With KVM, each VM is represented by a QEMU process.
All the resources a VM owns are allocated and managed
by this process, including the guest memory, virtual CPUs
(vCPUs), storage, network adapters, etc. In particular, the
VM’s memory is allocated from the process’ heap. To move
a VM from one KVM instance to another, we need to move
both the VM’s memory and all its internal states. Technically,
we could reuse VM live migration for this purpose. How-
ever, that requires the server having twice the memory to
copy the VM’s memory, thus not feasible. Instead, we just
“cut-and-paste” the VM’s memory and internal states from
one KVM instance to another since both KVM instances run
on the same machine. We call this process VM grafting. As
previously mentioned, QEMU has a sizable number of vul-
nerabilities and new features are mostly integrated through
QEMU. Consequently, we must allow QEMU to be upgraded
as well. We implement VM grafting in QEMU because the
states maintained by QEMU for each VM are large and com-
plex. Some cloud providers replace QEMU with proprietary
implementations. A similar design can be applied.

Fig. 3 shows the VM grafting process in Orthus. In step 1,
we mark the VM’s memory as reserved in order to move it to
the newVM later. In the second step, we first fork the original
QEMU process; the parent process then pauses and saves the
VM’s internal states using QEMU’s savevm_state function;
the child process subsequently calls the execv function to
load the upgraded QEMU program (step 3). If the initializa-
tion succeeds, the new QEMU process (i.e., the child) restores
the VM states with QEMU’s loadvm_state function (step 4).
We use this multi-process design because VM initialization
and restoration is a lengthy process and could potentially
fail. By forking the process, the parent can unpause the VM
if the child fails to restore the VM. In the final step (step 5),
we map the VM’s memory in the new QEMU process and
resume the VM. If any failure occurs in step 3, 4, and 5, we
discard the child process and resume the saved VM in the
parent process.
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Figure 3. VM grafting in Orthus

In order for the new QEMU process to map the VM’s
memory, it needs to share the memory with the old one. This
can potentially be implemented using the existing POSIX
shared memory (e.g, mmap with MAP_ANONYMOUS |
MAP_SHARED). Unfortunately, POSIX shared memory will
not survive the execve system call, which reloads the call-
ing process with a new program. Note that the child pro-
cess uses execv to load the upgraded QEMU program. To
address that, we add a new flag to the mmap system call
(MAP_KVM_RESERVED). Memory allocated with this flag
is shared between the parent and child processes and sur-
vives the execve system call. As usual, such memory will be
released back to the kernel when the VM exits. We would
like to mention that this change to the kernel only adds a
few lines of source code and the flag is protected from being
used by regular processes. As such, this new flag should not
become a security concern.

With VM grafting, we can significantly reduce the migra-
tion time and the downtime compared to VM live migration.
Moreover, we can upgrade as many VMMs as possible simul-
taneously because of the absence of network traffic.

3.3 Passthrough Device Handover
Device passthrough gives the VM direct access to hardware
devices. Heterogeneous cloud services rely on GPU or FPGA
passthrough to accelerate customer applications, such as
deep learning and AI. Modern hardware devices are often

programmed through DMA (direct memory access). For ex-
ample, the device driver in the VM fills a buffer with GPU
commands and submits the buffer to the GPU via its DMA en-
gine. The GPU executes the commands and writes the results
back to the memory, also via DMA. However, direct device
access allows a malicious VM to compromise the VMM or
other VMs by misusing the DMA to read/write their data,
i.e., the so-called DMA attack. To address that, modern CPUs
provide IOMMU to remap the DMA memory access (e.g.,
Intel VT-d [2, 5, 20], and AMD IOMMU [6]). Normally, a VM
has three types of memory addresses: GVA (guest virtual
address), GPA (guest physical address), and HPA (host/ac-
tual physical address). GVA is translated into GPA by the
guest page table in the same way as a non-virtualized sys-
tem; GPA is then translated into HPA by the extended page
table (EPT) to access the physical memory. However, this
two-level address translation is only applied to the software
access, not the DMA access. DMA access instead is translated
by IOMMU from GPA to HPA.
To migrate a VM with a passthrough device, we need

to migrate the device’s internal states, rebuild the IOMMU
remapping table on the target server, and save/restore the
ongoing DMA operations in order to avoid losing data. So far,
there is no universal solution to migrate passthrough devices,
especially for complex devices like GPUs and FPGAs. In
Orthus, we address these challenges by the device handover.
In Linux, device passthrough is enabled by VFIO (virtual

function I/O), an IOMMU/device agnostic framework to al-
low direct device access by the user space. VFIO exposes
a number of device nodes under /dev/vfio/* for QEMU to
use. Orthus introduces a new user-space component, the
VFIO connector, to wrap all the VFIO-related file descrip-
tors and interfaces, including /dev/vfio, /dev/vfio/grp*, VFIO
eventfd, and KVM irqfd. VFIO connector wraps QEMU’s
access to these file descriptors. It is the only path to access
the VFIO kernel. During the live upgrade, the ownership
of the VFIO connection is handed over to the new QEMU
process, as shown in Fig. 4. Specifically, the access to KVM
is switched from path 1 (kvm-intel-0) to path 3 (kvm-intel-1),
and the VFIO connector is owned by the new VM (path 4).
By handing over the VFIO connector, Orthus avoids closing
and reopening the stored file descriptors. From the kernel’s
point of view, nothing is changed during the live upgrade.
With the design of Orthus, there is no need to migrate

the IOMMU mapping or the device’s internal states. Specifi-
cally, the VM’s memory is shared by the new and old QEMU
processes. Consequently, the mapping from GPA to HPA is
not changed during the live upgrade; the IOMMU transla-
tion table thus remains valid. Because of this, any ongoing
DMA operations can continue execution without interrup-
tion, even when the VM is stopped. If a DMA operation is
completed while the VM is paused for upgrade, the device
will raise an interrupt, which is routed to KVM by the kernel.
KVM temporarily caches the interrupt in its irqfd. The irqfd
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Figure 4. Device handover in Orthus

is usually connected to an eventfd. QEMU can receive the
interrupt by reading from this eventfd. As mentioned earlier,
the eventfd is stored in the VFIO connector and handed over
to the new QEMU process during the live upgrade. When the
VM is resumed, it reads from the eventfd and receives the
pending interrupts. During our implementation, we spent
significant efforts to prevent interrupts from being lost. How-
ever in large-scale tests, we still found data loses due to the
missing interrupts. To address that, we inject a virtual irq
into the VM right after handing over the device.

Device Types Supported Devices
AMD GPUs S7150, S7150 SRIOV

NVIDIA GPUs NVIDIA Tesla M40, P100,
P4, V100 up to 8 cards

FPGA Xilinx, Stratix
Network adapters Intel 82599ES SFP+

Table 3. Passthrough devices supported by Orthus

Device handover is a generic solution tomigrate passthrough
devices to the restored VM. It supports migrating all the
passthrough devices currently used in our cloud. The list of
these devices is given in Table 3.

4 Evaluation
Orthus has been deployed in the production environment of
Alibaba cloud datacenters. It has significantly improved our
ability to promptly upgrade VMMs with security patches or
new features. In this section, we evaluate the performance
of Orthus in the real cloud environment. Specifically, we will
demonstrate that Orthus can significantly reduce the total
migration time and downtime over VM live migration, and
it can be used for simultaneous large-scale VMM upgrade.

4.1 Experiment Setup
Two types of the host configurations were used in the exper-
iments, as shown in Table 4. Computing service is typically
used by web servers, image processing, media servers, and
database servers; GPU service is popular among machine
learning, deep learning, AI, and graphic rendering appli-
cations. The VM configurations are shown in Table 5. All
the VMs were configured to use 2MB huge pages for the
memory. We conducted the experiments on both individual
servers and a number of clusters with 45, 000 VMs. The for-
mer measured the performance impact on an individual VM;
while the latter measured the overall improvement to the
large-scale VMM upgrade.

Host Type Hardware Configurations

Computing Service
Intel(R) Xeon(R) CPU E5-2682 v4
CPU: 32 cores/64 threads@2.50GHz in 2 sockets
256GB RAM, 1TB SSD

GPU Service CS host + NVIDIA Tesla V100
V100 up to 8 cards

Table 4. Evaluation host nodes configuration

Guest VM Configurations
CS Guest 16vCPUs, 4˜32GB RAM, 40GB Cloud Disk (SSD)

GS Guest 16vCPUs, 128GB RAM, 40GB Cloud Disk (SSD)
NVIDIA Tesla V100 GPU

Table 5. Evaluation guest VM’s configuration

We aimed at measuring the performance of Orthus on the
typical use cases of our cloud, such as web servers, database
servers, media processing, and GPU-accelerated deep learn-
ing workloads. To this end, we used the following standard
benchmarks to simulate these services and measured the
total migration time and downtime caused by Orthus:

• ApacheBench and Netperf: ApacheBench [9] and
Netperf [22]were used to simulate traffic toweb servers.

• MySQL and sysbench: sysbench was used to mea-
sure the performance of the MySQL database during
VMM live upgrade [26].

• SPEC CPU2006: SPEC CPU2006 consists of a number
of CPU and memory intensive workloads [19] . We
chose SPEC benchmark suites because they are similar
to the real customer usage of our cloud.

• Tensorflow: Tensorflow is a popular machine learn-
ing framework from Google [4]. The MNIST dataset
is a large database of hand-written digits commonly
used to train image processing systems [28]. We used
this dataset to train a Tensorflow model.

4.2 Service Downtime
Minimizing service downtime is the major concern of cloud
providers. We measured the service downtime of Orthus by
upgrading the VMMwhile the benchmarkswere running.We
recorded the service downtime as the time between saving
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the VM state (Fig. 3, step 2) and resuming the VM execu-
tion (step 5). With this definition, the service downtime is
virtually the same as the total migration time for Orthus.
We used different benchmarks to simulate the common use
cases of our cloud services, including computation, database,
web, and machine learning. The goal was to understand how
Orthus might impact different types of customer tasks in
case of the downtime.

Service downtime for computing services: we used
SPEC CPU2006, MySQL/sysbench, and web server to sim-
ulate the computation, database, and web services. While
running these benchmarks, we upgraded the VMM with Or-
thus every 5 seconds until 100 samples of downtime were
recorded. The guest VM had 16 virtual CPUs, 32GB memory,
and 40GB SSD-based Cloud disk. We run just this VM on the
test server to avoid the interference from co-hosted VMs.
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Figure 5. Service downtime for four cases (unitms), sampled
every 5sec, total 100 sample

Fig. 5 shows service downtime of these four cases (includ-
ing the idle VM for comparison). Overall, the downtime was
between 29ms to 37ms with an average of 30ms . We also
measured the downtime and total migration time for MySQL
under VM live migration with 800 samples. They were 268ms
and 27.3s on average, respectively. Compared to VM live mi-
gration, Orthus reduced about 90% of the downtime and
99% of the total migration time. Notice that all the sampled
data of Orthus lied within a narrow range (29ms to 37ms).
As such, different workloads of the VM had limited impact
on the downtime of Orthus. Our experiments also showed
that the memory size of the VM did not affect the downtime
much (this is expected since we do not copy the VM’s mem-
ory.) Unlike Orthus, a busier or larger VM has longer total
migration time and downtime in VM live migration.
Fig. 6 shows the breakdown of a typical sample of the

downtime (30ms in total). It took 12ms towait for the vm_start
signal from libvirt, a popular toolkit to manage virtualization
platforms.4 It took another 4ms to restore the VGA device
(cirrus_vga), 4ms for the 16 vCPUs, and 3ms for virtio-net
and virtio-balloon, each.

Service downtime for GPU services: unlike VM live
migration, Orthus can seamlessly handle VMswith passthrough
4This part was caused by the quirks in the design of libvirt. We are investi-
gating the way to reduce it.
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Figure 6. Breakdown of service downtime in Orthus
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Figure 7. Downtime of Orthus for TensorFlow training
workloads with 1,2,4,6,8 GPUs (unit:ms)

devices. In our evaluation, wemeasured the downtime caused
by Orthus for VMs with GPUs. Specifically, we used the
MNIST dataset to train a Tensorflow model. The dataset
contains 70, 000 images of handwritten digits (0 to 9), di-
vided into the training set (60, 000 images) and the testing
set (10, 000 images). During the training, we upgraded the
VMM every 5 seconds and recorded the downtime. We took
100 samples of downtime. The results are summarized in
Fig. 7. The VM was assigned with 1, 2, 4, 6, or 8 GPUs. Fig. 7
also shows the downtime of the idle VM as a comparison.
Similar to computing services, the downtime for GPU

services also fell within a small range of time, i.e., the perfor-
mance of Orthus was consistent with only minor fluctuation.
It seems that the downtime increased by about 30ms for each
additional assigned GPU. This is because each GPU intro-
duces additional PCI configure space and VFIO-pci status
that need to be saved and restored by Orthus. Interestingly,
the maximum downtime of idle VM was about 300ms longer
than the active VM. This is because that idle GPUs may fall
into power saving states. To restore the VM on the new VMM
(Fig. 3, step 4), the target QEMU needs to wake up the GPU
in order to read its PCI config space. This takes much longer
than reading the PCI config space of an awake device.

Comparison to local VM live migration: technically,
it is possible to run live migration locally, i.e., use the same
server as both the source and target servers during the mi-
gration. This eliminates the network traffic for migration.
However, it cannot upgrade the KVM kernel module or mi-
grate passthrough devices (unless with our dual KVM and
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Figure 9. Mysql random query performance during 50 times Orthus live upgrade (lower is better)

device handover techniques). Compared to local VM live
migration, Orthus’ VM grafting can significantly reduce the
downtime. The average downtime for Orthus is about 31ms ,
while that for local migration is about 268ms for 16GB VM
with the MySQL workload. The distribution of downtime is
also much wider for the local migration (in a range of about
400ms vs. 20ms). Therefore, Orthus is a better solution than
local VM live migration.

4.3 Performance
Wemeasured the impact of Orthus and VM live migration on
the performance of services running in the VM, including the
MySQL and Tensorflow workloads as the typical examples
of computing and GPU services.

Performance impact on computing services: The test
VM had 16 virtual CPUs and 16GB memory. The host server
had two SPF+ network adapters bonded together for a total
of 20Gbps bandwidth. We reserved 10 Gbps bandwidth for
live migration in order to separate it from the customer
traffic. The VM run the MySQL database server. We used
sysbench to measure the response time for random queries
under Orthus and VM live migration.
Fig. 8 shows the response time of MySQL queries under

live migration. We executed 5 live migration sessions within

2min while the benchmark was running. The average to-
tal migration time was 12s and the downtime was between
255ms and 346ms . The figure shows notable performance
drops at the beginning of each session and more significant
drops during the downtime. As mentioned before, the over-
head comes from mainly the initial burst memory transfer
(competition in the memory bandwidth), the dirty memory
tracking, and the downtime. These performance drops, albeit
short, could lead to complaints and lose customers.
Figure 9 shows a totally different picture under Orthus.

We collected the data within the same 2min period but run
Orthus 50 times (10 times of live migration). Each vertical
line in the figure corresponds to one execution. Each session
incurred about 30ms in downtime. As shown in the figure,
the impact of Orthus on the MySQL service was minimal.

Performance impact on GPU services: We used the
same VM but with two Nvidia Telsa V100 GPUs. We run
the same Tensorflow training task. The entire training task
took around 60s without Orthus. We then run Orthus 15
times during the training. We did not notice any statistically
significant difference in the time of the training task in the re-
peated tests. According to Fig. 7, Orthus should have caused
1.35s of downtime in total (15 × 90ms). The reason that we
did not find noticeable difference is that, even though the
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vCPUs were stopped during the downtime, the GPUs were
still processing the pending workloads. We would like to
point out that VM live migration simply does not work well
in this case because it cannot migrate GPU tasks.

4.4 Real-world Differences Made by Orthus
We have deployed Orthus in most servers in our cloud data-
centers. It has become the most used tool in our daily main-
tenance. We use Orthus to deploy security patches and new
features across the datacenters. It has significantly simplified
and shorten the system upgrade process. We only use VM
live migration sporadically, mostly to replace failed hard-
ware devices (e.g., disks). With Orthus, we can deploy a new
version of VMM across the whole cloud in days (with the
staged rollout), while it would previously take months with
live migration. In particular, we previously had to manually
upgrade the VMs with passthrough GPUs or FPGAs; these
tasks can now be fully automated by Orthus. To demon-
strate the gain in the efficiency, we describe our experience
in deploying KVM’s halt polling feature.
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Figure 10. Upgrading 45, 000 VMs with live migration

Halt polling is a feature in KVM to reduce the guest latency
by polling wake conditions in the host for a short period
before halting the guest (upon its own request). Kernel live
patching cannot be used to apply this new feature because
some fundamental data structures, such as kvm_vcpu, are
changed. In our first setup, we used VM live migration to
upgrade 45, 000 VMs in a couple of clusters. We applied our
usual procedure in upgrading these VMMs. In total, it took 15
days to complete the upgrade. Fig. 10 shows the percentage
of VMs upgraded each day. Everyday, no more than 12% of
VMs could be upgraded. The reasons that slowed down the
process were:

• Most time was wasted to wait for the spare servers.
These clusters, like others, were close to their capabil-
ity with just enough spare servers to handle urgent/-
peak traffic.

• To avoid impacting the customer traffic, live migration
was only conducted in the midnight.

• For the same reason, we limited the network band-
width for migration to 10Gbps. Therefore, we could
not simultaneously migrate too many VMs.

• The upgrade was deployed with the staged rollout,
a common practice in the upgrade process. Initially,
only less than 2% VMs were migrated each day while
we closely monitored the customer feedback. The roll-
out would have been stopped if we received any com-
plaints. Note that the maximum we could do was to
migrate about 12% VMs each day due to the previous
three constraints. A more aggressive rollout schedule
may cause problems because of the network conges-
tion and the competition for spare servers.

VMs Downtime Total Migration Time
0.8% >0.48s >96.3s
0.2% >2.3s >174.9s
Max 9.82s 427.0s

Table 6. Distribution of downtime and total migration time
for the worst 1% VM

We analyzed the whole migration logs. Even in the best
case, we could not avoid long downtime for some VMs. Sta-
tistics showed that almost 1% of VMs suffered a downtime of
more than 0.48s and the total migration time of more than
1.5min. Even worse, the VM that suffered most often had
higher configurations with more vCPUs and memory. Ta-
ble 6 shows the distribution of downtime and total migration
time for these 1% VMs. Notice that the worst downtime was
9.82s and the worst migration time was more than 7min.

Next, we used Orthus to deploy this feature to all the other
VMs in the whole cloud with millions of VMs. In total, it only
took 45min to upgrade all the VMs across the cloud, staged
in three days. All we needed to do was to send the upgraded
KVM/QEMU to all the servers. Orthus then upgraded them
to the new version, no matter whether VMs were busy or not.
In each case, the downtime was about 30ms . Our previous
experience shows that it would have taken a few months to
accomplish the same cloud-wide update by live migration.
Overall, Orthus has tremendously simplified the daily

maintenance work in one of the largest public clouds.
Using Orthus to fix Spectre v1 attack:Meltdown and

Spectre are side-channel attacks that exploit speculative ex-
ecution in modern CPUs. Meltdown is a rouge data load
that can break the kernel/user-space isolation [29]. Melt-
down does not work against KVM because the memory of
KVM or other VMs is not mapped in the address space of
the malicious VM. However, Spectre can break the isolation
between different applications (potentially VMs), posing a
severe security threat to the cloud [24]. The official recom-
mendation to fix Spectre by Intel requires loading a new
microcode and upgrading the system software [15]. The mi-
crocode adds three new capabilities to compatible CPUs:
indirect-branch restricted speculation (IBRS), single-thread
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indirect-branch predictors (STIBP), and indirect-branch pre-
dictor barrier (IBPB). These capabilities can be used by the
updated system software to prevent the misuse of branch
prediction by Spectre. The KVM community made the nec-
essary changes to both KVM and QEMU.5 Fortunately, Intel
has provided a method to update the microcode without
rebooting [16].

To fix Spectre in our cloud, we first upgraded each server’s
microcode at run-time to add these new capabilities; we then
patched our KVM/QEMUwith the upstream fixes; and finally
deployed the upgraded KVM/QEMU by Orthus. With Orthus,
wewere able to fix Spectre across our whole cloudwithin just
a few days, even with the staged rollout. This demonstrated
the tremendous advantage of Orthus over VM live migration
in the large-scale cloud infrastructure – it would have taken
a few months for VM live migration to upgrade the whole
datacenters. As mentioned before, it only takes days for new
exploits to appear after a vulnerability is publicized.

5 Related Work
Kernel live patching, VMM live upgrade, and VM live migra-
tion are three powerful, complementary methods to update
the cloud infrastructures. In this section, we compare Orthus
to the representative systems in these other two methods.

5.1 Kernel Live Patching
Kernel live patching is a lightweight solution to apply tem-
porary patches to the running kernel. It can apply patches at
the function level (e.g., Kpatch [27] and KGraft [33]) or the
instruction level (e.g., Ksplice [7]). Recently, KARMA auto-
matically adapts an official kernel patch to many fragmented
Android kernels [11]. Kernel live patching is most suitable
for applying simple security patches. It does not support
patches that may change persistent data structures (i.e., data
structures that have allocated instances on the kernel heap
or stacks). Moreover, kernel live patching could become a
maintenance headache. It is especially problematic to the
public cloud, which has hundreds of thousands of servers.
The cloud provider needs to keep track of all the live patches
applied to individual servers and test whether these kernel
patches are compatible with each other or not. Eventually,
each server needs to be rebooted to install a clean upgrade.
Orthus instead focuses on the live upgrade of the whole
VMM. It can support complex changes to KVM/QEMU, in-
cluding adding new features. Such changes simply cannot
be applied by kernel live patching. Nevertheless, kernel live
patching is still useful for the cloud provider.

5.2 VM Live Migration
VM live migration temporarily moves the VMs to a backup
server, upgrades the system, and thenmoves the VMs back [12].

5QEMU was changed to expose these capabilities to the VMs.

VM live migration allows the cloud provider to upgrade al-
most everything in the original server, from hardware de-
vices to the operating system. However, the cluster-wide
live migration is inherently limited by the availability of
backup servers and the network bandwidth. Therefore, it
cannot meet the time requirement when deploying urgent
(security) updates. Moreover, live migration incurs relatively
long downtime and total migration time and cannot handle
passthrough devices. Compared to VM live migration, Or-
thus can reduce the downtime and total migration time by
90% and 99%; it does not need backup servers or consume
network bandwidth; it can upgrade a large number of VMs
in parallel. Since its deployment in our cloud, Orthus has
mostly replaced VM live migration, which is only used to
replace failed hardware devices and major kernel upgrade
(new versions).

Efforts to reduce the impact of livemigration:A study
of the performance in the cloud shows that application ser-
vice levels drop during the migration, especially for Internet
applications[40]. The overhead comes from iterative memory
copy between the source and target VMs. Jin et al. propose
a compression-based migration approach to reduce its net-
work traffic [21]. Specifically, memory pages are selectively
compressed in batches on the source VM and decompressed
on the target VM. This system can reduce service down-
time by 27%. Liu et al. propose to use full system tracing
and replay to provide fast, transparent VM migration[30].
Availability of network bandwidth is another constraint to
the live migration, especially for the large-scale migration
in the datacenters. Researchers have proposed to limit the
migration network traffic within the inner racks, instead of
the core network links where network congestion is more
costly. Deshpande et al. propose a distributed system for
inter-rack migration [17]. They were able to reduce the total
network traffic on the core network by 44%.
Compared to these systems, Orthus can reduce the mi-

gration time and downtime by 90% and 99%, respectively,
and completely eliminate the network traffic caused by itera-
tive memory copying. As such, Orthus can support massive
parallel VMM upgrade.

Live migration of passthrough device: How to mi-
grate pass-through devices is still a big challenge to public
cloud providers. There are disconnected solutions to migrate
specific devices, essentially by introducing another layer of
abstraction. For example, an approach has been proposed
to live-migrate Intel GPUs [31]. Specifically, they assign
sliced vGPUs [37] that share a physical GPU to multiple VMs.
The sliced vGPUs can be migrated between different Intel
GPUs. There is also a similar system designed for GPU-based
machine-learning and AI applications that exposes a virtual
CUDA interface to the VM [35]. Both systems are tied to the
GPUs they support and require a new implementation for
each used GPU. Kadav and Swift propose to use shadow dri-
vers to capture and reset the state of a device driver in order
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to migrate passthrough devices [23]. Intel provides a solution
to migrate network devices. Specifically, it bonds a virtual
NIC and physical NIC together and hot-unplug/hot-plug the
virtual NIC during migration [8, 18, 32, 42]. As shown in
Table 3, our cloud supports several types of passthrough
devices, including FPGAs.
Orthus’ device handover is a generic solution for device

migration during the VMM live upgrade. It can seamlessly
handover the passthrough devices to the target VM without
losing the ongoing operations. It can support all the pass-
through devices in our cloud without device-specific code.

5.3 Dual VMM
Dual VMM has been used to isolate resource and improve
security. For example, it is used to consolidate the HPC (high-
performance computing) and commodity applications in the
cloud [25]. MultiHype uses multiple VMMs in the single
host to improve security [36], so that a compromised VMM
is confined to its own domain without affecting the others.
Dual KVM is one of three components of Orthus. Together,
these three components allow us to upgrade both KVM and
QEMU to a new version without disrupting the running VMs.

6 Discussion
In this section, we discuss potential improvements to Orthus
and the future work. First, by design, Orthus is a method to
upgrade the live VMM and thus cannot upgrade the host ker-
nel. This design is based on the cloud threat model in which
the host kernel is mostly isolated from the guest through net-
work segregation, device passthrough, and driver domains.
The main attack surface is the VMM that directly interacts
with untrusted VMs. Our survey of all the KVM-related vul-
nerabilities in the CVE database shows that only 2 out of 95
vulnerabilities in the kernel can be exploited by VMs. The
other 93 vulnerabilities lie in the VMM. Therefore, keeping
the VMM up-to-date is critical in protecting the cloud infras-
tructure from malicious VMs. The other two vulnerabilities
can be patched by kernel live patching or VM live migration.
Moreover, new functions usually need to be integrated in the
VMM. Kernel live patching, VMM live upgrade, and VM live
migration form a complete toolset for cloud providers. Our
own experience shows that Orthus is the most useful of the
three because of its effectiveness, scalability, and minimal
impact to the customer traffic.
Orthus uses QEMU’s save and restore VM functions to

“cut-and-paste” VMs from the old VMM to the updated one.
As such, it assumes that the saved VM image can be restored
in the update VMM. This assumption holds as long as the
VM format in QEMU remains backward compatible. QEMU,
as a mature open-source project, rarely breaks the backward
compatibility. We have not met such cases either during the
deployment of Orthus in our cloud. If this happens, Orthus

will fail to restore the VM image on the new KVM. How-
ever, by design, Orthus will resume the execution of the VM
on the original VMM instance. Consequently, there will be
no interruption to the VM. This problem can be addressed
later by adding the compatibility code to QEMU. Note that,
VM live migration uses the same mechanism to save and
restore VMs. As such, they have exactly the same problem
(this is also the reason why QEMU is unlikely to break back-
ward compatibility.) Note that we cannot resort to the live
migration to update the VMM in this case because the live
migration will also fail.

VMM live upgrade is an important defense againmalicious
VMs. There are orthogonal efforts to mitigate this problem
from different angles. For example, fuzz testing has been
used to discover unknown vulnerabilities in the KVM/QEMU
stack. It essentially feeds the VMMwith random/unexpected
inputs, trying to trigger abnormal behaviors. Fuzz testing
has been proved to be effective in finding vulnerabilities in
KVM [1]. There are also efforts to reduce the privileged code
in KVM by moving non-performance critical code to the user
space [1], and to sandbox and isolate KVM so that a compro-
mised KVM cannot affect other VMs [41]. All these efforts
improve the security of the cloud. On the other hand, vulner-
abilities are inevitable given the complexity of KVM/QEMU
and its host OS (Linux). A method to promptly upgrade the
VMM like Orthus is essential to the cloud security.

7 Conclusion
We have presented the details of Orthus, a system that can
upgrade the live VMM in the cloud. Orthus features three key
techniques: dual KVM, VM grafting, and device handover.
Together, they allow us to upgrade the running KVM/QEMU
to an updated version with new features or (complex) se-
curity fixes. In addition, Orthus can seamlessly handover
passthrough devices to the new instance without losing any
ongoing (DMA) operations. Our evaluation shows that Or-
thus can reduce the total migration time and service down-
time by more than 99% and 90%, respectively. It has become
the most effective and indispensable tool in our daily main-
tenance and operations of hundreds of thousands of servers
and millions of VMs.

8 Acknowledgment
We would like to thank the anonymous reviewers for their
insightful comments that helped improve the presentation
of this paper. Zhi Wang was partially supported by National
Science Foundation (NSF) under Grant 1453020; Qi Li was
partially supported by National Natural Science Foundation
of China (NSFC) under Grant 61572278 and U1736209. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of NSF or NSFC. Xiantao Zhang
and Qi Li are the corresponding authors of this paper.

12



Fast and Scalable VMM Live Upgrade in Large Cloud Infrastructure ASPLOS ’19, April 13–17, 2019, Providence, RI

References
[1] 7 ways we harden our kvm hypervisor at google cloud: security in

plaintext. https://bit.ly/2jSjru3, 2017.
[2] Intel® virtualization technology for directed i/o architecture specifi-

cation. https://software.intel.com/sites/default/files/managed/c5/15/
vt-directed-io-spec.pdf, 2018.

[3] Search results for cve in kvm. https://cve.mitre.org/cgi-bin/cvekey.cgi?
keyword=kvm, 2018.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[5] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger,
Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji
Vembu, and John Wiegert. Intel virtualization technology for directed
i/o. Intel technology journal, 10(3), 2006.

[6] AMD. Amd i/o virtualization technology (iommu) specification. 2016.
[7] Jeff Arnold and M Frans Kaashoek. Ksplice: Automatic rebootless

kernel updates. In Proceedings of the 4th ACM European conference on
Computer systems, pages 187–198. ACM, 2009.

[8] Adam M Belay. Migrating virtual machines configured with pass-
through devices, March 27 2012. US Patent 8,146,082.

[9] Apache Bench. ab-apache http server benchmarking tool.
[10] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald

Schiöberg. Live wide-area migration of virtual machines including
local persistent state. In Proceedings of the 3rd international conference
on Virtual execution environments, pages 169–179. ACM, 2007.

[11] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and
Tao Wei. Adaptive android kernel live patching. In Proceedings of the
26th USENIX Security Symposium (USENIX Security 17), 2017.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation-Volume 2,
pages 273–286. USENIX Association, 2005.

[13] Intel Corporation. Intel® 64 and ia-32 architectures software developer
manuals. https://software.intel.com/en-us/articles/intel-sdm, 2016.

[14] Intel Corporation. Intel® virtualization technology (intel®
vt). https://www.intel.com/content/www/us/en/virtualization/
virtualization-technology/intel-virtualization-technology.html, 2016.

[15] Intel Corporation. Intel analysis of speculative execution side chan-
nels. https://newsroom.intel.com/wp-content/uploads/sites/11/2018/
01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.

[16] Intel Corporation. Intel processor microcode package for linux
description. https://downloadcenter.intel.com/download/27945/
Linux-Processor-Microcode-Data-File?product=873, 2018.

[17] Umesh Deshpande, Unmesh Kulkarni, and Kartik Gopalan. Inter-rack
live migration of multiple virtual machines. In Proceedings of the 6th
international workshop on Virtualization Technologies in Distributed
Computing Date, pages 19–26. ACM, 2012.

[18] Yaozu Dong. Efficent migration of virtual functions to enable high
availability and resource rebalance, September 10 2013. US Patent
8,533,713.

[19] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[20] Radhakrishna Hiremane. Intel virtualization technology for directed
i/o (intel vt-d). Technology@ Intel Magazine, 4(10), 2007.

[21] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live
virtual machine migration with adaptive, memory compression. In
Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE Interna-
tional Conference on, pages 1–10. IEEE, 2009.

[22] Rick Jones et al. Netperf: a network performance benchmark. Infor-
mation Networks Division, Hewlett-Packard Company, 1996.

[23] Asim Kadav and Michael M. Swift. Live Migration of Direct-access
Devices. In Proceedings of the First Conference on I/O Virtualization,
WIOV’08, Berkeley, CA, USA, 2008. USENIX Association.

[24] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
arXiv preprint arXiv:1801.01203, 2018.

[25] Brian Kocoloski, Jiannan Ouyang, and John Lange. A case for dual
stack virtualization: consolidating hpc and commodity applications
in the cloud. In Proceedings of the Third ACM Symposium on Cloud
Computing, page 23. ACM, 2012.

[26] Alexey Kopytov. Sysbench: a system performance benchmark.
http://sysbench. sourceforge. net/, 2004.

[27] Kpatch. kpatch: Dynamic kernel patching. 2018.
[28] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit

database. AT&T Labs [Online]. Available: http://yann. lecun. com/exd-
b/mnist, 2, 2010.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[30] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live mi-
gration of virtual machine based on full system trace and replay. In
Proceedings of the 18th ACM international symposium on High perfor-
mance distributed computing, pages 101–110. ACM, 2009.

[31] Jiacheng Ma, Xiao Zheng, Yaozu Dong, Wentai Li, Zhengwei Qi, Bing-
sheng He, and Haibing Guan. gmig: Efficient gpu live migration
optimized by software dirty page for full virtualization. In Proceedings
of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 31–44. ACM, 2018.

[32] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, and Zhijiao Zhang.
Compsc: live migration with pass-through devices. ACM SIGPLAN
Notices, 47(7):109–120, 2012.

[33] V Pavlík. kgraft–live patching of the linux kernel. Technical report,
Technical report, SUSE, Maxfeldstrasse 5 90409 Nuremberg Germany,
2014.

[34] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. Characterizing
hypervisor vulnerabilities in cloud computing servers. In Proceedings
of the 2013 international workshop on Security in cloud computing, pages
3–10. ACM, 2013.

[35] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vcuda: Gpu-accelerated
high-performance computing in virtual machines. IEEE Transactions
on Computers, 61(6):804–816, 2012.

[36] Weidong Shi, JongHyuk Lee, Taeweon Suh, Dong Hyuk Woo, and
Xinwen Zhang. Architectural support of multiple hypervisors over
single platform for enhancing cloud computing security. In Proceedings
of the 9th conference on Computing Frontiers, pages 75–84. ACM, 2012.

[37] Jike Song, Zhiyuan Lv, and Kevin Tian. Kvmgt: A full gpu virtualization
solution. In KVM Forum, volume 2014, 2014.

[38] Kun Tian, Yaozu Dong, and David Cowperthwaite. A full gpu virtu-
alization solution with mediated pass-through. In USENIX Annual
Technical Conference, pages 121–132, 2014.

[39] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/7625886,
2018.

[40] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar
Buyya. Cost of virtual machine livemigration in clouds: A performance
evaluation. In IEEE International Conference on Cloud Computing, pages
254–265. Springer, 2009.

[41] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. Isolating
Commodity Hosted Hypervisors with HyperLock. In Proceedings of
the 7th ACM european conference on Computer Systems, April 2012.

[42] Edwin Zhai, Gregory D Cummings, and Yaozu Dong. Live migration
with pass-through device for linux vm. In OLS’08: The 2008 Ottawa
Linux Symposium, pages 261–268, 2008.

13

https://bit.ly/2jSjru3
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kvm
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kvm
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://downloadcenter.intel.com/download/27945/Linux-Processor-Microcode-Data-File?product=873
https://downloadcenter.intel.com/download/27945/Linux-Processor-Microcode-Data-File?product=873
https://support.google.com/faqs/answer/7625886

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Large-scale VM Migration is Impractical
	2.2 Impact of VM Live Migration
	2.3 Migration of Passthrough Devices

	3 System Design
	3.1 Dual KVM
	3.2 VM Grafting
	3.3 Passthrough Device Handover

	4 Evaluation
	4.1 Experiment Setup
	4.2 Service Downtime
	4.3 Performance
	4.4 Real-world Differences Made by Orthus

	5 Related Work
	5.1 Kernel Live Patching
	5.2 VM Live Migration
	5.3 Dual VMM

	6 Discussion
	7 Conclusion
	8 Acknowledgment
	References

