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ABSTRACT
iWood is interactive plywood that can sense vibration based on
triboelectric effect. As a material, iWood survives common wood-
working operations, such as sawing, screwing, and nailing and
can be used to create furniture and artifacts. Things created us-
ing iWood inherit its sensing capability and can detect a variety
of user input and activities based on their unique vibration pat-
terns. Through a series of experiments and machine simulations,
we carefully chose the size of the sensor electrodes, the type of
triboelectric materials, and the bonding method of the sensor layers
to optimize the sensitivity and fabrication complexity. The sensing
performance of iWood was evaluated with 4 gestures and 12 daily
activities carried out on a table, nightstand, and cutting board, all
created using iWood. Our result suggested over 90% accuracies for
activity and gesture recognition.
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1 INTRODUCTION
The vision of ubiquitous computing heralds the future of smart
home and work environments that can better understand and ful-
fill people’s needs [42]. However, this vision is still far from real-
ity as most things in today’s world are not computing-powered,
such as furniture made of wood or garments made of fabric. To
allow computation and interactivity to better blend into everyday
contexts, researchers have investigated ways to imbue them into
everyday materials, of which, daily objects are made [3]. This way,
the world made of interactive materials becomes interactive au-
tomatically while still being able to preserve the look and feel of
its non-computational counterparts. Innovations like interactive
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Figure 1: (a) iWood is interactive plywood that can be used
as a vibration sensor to detect user input and activities. (b)
A nightstand can be created using iWood using established
woodworking operations like screwing. (c) iWood sensor re-
mains functional even a part of it is damaged by the screws.

paper [6, 13, 19] and fabric [12, 30, 32, 33, 46, 47] all exemplify such
efforts.

In this paper, we present a new type of interactive material cre-
ated based on plywood, a type of wood commonly used in furniture,
artifacts, floors, and building infrastructures. Beyond what plywood
offers as a material, our prototype (called iWood) detects the subtle
vibrations caused by users’ gestures and activities based on the
triboelectric effect [52]. iWood is makeable, meaning that it can be
sawed, nailed, or screwed together to make smart objects (Figure
1b). Things created using iWood inherit the material’s sensing capa-
bility and can detect a variety of user input and activities based on
their unique vibration patterns. For example, a smart desk made of
iWood can detect and log the user’s work activities, such as writing
and erasing, enabling new applications for skill development or
personal reflection.

We implemented our prototype using a layer of triboelectric
material sandwiched between two layers of electrodes, each at-
tached to a plywood substrate (Figure 1a), similar to the structure
commonly used in triboelectric nanogenerators (TENG) [21]. The
electrode layers of iWood were uniquely designed to stagger with
each other to only cover a separate part of the sensing area. This
way short-circuiting caused by metallic screws and nails can be
significantly reduced. Through a series of machine simulations and
experiments, we carefully chose the size of the electrodes, the type
of triboelectric materials, and the bonding method of the sensor lay-
ers to optimize the sensitivity and fabrication complexity of iWood.
In a controlled experiment, we measured the sensing performance
of the table, nightstand, and cutting board made of iWood over
four input gestures and 12 common work and kitchen activities
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(e.g., writing on a table). Our results suggested that in many tested
conditions the smart items achieved a recognition accuracy of over
90%.

The key contributions of this work are in (1) a makeable plywood
sensor that can be used to create smart wooden objects to sense
user input and activities using vibration sensing; and (2) the usage
scenarios demonstrating unique applications enabled by iWood as
interactive material.

2 RELATEDWORK AND BACKGROUND
We discuss work related to input on interactive fabric and paper,
interactive wooden artifacts, cuttable sensors, and vibration sensing
based on the triboelectric effect.

2.1 Input on Interactive Fabric, Paper, and
Wooden Artifacts

fabrics have been instrumented with sensors to enable a wide va-
riety of applications through sensing touch input [31, 32], mid-air
hand gestures [46], deformation of the fabric [30, 31], and different
types of objects that are in contact with the fabric [12, 47, 48]. For
instance, Project Jacquard [32] is a new type of conductive yarn
that can be woven into textiles to sense touch input. Aside from
sensing user input, object recognition techniques have also been
explored in interactive fabrics. For example, Capacitivo [47] can
detect non-metallic objects, such as food using capacitive sensing.

In addition to interactive fabric, paper has been augmented with
sensing capabilities to detect touch input [13, 19, 27], finger rubbing
[19], the proximity of the hand [13], the shape of the paper [44], the
deformation of the paper [13], and even sound [5, 6]. For example,
PrintSense introduced a new pattern of printed conductive electrode
arrays on paper to support multimodel interactions [13]. Paper
generators leveraged the triboelectric effect to enable interactions
like touch, rubbing, and sliding in a children’s storybook [19].

Research on wooden artifacts has primarily focused on attaching
sensing devices to off-the-shelf furniture or artifacts made of wood
[15, 18, 26, 28, 29, 39, 49] rather than developing wood into an
interactive material. Examples of this body of research include
tables, walls, and floors instrumented with vibration sensors to
detect touch or gesture events [15, 29, 49], people falling on the
floor [10], user activities (e.g., cutting, typing, walking) [39], and the
presence of some of the daily items on a table (e.g., glass, phone, coil,
paper cup) [26]. Although it is an effective way to bring interactivity
to the existing environment, the attached sensors and devices often
do not blend well into the traditional aesthetics of wooden objects.

2.2 Cuttable Sensors
Sensor makeability is not entirely new. Our research was inspired
by the line of work investigating cuttable sensors for rapid prototyp-
ing. An early example of cuttable sensors is Wimmer et al. [45] and
Holman et al. [17] ’s touch sensing strip that can be cut into differ-
ent lengths to satisfy the needs of different applications. Similarly,
Dementyev et al.’s sensor tape can also be cut into different lengths
and is capable of measuring the proximity of nearby objects [9].
Beyond cutting in a 1D space, Olberding et al.’s touch sensor can
be cut out in 2D shapes [27]. Built on top of this work, Takahashi

et al. [40] developed a cuttable coil grid for wireless power transfer
using a method based on H-tree.

2.3 Vibration Sensing based on the Triboelectric
Effect

Our sensing technique is based on the triboelectric effect and partic-
ularly triboelectric nanogenerator (TENG), which is a technology
developed based on the principle of triboelectrification and elec-
trostatic induction. It converts mechanical energy to a correlated
electrical response and has been widely used in energy harvesting
applications due to its high efficiency for energy transfer at low
frequencies [21]. For example, Hao el al. [14] proposed a wood-
based triboelectric nanogenerator (W-TENG) to power electronic
devices. Sun et al. [38] improved W-TENG to harvest more energy
by using a triboelectric material made of chemically functionalizing
wood. Methods based on the triboelectric effect have also been used
for sensing in a wide variety of applications to detect mechanical
motion such as pressure [25, 51], vibrations [6, 7, 50], speed of
wind [4], rotation of a disk [24], and acceleration of an object [53].
This method was also used as a sensing mechanism to instrument
floors and tables to detect user activities, such as falling [36]. In
comparison to other types of vibration sensors, such as piezoelec-
tric ceramic or PVDF poled piezoelectric film, techniques based on
triboelectrification are cheaper and easier to implement [6], thus
making them suitable for plywood, especially for development at
scale.

3 VIBRATION SENSING PRINCIPLE
iWood’s sensing technique is based on the triboelectric effect caused
by the contact and separation of a positive and negative triboelec-
tric material (layer) [52]. When the two layers are pushed to contact
with each other, the negative triboelectric layer gains electrons from
the positive triboelectric layer, becoming negatively charged. The
positive triboelectric layer becomes positively charged. When the
subsequent propagation of vibrations separates the two triboelectric
layers, a potential difference is induced between the electrodes con-
nected to them. This causes the current to flow from the electrode
of the positive triboelectric layer to the electrode of the negative
triboelectric layer (with the presence of an external load between
the two electrodes). When the two triboelectric layers are pushed
towards each other again, a current flow in the reversed direction
occurs, which completes the cycle of electricity generation. Even if
the contact and separation take place at a micro-scale, the voltage
signals generated by the triboelectric effect can still be measured
for sensing purposes.

In general, the sensitivity of iWood is determined by (1) the
maximum distance between the triboelectric layers when they are
pushed away from each other due to vibration and (2) the sur-
face charge density of the triboelectric layers [54]. The separation
distance is determined by how tightly the triboelectric layers are
bonded to each other. The surface charge density is determined
by the material choice of the triboelectric layers. Materials with a
stronger tendency to be negatively or positively charged lead to bet-
ter surface charge density. For the negative triboelectric layer, poly-
tetrafluoroethylene (PTFE) film is widely used [54]. For the positive
triboelectric layer, there is a wider range of options with the most
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common ones including wood, copper, nylon, and polyurethane
(PU) [54].

4 MAKEABILITY ISSUE
The triboelectric vibration sensor can be implemented with a thin
polytetrafluoroethylene (PTFE) film, sandwiched between two lay-
ers of copper film, each attached to a substrate of plywood board
(Figure 2). In this implementation, one of the copper films not only
serves as an electrode but also acts as the positive triboelectric
layer [52, 54]. This copper film needs to be loosely attached to the
PTFE film (e.g., along its edges) to allow space between them for
bouncing. Note that the other copper film, which serves only as
an electrode, needs to be glued completed to the PTFE film. This is
required to limit the occurrence of triboelectrification only on the
opposite copper film to maximize signal strength.

Figure 2: The structure of our vibration sensor.

The issue with this implementation, however, is that the sensor
cannot survive some of the common woodworking operations, such
as screwing and nailing. As a metallic object, when a screw or nail
passed through the sensor, the copper electrodes became electrically
connected (short-circuited), which led to no current flow within the
circuit as the voltage potential equalized between the electrodes
(Figure 3a). Other common operations, such as drilling or sanding,
do not have this problem. While there are special types of nails
coated with a non-conductive material, they are not widely used in
practice, so a better solution is needed.

Figure 3: Side views of the sensor structure. (a) With the
current design, the screw inside the sensor connects the
electrodes, thus causing a short circuit. (b) The new elec-
trode design removes the overlap between the electrodes to
avoid short-circuiting. A horizontal gap between the top and
bottom electrodes further avoids short-circuiting along the
shared edge of the electrodes.

5 DESIGNING A MAKABLE SENSOR
The basic principle of our approach was to minimize the overlap
between the electrodes. For example, instead of covering the entire
PTFE film, the electrodes can be arranged to cover only half of it
(Figure 3b). In the simplest way, the top and bottom electrodes can
cover the right and left half of the sensor respectively. With this

arrangement, the electrodes will not be easily connected by a screw.
Note that, short circuits may still happen if a screw or nail appears
on the shared edge of the electrodes. The problem, however, can
be avoided by separating the electrodes with a gap wider than the
diameter of the screw (Figure 3b). With this design, half of the PTFE
film is in contact with the wood substrate, which now also serves
as the positive triboelectric layer along with the copper film on the
same side.

The issue with this simple modification is that the electrode
coverage could be largely uneven after the plywood is cut into
parts of different shapes. A sensor with uneven electrode coverage
is susceptible to environmental electromagnetic (EM) noises, thus
impacting the signal-to-noise ratio (SNR). Such noise could hurt the
accuracy and robustness of iWood as an activity sensor. In an ideal
situation with equal electrode coverage, EM noises cause similar
voltage signals on each electrode, thus can be almost canceled from
each other in the output data, resulting in the minimum impact on
the SNR. However, such a balance cannot be guaranteed inside a
cutout. In an extreme case, where one of the electrodes is mostly
cut off from the sensor (Figure 4a), the EM noises received from
the opposite electrode will be largely included in the output signal,
thus significantly degrading SNR. According to our test conducted
under frequencies from 20Hz to 500Hz (frequency range of common
user activities), the noise of a 610mm x 610mm sensor with only
one electrode could be 100 times larger than the same sensor with
well-balanced electrode coverage.

Figure 4: Top view of the iWood electrode layout. (a) The top
(red) and bottom (blue) electrodes, each covering half of the
sensing area. (b) iWood opts for a grid electrode layout to
avoid the extremely unbalanced coverage of the electrodes
in (a). (c) The same cutout containing smaller electrodes has
more overlaps between the connection lines (less makeable)
but less of the unbalancing issue (better SNR).

To mitigate this problem, we opted for a different electrode de-
sign. Instead of using a single piece of the electrode on each side
of the PTFE film, we opted for a grid layout with diamond-shaped
electrodes connected in rows and columns (Figure 4b). In our de-
sign, the top and bottom electrodes stagger with each other with a
12.7mmgap to avoid short-circuits along the shared edges.We chose
12.7mm because it is the diameter of the largest wood screw that
we found on the market. This new design allows the short-circuit
problem to be largely avoided without sacrificing SNR (or sensitiv-
ity). Each electrode in the grid is connected to its four neighbors
through connection lines of 2mm wide. This largely preserves the
disconnection of edge electrodes in a cutout of any convex shape.
In a concave shape like a star, some of the edge electrodes could be
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cut off from the sensor but most others will still be functional. This
helps avoid the extreme unbalance situation discussed above.

Note that the connection lines from nearby electrodes on the
opposite side may still overlap with each other at intersections (e.g.,
where the red and blue lines cross each other in Figure 4b). Screws
or nails in these locations may cause short circuits. The amount of
overlap is determined by the size of the electrodes. For example,
layouts with larger electrodes have fewer overlaps because there
are fewer connection lines and electrodes. The trade-off, however,
is in the lack of ability to tolerate the unbalance issue of electrode
coverage upon cutting. Thus, layouts with larger electrodes could
be more susceptible to EM noises. In contrast, layouts with smaller
electrodes are less problematic upon cutting but can introduce more
overlaps and short-circuiting issues (Figure 4c), which is a more
serious issue. Next, we describe our approach to identifying an
optimal size for the electrodes.

6 SIMULATION STUDY
An optimal electrode size can be found by testing cutouts of differ-
ent shapes, sizes, orientations, and locations inside a sensor. Each
of these parameters has many variations, leading to numerous com-
binations, which makes it infeasible for the study to be conducted
manually. As such, we developed software to simulate all different
situations.

6.1 Software Simulator
Our software simulated cutouts in different shapes, sizes, and ori-
entations inside a virtual sensing area of 6100mm × 6100mm wide
with electrodes of different sizes and a 12.7mm gap between the
electrodes. The size of the sensing area is adjustable and the one
used in our study was based on the size of a plywood board com-
monly found in DIY and crafting stores in our region. We chose
six basic shapes to cover a range of simple and complex cutouts
commonly seen in woodworking projects. These include triangle,
rectangle, ellipse, star, carve-out, and hole-out (Figure 5).

Figure 5: The six basic cutout shapes tested in the simulation.

We then varied the size of the cutouts by scaling them in the x-
and y-directions six times by a factor of 1 to 6. This resulted in 36
different sizes and 30 variations of the basic shapes. The smallest
cutout has a bounding box of 100 × 100mm, which is roughly the
size of some of the small wooden artifacts found in our makeability
study.We rotated each cutout from 0˚ to 180˚ with a step size of 22.5˚.
Each combination of shape × x-scale × y-scale × rotation angle
was then tested at different locations inside the virtual sensor along
the x- and y-axis with a step size of 5mm in each direction, except
when a cutout did not fit inside the sensor (e.g., at corners). Lastly,
we varied the electrode size to cover a wide range of possibilities
from 10mm to 120mm wide with a step size of 10mm.

In each tested condition and for each electrode size, we calculated
two scores with one indicating the probability of short-circuiting
and the other one indicating the ratio between the top and bottom
electrode coverage. As discussed earlier, larger electrodes tend to
have fewer short-circuiting problems, but smaller electrodes tend to
have better SNR. The Short-Circuiting Probability was calculated as
the area of overlaps and any region that can be bridged by a screw
of 12.7mm in diameter, divided by the area of a cutout. In our calcu-
lation, the connection lines were set as 2mm wide to be consistent
with our implementation. The Balance Ratio was calculated as the
smaller of the top and bottom electrode coverage, divided by the
larger of them. When the coverage was calculated, we excluded the
edge electrodes that were cut disconnected from the remainders.
The Balance Ratio measures how well the coverages of the top and
bottom connected electrodes are balanced. The higher this score
is the better the coverages are balanced. In extreme cases, where
electrodes on one side of a cutout are largely cut disconnected, the
Balance Ratio will be close to zero. Thus, the Balance Ratio can also
be used to detect the occurrence of extremely unbalanced coverage.

6.2 Result
We calculated the average Short-Circuiting Probability and ag-
gregated them by electrode size, basic cutout shape, and cutout
size in six groups: 100𝑐𝑚2, (100, 400 𝑐𝑚2], (400, 900 𝑐𝑚2],
(900, 1600 𝑐𝑚2], (1600, 2500 𝑐𝑚2], and (2500, 3600 𝑐𝑚2]). Figure
6 shows the Short-Circuiting Probability by electrode size, cutout
shape, and cutout size group. Cutout shape and size had no observ-
able impact on the likelihood of short-circuiting. As the size of the
electrode increased, the chance for the electrodes and connection
lines to be short-circuited decreased. With electrodes bigger than
80mm, the probability of short-circuiting became lower than 5%,
which is very promising.

Figure 6: (a) Short-Circuiting Probability shown against elec-
trode size and cutout shape. (b) Short-Circuiting Probability
shown against electrode size and cutout size group.

Figure 7 shows the Balance Ratio for the electrodes larger than
80mm. As expected, the Balance Ratio decreased with the increase
of the size of the electrodes. The data also shows that the balance
ratios of the electrodes bigger than 80mm are far greater than
zero, meaning that extremely unbalanced coverage is rare. Among
the different cutout shapes, the star received the lowest scores.
As expected, edge electrodes, especially the big ones, are more
likely to be cut disconnected in a concave shape. When it happens
to either electrode layer, the electrode coverage becomes largely
unbalanced. The problem becomes more severe when the cutout
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Figure 7: (a) Balance Ratio shown against electrode size and
cutout shape. (b) Balance Ratio shown against electrode size
and cutout size group.

is small (Figure 7b). For most other cutout shapes and sizes, the
electrode coverages are relatively well balanced. Since our goal was
to prioritize makeability while balancing signal clarity, we chose to
use 80mm in our implementation.

7 OPTIMIZING IWOOD FABRICATION
Aside from the design of the electrode layer, the performance of
iWood also depends on how the triboelectric and electrode layers
are put together as a package. As discussed in Section 3, the sen-
sitivity of iWood is mainly affected by the bonding method of the
sensor layers and the material choice of the triboelectric layers.
Since in our implementation, one of the electrodes also served as
the positive triboelectric layer, we were also interested in learning
whether the material, of which, the electrodes were made would
affect sensitivity. We performed three tests to answer these ques-
tions.

7.1 Experiment Setup
Our study apparatus was implemented on a small piece of plywood
board measured 100mm × 100mm wide and 5.08mm thick. Since
makeability is not the focus of the studies, we only had the elec-
trodes (100mm × 50mm) cover half of the PTFE film on each side,
for the sake of simplicity. The rest of the implementation was the
same as that shown in Figure 2. The electrodes were initially created
using a copper film, which was later replaced by different materi-
als along with other sensor modifications and bonding strategies
based on the requirement of our tests. We created three replicated
copies for each modified version to reduce the impact of fabrication
variations on results.

The tests were performed in a controlled environment with the
plywood sensor placed on a table. Vibration signals were generated
using a vibration exciter, fixed in the center of the plywood using
a high bonding double-side tape [2]. We controlled the vibration
exciter [8] using awave generator to generate sine waves of 5V, with
frequencies ranging from 20Hz to 500Hz at a step size of 4.8Hz. We
chose this range because it covers the vibration frequencies caused
by a wide variety of user activities in daily life [39]. The voltage
signal at each tested frequency was acquired using an oscilloscope.
EM noises were also collected for each test condition and sensor
replicas to calculate SNR. The SNR data shown in the test results
are the average of all the SNRs across the tested frequencies and
conditions.

7.2 Bonding Strategy
In this test, we sought to understand how the bonding method
of the sensor may affect sensitivity. As mentioned earlier, there
needs to be enough space for the PTFE film to bounce away from
the copper film (one that also serves as the positive triboelectric
layer), which means that they cannot be glued completely against
each other. Therefore, a good strategy is to bond them through a
small number of connection points loosely spreading across the
PTFE film. Alternatively, they can be bounded through the edges
connecting these points. Both approaches leave the majority of the
PTFE film surface free to bounce, maximizing separation distance.
In this study, we tested two bonding strategies on the sensor: (1)
gluing at the four corners of the PTFE film (Figure 8a); and (2)
gluing the four edges of the PTFE film (Figure 8b). We also tested
these bonding methods with different types of glues and found that
3M plastic glue [1] performed the best to hold the entire unit firmly
against all the woodworking operations from Study 1.

Figure 8c shows the result of this test. We found that across all
the tested frequencies, the sensor was approximately 3db more
sensitive when bonded through the corner points than through the
edges. Therefore, we chose to use corner bonding in the remaining
studies and in the implementation of our final prototype.

Figure 8: The prototype used in the bonding strategy test was
created by: (a) gluing the copper and PTFE films together
through the four corners and (b) gluing through the four
edges. (c) Sensor data of the two bonding strategies.

7.3 Material Choice for the Electrodes
We conducted a second test to identify the proper material for the
electrodes. Note that in our implementation, one of the electrodes
also serves as the positive triboelectric layer. Therefore, it is unclear
whether electrode material may affect sensitivity. To answer this
question, we implemented and tested sensors with electrodes made
of four different types of conductive materials: (1) copper film, (2)
aluminum foils, (3) carbon coating, and (4) nickel coating (Figure 9).
All of these conductive materials are low-cost and widely available
on the market. Among these options, copper film and aluminum
foil were used in previous research in triboelectric nanogenerators
[54]. While carbon and nickel coating has not been used for the
same purpose, spraying the electrodes on the plywood leads to
better structural integrity [43, 55].

The result is shown in Figure 9e. The strength of the sensor
signals decreased in the aluminum foil condition between 150Hz
and 300Hz. There was no significant difference between all the
other three electrode materials. Considering structural integrity,
both carbon and nickel coating would work better for us. We used
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nickel coating in the remaining studies and in the implementation
of our final prototype.

Figure 9: The prototypes used in the electrode material test
were created using: (a) copper film, (b) aluminum foil, (c)
carbon coating, and (d) nickel coating. (e) Sensor data of the
tested electrode materials

7.4 Material Choice for the Positive
Triboelectric Layer

In the third test, we compared the sensitivity of the current imple-
mentation versus a 4-layer alternative approach with a dedicated
positive triboelectric layer, created using PU Wood Finish from
Varathane or a nylon fabric from Urban (Figure 10b-c). Both PU
coating and nylon are commonly used in triboelectric nanogen-
erators [54]. The PU coating has the benefit of better structural
integrity for the sensor. Our result is shown in Figure 10d. SNR
dropped in the PU condition. No obvious improvement could be
found with a dedicated positive triboelectric layer using nylon.
Therefore, we did not change the structure of the sensor to allow it
to remain simple to be fabricated.

Figure 10: The prototypes used in the positive triboelectric
layer test were created with: (a) no additional positive tri-
boelectric layer, (b) a dedicated positive triboelectric layer
created using (b) polyurethane, and (c) nylon. (d) Sensor data
of the tested conditions

8 IMPLEMENTATION
Based on the results of the tests, we implemented the final iWood
prototype. In this section, we describe our implementation details
and a software pipeline for gesture and activity recognition.

8.1 Fabrication
We created the electrodes directly on the plywood substrates
(610mm × 610mm) using nickel spray paint (Figure 11a). The dia-
mond patterns for the two layers were created using acrylic stencils,

made using a laser cutter, and were fixed on top of the correspond-
ing substrates using double-sided tape. Upon the competition of
the electrode layers, the row and column connections were created
using 2mm wide copper tape from Tape Master (Figure 11b). We
attached a PTFE film firmly to an electrode layer and substrate with
no space for bouncing. The other layer and substrate were con-
nected using the point bonding strategy with the bonding points
separated 50mm apart from each other in the x and y directions
(Figure 11c). To achieve the best bonding strength, we primed the
PTFE film with a plastic glue activator before the layers were put
together. We created two copies of the prototype with different
thicknesses (6.35mm and 12.7mm) to satisfy the need for different
applications. Each prototype costs no more than 25% higher than a
regular plywood board of the same size (plywood board: $20, PTFE
film: $2, nickel coating: $3).

Figure 11: Illustration of the fabrication process of iWood.
(a) The electrodes were created on a plywood substrate using
nickel spray paint. (b) The row and column connections be-
tween the electrodes were created using a 2mm wide copper
tape. (c) The electrodes and PTFE filmwere glued together us-
ing the point bonding strategy (d) Access points were marked
on the plywood to indicate where the top (green) and bottom
(red) electrodes can be reached.

To facilitate the connection to the electronics and data measure-
ment device, we marked several access points on the plywood to
indicate the location of the top (green) and bottom (red) electrodes
(Figure 11d). The access points can be connected to the electron-
ics in many different ways. For simplicity’s sake, we put a small
screw at one of the top and bottom access points and wired them
to an Analog Discovery 2 [41]. Sensor data was sampled at 1kHz
and was streamed to a laptop for processing. We believe that with
technology advancement, all the other electronics components may
eventually be integrated into the material [16, 57].

8.2 Signal Processing
The raw sensor data was first transformed from the time domain to
the frequency domain. We then used a low-pass filter at 500Hz to
remove the high-frequency components that are unlikely caused
by user activities. Additionally, we performed a band-stop filter to
remove the harmonic frequencies of powerline noise (i.e., 60Hz and
300Hz). Further, we performed an adaptive background subtraction
to remove all the other random noises.

The input gesture or user activity in the signal data was seg-
mented using a coarse-to-fine energy-based sliding window ap-
proach [35]. We first employed a 3-second sliding window with
a 90% overlap to detect the occurrence of an event of interest. To
do so, we calculated the energy of the sliding window by summa-
rizing the square magnitude of its 256 FFT bins. If the energy was
higher than a predetermined coarse-power threshold, an event was
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detected. Otherwise, we moved on to the next window. Upon the
detection of an event, we applied a new 0.5-second sliding win-
dow with a 75% overlap to look for the start and end of the event
at a finer granularity. If the energy of a window raised above a
predetermined fine-power threshold, the start of the event was
identified. We then advanced the sliding window until the end of
the event was found, based on the drop of energy of the window
below the fine-power thread. The thresholds used in our implemen-
tation were determined using a pilot study and were left unchanged
in our system evaluation.

8.3 Featurization and Machine Learning
Following a common approach used in the literature [22, 23, 56],
we derived machine learning features using the segmented data in
the frequency domain with a sliding window of 512 bins with a 75%
overlap.We calculatedmax,mean, 1st quantile, median, 3rd quantile,
h-mean, moment, skew, kurtosis, and standard deviation for each
frequency band (256 × 10 values). We also computed the length of
segmented data in the time domain. In total, our machine learning
model was trained using 2561 features. We used a Random Forest
from Scikit-learn [34] with a forest size of 100 and a maximum
depth of 30. The value of these parameters was chosen to balance
sensing accuracy and model complexity. We ran the classifier on a
MacBook Pro.

9 DEMO PROJECTS MADE OF IWOOD
To demonstrate the capability of iWood and how new smart home
applications can be enabled, we created three smart home items:
a table, a nightstand, and a cutting board (Figure 12). These smart
items were also used later in our system evaluation to measure the
sensing accuracy of our prototype.

Figure 12: The three smart items created using iWood: (a)
table, (b) nightstand, and (c) cutting board

9.1 Table.
The table consisted of four wooden legs attached to a 1220mm ×
610mm × 12.7mm plywood tabletop, which was created using two
iWood boards attached side-by-side (Figure 12a). Each leg camewith
a pre-installed 8mm hanger bolt, allowing them to be screwed to the
corners of the tabletop. The smart table can be used as an extension
of the input device on a phone through the detection of simple input
gestures. In our implementation, the system can recognize tapping
the table using the fingertip, swiping the finger against the table,
knocking the table using the knuckle, and slapping it using the
palm. Further, the smart table can be configured to log the routine
activities or work progress of the user and respond accordingly to

enable new applications. For example, in our implementation, the
table can sense events like writing, erasing, stapling, dispensing a
tape, and sharpening a pencil. This information can be useful to
inform the user about their work practices for personal reflection or
infer the work psychological state of the user for social facilitation
if unusual patterns are observed.

9.2 Nightstand.
The nightstand consisted of a top panel, a bottom panel, three side
panels, four legs, and a drawer. The top panel (500mm × 500mm
× 12.7mm) and drawer bottom (310mm × 375mm × 6.35mm) were
created using iWood and a jigsaw (Figure 12b). The top panel was
attached to the frame and side panels from the corners using four
10mm wood screws. The drawer bottom was fixed to the notch of
the drawer sides using glue. As an activity sensor, the top panel
can detect the user’s routine task of pumping lotion for nighttime
skincare. The drawer can also detect and log the user’s bedtime
reading habit through the detection of the user taking the book
from the drawer and putting it back. If this routine breaks during
a busy week before the user’s school project is due, which can be
detected through the work activities via the table, this change of
behavior can be logged for the user to view at a later time.

9.3 Cutting board.
Like regular plywood, iWood can withstand laser cutting. We cre-
ated a custom cutting board (400mm × 600mm × 6.35mm) (Figure
12c), using graphics editing software and a laser cutter. Our smart
cutting board can recognize common cooking activities on it, such
as chopping, slicing, meat tenderizing, stirring, grating, and rolling
a rolling pin. This information can be used to augment a user’s
cooking experience (Figure 13). For example, a progress indicator
can be shown on the user’s tablet to provide a better awareness of
the time left for their steak to be tenderized or the scrambled eggs to
be stirred. The smart cutting board can also find applications in the
automatic skill assessment, similar to prior work for working space
[11, 20, 37]. For example, the user’s expertise level can be analyzed
based on the duration of each activity and overall food prepara-
tion time. Such automatic assessment could create opportunities
for in-situ feedback, skill-level evaluation, and skill degradation
detection.

Figure 13: (a) Sensing stirring on the cutting board allows
the system to show the time left for the egg to be stirred
through a progress bar. (d) The system automatically pauses
a cooking tutorial video when the user starts tenderizing the
meat. Upon the user stops the action, the system resumes the
video.
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10 EVALUATION
We conducted an experiment to measure the sensing performance
of the table, nightstand (top panel), and cutting board. We were
interested in measuring how accurate user gestures and activities
can be recognized on these items. To push the limit of our system
even further, we evaluated system robustness against individual
and device variances among different users and smart items, which
in our case were created in different form factors with sensors in
different shapes and sizes.

10.1 Participants
Ten right-handed participants (average age: 27.2, 7 males, 3 females)
were recruited to participate in the study.

10.2 Gestures and Activities
Our experiment included 12 daily activities ranging from those
commonly carried out on a kitchen table or cutting board, such as
chopping, slicing, stirring, tenderizing, grating, and rolling a rolling
pin, to those that can be carried out on a desk table or nightstand,
such as writing, erasing, stapling, pumping lotion, dispensing a
tape, and rotating a pencil sharpener (Figure 14). We also included
four input gestures, including tapping, knocking, slapping, and
swiping in any direction. The activities and gestures tested in our
experiment produced vibrations varying in strength and frequency
across different users and smart items.

Figure 14: User activities tested in our experiment.

10.3 Data Collection
Before the experiment started, participants were given several min-
utes to learn the activities and gestures. During data collection,
participants were asked to perform the tasks on the correspond-
ing smart items in whatever way they felt comfortable, either in
a standing or sitting position. The order of the activities, gestures,
and the 10 repetitions of them were randomized for every partic-
ipant. Note that not all the activities and gestures are performed
on all the smart items. For example, writing may take place on
the table or nightstand (e.g., writing a quick note) but not usually
on a cutting board. Therefore, the data collected on the table and
nightstand only included writing, erasing, stapling, pumping lotion,
dispensing a tape, rotating a pencil sharpener, and all the hand

gestures. Similarly, the activities carried out on the cutting board
are unlikely to occur on a nightstand. Therefore, the data collected
on the cutting board (placed on a regular desk) only included chop-
ping, slicing, stirring, tenderizing, grating, and rolling a rolling pin.
We also repeated the same set of kitchen activities on the table.
Repeating the same group of activities and gestures on different
smart items allowed us to investigate how reliable our system can
recognize them on different items.

10.4 Results
In this section, we report the performance of our prototype mea-
sured using a variety of different ways, including within-user accu-
racy, cross-user accuracy, mixed-item accuracy, and item identifica-
tion accuracy.

10.4.1 Within-User Accuracy. Within-user accuracy was the mea-
surement of the prediction accuracy on a specific smart item where
the training and testing data were from the same user. For each
participant, we conducted twofold cross-validation, where half of
the data was used for training and the rest for testing.

For the gestures, the system achieved an average within-user
accuracy of 93% (std: 1.4) on the table and 90.7% (std: 3.9) on the
nightstand. In particular, on the table, the accuracy for Tapping,
Swiping, Knocking, and Slapping was 91%, 94%, 94%, and 93% re-
spectively. On the nightstand, the accuracy was 92%, 94%, 85%, and
92% respectively. The major source of errors came from Knocking
and Slapping because sometimes participants performed Knocking
the phalanges, which produced signals similar to that of Slapping.

For the activity recognition, the system achieved an overall
within-user accuracy of 95.3% across all the smart items. In partic-
ular, the system achieved an average accuracy of 94.7% (std: 4.1)
on the table, 93.8% (std: 3.8) on the nightstand, and 97.3% (std: 1.9)
on the cutting board. Figure 15 shows the confusion matrices of
the tested activities. Most activities can be recognized with high
accuracy, especially within a smaller subset carried out on the cut-
ting board or nightstand. The recognition accuracy remained high
when it came to the table with more activities, suggesting that
the within-participant signals were fairly consistent and robust to
item variation. The only exception was the rolling pin (83%, std:
2.1), which was confused with Stirring more often (92%, std: 0.9).
Considering the size of our training sample was relatively small,
we suspect that if additional data were collected, accuracy would
rebound.

10.4.2 Cross-User Accuracy. Across-user accuracy measured how
well a model worked across different users. We conducted a leave-
one-subject-out cross-validation by using the data from nine par-
ticipants for training and the remaining one for testing. Our result
showed that the cross-user accuracy for gesture recognition was
88.5% (std: 4) on the table and 85% (std: 6.1) on the nightstand. In
particular, on the table, the accuracy for Tapping, Swiping, Knock-
ing, and Slapping was 85%, 86% 89%, and 94% respectively. On the
nightstand, the accuracy was 93%, 78%, 84%, and 85% respectively.
Note that Tapping and Swiping caused more confusion especially
when swiping was performed at a short distance.

For activity recognition, the average cross-user accuracy across
all the tested items was 89.9%. In particular, the system achieved an



iWood: Makeable Vibration Sensor for Interactive Plywood UIST ’22, October 29–November 02, 2022, Bend, OR, USA

Figure 15: The confusion matrices of the within-user accu-
racy for activity recognition.

average cross-user accuracy of 87.8% (std: 5.5) on the table, 88.3%
(std: 8.8) on the nightstand, and 93.6% (std: 1.9) on the cutting board.
Figure 16 shows the confusion matrices for these items. With the
inclusion of individual variance in the data, the activities with a
similar motion began to get more errors. Example includes Erasing
vs Grating. For the activities with more distinguishable motions,
such as Chopping vs Slicing, the recognition accuracy also decreased.
To understand the reason, we examined the data closely and found
that some participants were faster than the others when performing
the tasks due to individual differences in skill and expertise level.
We see it as a strong promise of our system in skill assessment
applications. Overall, despite the 5% decrease in comparison to the
within-user accuracy, our system still performed reasonably well
across different participants.

Figure 16: The confusion matrices of the cross-user accuracy
for activity recognition.

10.4.3 Mixed-Item Accuracy. Mixed-item accuracy measured
whether a general model can be trained for all three smart items.
Our general model was trained by including all the data collected
from the table, nightstand, and cutting board. The performance
of the model was evaluated through (1) within-user accuracy us-
ing a twofold cross-validation and (2) cross-user accuracy using a
leave-one-subject-out cross-validation.

For the input gestures, the system achieved an average within-
user mixed-item accuracy of 88.3% (std: 4) and cross-user mixed-
item accuracy of 86.6% (std: 5.2) (Table 1).

Table 1: the mixed-item within-user accuracy and mixed-
item cross-user accuracy for four input gestures.

Tapping Swiping Knocking Slapping

Within-User Acc. 84.5% 94.0% 87.0% 88.0%
Cross-User Acc. 93.5% 84.5% 81.0% 87.5%

For activity recognition, the within-user mixed-item accuracy
was 88.9% (std:7.2) and The cross-user mixed-item accuracy was
84.2% (std: 8.1). Figure 17 shows the confusion matrices for the
two types of accuracies. While the general model did not perform
as well as the item-specific models, it is still encouraging to see
that the system remained reasonably accurate. The promise of the
general model is that it avoids the need to rely on individual models
to be trained separately on each smart item. A single model can be
distributed to handle a subset or perhaps the entire inventory of
home items. Note that if we removed the most confusing activities,
Pumping, Tape Dispensing, Slicing, and Grating, the within- and
cross-user mixed-item accuracies rebounded to 91.3% (std: 5.4) and
91.4% (std: 6.0) respectively.

Figure 17: The confusion matrices of mixed-item accuracy.

10.4.4 Smart Item Detection. We also investigated if a model could
be trained to infer the identity of an item based on the input sig-
nal. We measured the item detection accuracy using a twofold
cross-validation with the dataset composed of all the gestures and
activities. Our result yielded an overall accuracy of 90.1%. Partic-
ularly, the item detection accuracy was 90.1% using the activity
data and 96.1% using the gesture data. The result suggests that it
is possible to identify a smart item based on its unique vibration
signature caused by different types of activities and input gestures.
This is encouraging even though our experiment only included
three items. In many usage scenarios, especially when there are
duplications of an existing item, such self-awareness allows the sys-
tem to automatically adapt a proper item-specific model to better
recognize input or contextual events on that item.

11 LIMITATIONS AND FUTUREWORK
We present insights learned from this work, discuss the limitations
of our prototype, and propose future research.
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11.1 Short-circuiting
Our implementation minimizes the chance of short-circuiting to
around 5% but when a short circuit occurs, the sensor malfunctions.
This can be an issue, especially after the completion of the assembly
of a smart item. As a part of our future research, we will explore
solutions to eliminate the short-circuiting issue. We will develop
tools to enable automatic detection of short-circuiting when wood-
working operations are carried out. We will also create tools to
allow easy diagnosis, debugging, and visualization of the status of
the sensing system.

11.2 Composition of two or more interactive
plywood parts

Our current work investigated smart objects and items composed
of a single piece of iWood or two disconnected ones. In many
usage scenarios, multiple interactive plywood boards may need
to be connected to create a larger item, such as a floor, thus new
challenges will arise. Future research needs to investigate tools that
could allow the connections to be made easier (e.g., via the side) in
series or parallel.

11.3 Robust Vibration Sensing.
Like other approaches using vibration sensing [29, 39, 56], sensor
signals change with the presence of additional objects but such
change may not impact recognition accuracy. For example, our
system can detect the activities with the presence of additional
objects (e.g. laptop, stapler) though it was trained with activities
carried out on an empty table. This, however, may not be true with a
different set of activities or objects. Future research will investigate
how sensing accuracy will be affected and ways to mitigate negative
impacts.

11.4 Sensing 2D information.
When multiple pieces of iWood are arranged in a 2D space, coarse-
grained 2D information can be sensed if the sensors are connected
in parallel. This way, each iWood serves as a pixel of a larger sensing
area. An alternative approach is to enable 2D sensing on individual
iWood sensors. This will allow finer-grained 2D information to be
sensed, which could enable a broader range of new applications.
As a part of our plan to continue this work, we will extend the
current implementation of iWood to sensing 2D information. This
will involve redesigning the structure and electrode layout of the
sensor.

12 CONCLUSION
Through a new interactive plywood prototype, we explored how a
smart physical world comprised of wooden furniture and kitchen
items could be created in the future using the established methods
and woodworking operations, by which, the current physical world
is created. We advocate the notion of makeability as an inescapable
consideration when developing interactive materials. We argue that
in the new era of ubiquitous computing, interactivity and comput-
ing should be treated as materials’ digital properties, which adds to
the already existing natural properties, such as stiffness and con-
ductivity. To smoothly blend the digital and physical worlds, we

propose that a material’s digital properties should be inheritable by
anything that is made of this material. We demonstrated through
iWood that its ability to sense vibration can be inherited by three
household items made of it, including a table, nightstand, and cut-
ting board. With vibration sensing, these items can now detect a
variety of user activities and input, while still being able to largely
preserve the look and feel of their non-computational counterparts.
We believe that our research may serve as an important ground-
work for the future development of computational materials and
smart environments.
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