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We study the minimum enclosing ball (MEB) problem for sets of points or balls in high dimensions.
Using techniques of second-order cone programming and “core-sets”, we have developed (1 +
€)-approximation algorithms that perform well in practice, especially for very high dimensions,
in addition to having provable guarantees. We prove the existence of core-sets of size O(1/¢),
improving the previous bound of O(1/€?), and we study empirically how the core-set size grows
with dimension. We show that our algorithm, which is simple to implement, results in fast
computation of nearly optimal solutions for point sets in much higher dimension than previously
computable using exact techniques.
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Geometrical Problems and Computations

General Terms: Core-Sets
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1. INTRODUCTION

We study the minimum enclosing ball (MEB) problem: Compute a ball of mini-
mum radius enclosing a given set of objects (points, balls, etc) in R?. The MEB
problem arises in a number of important applications, often requiring that it be
solved in relatively high dimensions. Applications of MEB computation include
gap tolerant classifiers [8] in Machine Learning, tuning Support Vector Machine
parameters [10], Support Vector Clustering [4; 3], preprocessing for fast farthest
neighbor query approximation [19], k-center clustering [5], testing of clustering [2],
solving the approximate 1-cylinder problem [5], computation of spatial hierarchies
(e.g., sphere trees [20]), and other applications [13].
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In this paper, we give improved time bounds for approximation algorithms for
the MEB problem in which the given set of objects consists of points or balls in
high dimensions. We prove a time bound of O(%4 + =5 log 1), which is based on an
improved bound of O(1/€) on the size of “core-sets” as well as the use of second-
order cone programming (SOCP) for solving subproblems. We have performed
an experimental investigation to determine how the core-set size tends to behave
in practice for a variety of input distributions. We show that substantially larger
instances, both in terms of the number 7 of input points and the dimension d, of
the MEB problem can be solved (1 + €)-approximately, with very small values of
€ > 0, compared with the best known implementations of exact solvers. (We note
that, since the original appearance of this paper, Fischer, Gartner and Kutz [16]
have announced significantly improved results with a new exact solver.) We also
demonstrate that the sizes of the core-sets tend to be much smaller than the worst-
case theoretical upper bounds.

Preliminaries. Throughout this paper, S will be either a set of points in R? or a set
of balls. We let n = |S|.

We let B, denote a ball of radius r centered at point ¢ € R?. Given an input
set S = {p1,...,pn} of n objects in RY, the minimum enclosing ball MEB(S) of S is the
unique minimum-radius ball containing S. (Uniqueness follows from results of [14;
37]: if By and B; are distinct minimum enclosing balls for S, then one can construct
a smaller ball containing B; N B, and therefore containing S.) The center, c*, of
MEB(S) is often called the 1-center of S, since it is the point of R? that minimizes
the maximum distance to points in 5. We let * denote the radius of MEB(S). A ball
Bc(1+¢) is said to be (1 + €)-approximation of MEB(S) if r < r* and S C B, (14¢)r-

Given € > 0, a subset, X C S, is said to be an e-core-set (or core-set) of S if
Bc(1+eyr D S, where B, = MEB(X); in other words, X is a core-set if an expansion
by factor (1 + €) of its MEB contains S. Since X C S, ¥ < r*; thus, the ball B (14 is a
(1 + e)-approximation of MEB(S).

Related work. For small (fixed) dimension d, the MEB problem can be solved in
O(n) time for n points using the fact that it is an LP-type problem [14; 23]. One of
the best implementable solutions to compute the MEB exactly in moderately high
dimensions is given by Gartner and Schonherr [18]; the largest instance they solve is
in dimension d = 300 for n = 10, 000 points (in about 20 minutes on their platform).
In comparison, the largest instance we solve* (1+€)-approximately is in dimension
d = 1500 for n = 100,000 points, with € = 1073. Other implementations of exact
solvers to which we compare our method include the algorithm of Gartner [17]
and the algorithm of the CGAL? library (based on the algorithm of Welzl [34]). For
large dimensions, our approximation algorithm is found to be much faster than
these exact solvers. We are not aware of other implementations of polynomial-time
approximation schemes for the MEB problem.

Very recently, in a paper that appeared after the conference publication of our
paper, Fischer, Gartner and Kutz [16] gave a very fast algorithm to compute ex-
act minimum enclosing balls of point sets in high dimensions. Their method is

4This instance took less than 17 minutes to solve.
Shttp://www.cgal.org (Version 2.4)
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similar to the simplex method for solving the MEB problem [18; 16]. The current
version of our implementation (improved after conference publication) seems to
be competitive with their implementation for moderately small values of €. (See
Figure 3.)

Baddoiu et al. [5] introduced the notion of core-sets and their use in approximation
algorithms for high-dimensional clustering problems. In particular, they give an

o (’;—‘2” + 5 log %)—time (1+e€)-approximation algorithm based on their upper bound
of O(1/€?) on the size of core-sets; the upper bound on the core-set size is remarkable
in that it does not depend on 4. In comparison, our time bound (Theorem 1) is
0 (”?d + 4z log %)

Independent of our work, the MEB problem in high dimensions has been recently
studied by Zhou et al. [37]. The authors consider two approaches, one based
on reformulation as an unconstrained convex optimization problem and another
based on a second-order cone programming (SOCP) formulation. Xu et al. [35]
perform a comparison of four algorithms (including a randomized algorithm) for
the computation of the minimum enclosing circle of circles in the plane (d = 2).
Both studies reveal that solving the MEB problem using a direct SOCP formulation
suffers from memory problems as the dimension, d, and the number of points, #,
increase. Our approach in this paper is to apply core-sets, in combination with
SOCP, to design practical approximation algorithms for the MEB problem.

In parallel with our work, Badoiu and Clarkson [6] independently obtained an
O(1/€) bound on the size of core-sets. Most recently, Bidoiu and Clarkson [7] have
obtained an upper bound of [1/e] and shown that it is worst-case tight. The proof
of the tightness employs a lower bound construction, placing d + 1 points at the
vertices of a regular simplex in dimension d = [1/e]. Thus, the lower bound is
based on having d > |1/e]. In the experiments reported here, however, almost
always the dimension d satisfies d < 1, and we find that, on a wide variety of input
sets, the core-set size is smaller than min{1/e, d + 1}; see Figures 4 and 6. (Note that
core-sets of size at most d + 1 always exist for any € > 0, since d + 1 points suffice
to determine a ball in R%.)

Outline of paper. We first show in Section 2 how to use second-order cone pro-
gramming to solve the MEB problem in O(/nd?(n + d) log(n/e)) arithmetic oper-
ations. In Section 3 we describe the main (1 + €)-approximation algorithm, then
in Section 4 we analyze the algorithm and prove the new bound of O(1/€) on the
size of core-sets. Section 5 is devoted to discussion of the experimental results
obtained with our implementation.

2. SOCP FORMULATION

The minimum enclosing ball (MEB) problem can be formulated as a second-order
cone programming (SOCP) problem. SOCP is a class of convex optimization prob-
lems in which a linear function is minimized over an affine subset of products of
second-order cones (also known as “Lorenz cones”, or “quadratic cones”), defined
as

K ={(o,x) € R : ||x]| < o}.
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SOCP therefore can be viewed as an extension of linear programming in which
the nonnegative orthant is replaced by the product of second-order cones. Linear
programming is a special case of SOCP since each non-negativity constraint is
equivalent to a one-dimensional second-order cone constraint. As with the non-
negative orthant, K is a full-dimensional, convex cone in R4*1: however, K is not
polyhedral for d > 2.

Recently, SOCP has received a lot of attention from the optimization community
due to its applications in a wide variety of areas (see, e.g., [22; 1]) and due also
to the existence of very efficient interior-point algorithms to solve this class of
optimization problems.

The MEB problem for an input set S = {B,,, i = 1,...,n} of n balls can be
formulated as an SOCP problem as

min 7, st |c—ci|l+r<ri=1,...,n, 1)
cr

where ¢ € R? and r € R are the decision variables corresponding to the center and
the radius of the MEB, respectively. Note that the formulation reduces to the usual
MEB problem for point setsif r; =0 fori=1,...,n.

When applied to the nonlinear convex optimization problem (1), interior-point
algorithms generate a sequence of interior feasible solutions (5, k=0,1,2,...
that converges to (c*,r") in the limit, where B ,» := MEB(S). Note that an interior
feasible solution (c¥, 7*) for (1) - i.e., a feasible solution that strictly satisfies all the
inequalities — geometrically corresponds to a ball B ,« that strictly contains all the
balls in S. Consequently, interior-point algorithms converge to MEB(S) through a
sequence of strictly enclosing balls.

Given any relative error y > 0, interior-point algorithms compute an interior
feasible solution (c¥, ) such that

= <y® -r) 2)

in O(+/nlog(1/y)) iterations, where 7 is the radius of the initial strictly enclosing
ball from which the algorithm is initiated [24; 26; 28]. In the context of the MEB
problem, one can easily find an initial enclosing ball with 7 =O(r*), as the following
lemma shows. This result will then be used to establish that a particular choice of
y yields a solution that is a (1 + 6)-approximation of MEB(S).

LemMma 1. Let S = (B, i = 1,...,n} be a given set of n balls. One can compute a
\/ig—approximation to the diameter of S in O(nd) time.

Proor. If S is viewed as an infinite collection of points in R, the statement
simply follows from the algorithm of Egecioglu and Kalantari [11] for the case of
a finite point set. Pick any p € S; find a point q € S that is furthest from p; find
a point ' € S that is furthest from g; output the pair (g,4’). It is easy to see that
the same method applies to the case in which S is a set of balls, yielding again a
\%-approximation. (Principal component analysis can be used to obtain the same
approximation ratio for points but does not readily generalize to the case of balls.)
Note that the furthest point in each ball B, ,, € S from a given point p € S can be
computed in O(d) time, yielding an overall time complexity of O(nd). UJ
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We now use Lemma 1 to construct an initial ball enclosing S. Let A denote
the diameter of S and (g,4’) € S denote the two points that yield the diameter
approximation. Let D := [|g — ¢’||. The following inequalities easily follow.

Lr"SLAsDSASZW, 3)

V3 V3
where * is the radius of MEB(S). It follows from (3) that

¥ < V3D <23, @)

Consequently, the ball centered at g (or gq’) with radius ry := 2D (or any radius
strictly greater than D) strictly encloses S, and 7y < 4r*. In conjunction with (2), it
follows that interior-point methods compute an enclosing ball B+ ,+ in polynomial
time with the property that

<1+ 3y). 5)

For any given 6 > 0, if we sety := 6/3, it follows that we get a (1 +6)-approximation
of MEB(S) in O(+/nlog(1/6)) iterations.

The major work at each iteration of interior-point algorithms is the solution of a
linear system involving a (d + 1) X (d + 1) symmetric and positive definite matrix
(see, e.g., [1]). For the MEB problem, the matrix in question can be computed using
O(nd?) basic arithmetic operations (flops), and its Cholesky factorization can be
carried out in O(d°) flops. Therefore, the overall complexity of computing a (1 + 6)-
approximation of MEB(S) with an interior-point method is O( Vnd?(n +d) log(1/9)).
In practice, we stress that the number of iterations seems to be O(1) or very weakly
dependent on 7 (see, for instance, the computational results with SDPT3 in [33]).

The worst-case complexity estimate reveals that the direct application of interior-
point algorithms is not computationally feasible for large-scale instances of the
MEB problem due to excessive memory requirements. In [37], the largest instance
solved by an interior-point solver consists of 1000 points in 2000 dimensions and
requires over 13 hours on their platform. However, large-scale instances can still
be handled by an interior-point algorithm if the number of points n can somehow
be decreased. This can be achieved by a filtering approach in which one eliminates
points that are guaranteed to be in the interior of the MEB or by selecting a subset
of points and solving a smaller problem and iterating until the computed MEB con-
tains all the points. The latter approach is simply an extension of the well-known
cutting plane approach initially developed for solving large-scale linear programs
that have much fewer variables than constraints. The MEB problem formulated as
in (1) above precisely fits in this framework since n > d for instances of interest in
this paper. Due to the nonlinearity of the inequalities in (1), the boundary of each
constraint is actually a nonlinear surface as opposed to a hyperplane. We therefore
use the term “cutting plane” loosely in this paper.

We use the cutting plane approach to be able to solve large-scale MEB instances,
discovering a carefully selected subset of the constraints, corresponding to a core-
set. The success of such an approach depends on the following factors:

—Initialization: The quality of the initial core-set is crucial, since a good approx-
imation leads to fewer updates. Furthermore, a small core-set with a good
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approximation yields MEB instances with relatively few points, which can effi-
ciently be solved by an interior-point algorithm.

—Subproblems: The performance of a cutting plane approach is closely related to
the efficiency with which each subproblem can be solved. We use the state-of-
the-art interior-point solver SDPT3 [32] in our implementation.

—Core-set Updates: An effective approach should update the core-set in a way that
seeks to minimize the number of subsequent updates.

In the following section, we describe our algorithm in more detail.

3. THE ALGORITHM

Algorithm 1 Outputs a (1 +¢)-approximation of MEB(S) and an O(1/¢)-size core-set

Require: Inputset S C RY of points/balls, parameter € € (0,1)
1: X < {q,q9'}, where g,q" € S are given by the diameter approximation (Lemma 1)
2 & « €2/163
3: loop
Let By denote the (1 + 0)-approximation to MEB(X) returned by SOCP.
if S C BC’/(1+€/2)}// then
Return BC/,(1+€/2)7/, X
else
p < arg maxyes |Ic’ — x||
end if
10 X < XU{p}
11: end loop

R A

Given a set S of n points or balls, our algorithm for approximating MEB(S)
begins with computing an approximate minimum enclosing ball of a carefully
chosen subset X C S. For our purposes, it suffices to obtain any constant factor
approximation of the diameter A, so we choose to use the two points given by
Lemma 1 as our initial core-set X (Step 1, Algorithm 1).

Step 2 of our algorithm sets the parameter 6 so that the final output is guaranteed
to be a (1 + €)-approximation of MEB(S), as we prove in Section 4.

The main loop (steps 3 to 11) first computes the approximate MEB of the current
subset X C S, using the SOCP solver. Step 5 checks if a (1 + €/2)-expansion of this
ball contains S. If this is the case, then the algorithm returns this expanded ball
and the current core-set as the solution; otherwise, the algorithm picks the furthest
point in S from the center of the approximate minimum enclosing ball of X, adds
it to X, and repeats the loop. (The rationale for using €/2 in the expansion will be
given in the next section.)

We establish the following results about our algorithm.

Tueorem 1. Algorithm 1 returns a (1 + €)-approximation to the MEB of a set of n
balls in d dimensions in time O(”?d + £ (% + d) log %), which is O(%’ + 45 log %), if
d =0(1/¢) (as in [5]).

Tueorem 2. Upon termination of Algorithm 1, X is a core-set of S and has size O(1/e).
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4. ANALYSIS OF THE ALGORITHM

In this section, we present a detailed analysis of Algorithm 1. We begin with a
basic lemma which holds for both sets of points and balls. The proof for the case
of points (given in [5; 19]) requires only minor modification to apply to balls; we
include it for completeness.

Lemma 2. Let B, be the MEB of a set S C R? of balls. Then any closed halfspace
containing c contains at least one point in By, for some i € {1,...,n}, at distance r from c.

Proor. We can assume that B; # B., for alli = 1...n, since otherwise the proof
is trivial. Let P, be the set of points of U;B; that are at distance exactly r from c; by
our assumption, P, is a discrete set of at most  points.

Suppose, to the contrary, that H is a closed halfspace containing c that contains
no point of P,. Let 6 > 0 be the minimum distance between P, and H, and let
p < r be the maximum distance from c to a point of S N H. Pick a positive number
€ <min{d, r— p}. Then, if we translate the ball B, by a distance € in the direction of
the outward normal of H, the new ball, B, ,, will still contain U;B; and none of the
points of balls of U;B; lie on the boundary of B, ,. (Forp € U;B;\H, [lp—¢|| <llp—cll,
and forp € U;B;NH, |l[p—c’l| < |lp—cll+€ < r.) Thus, B’ can be shrunk, contradicting
the optimality of B.,. O

The following lemma, which is a modification of the result proved in [5], es-
tablishes that each update of the core-set strictly increases the radius of the corre-
sponding MEB.

Lemma 3. Let B., be the MEB of a set X C R? of balls. Let g € R? be such that
q & Bc(14¢/3)r, for some € € (0,1). Then, the radius of MEB(X U {q}) is at least (1 + %) 7.

Proor. LetB., = MEB(XU{g}). If|lc’—cl|| < (¢/4)r then, by the triangle inequality,
we have [lg=cll 2 llg—cll = llc’ = cll = (1 + €/3)r — (e/4)r = (1 + €/12)r; thus, the
radius, ', of MEB(X U {g}) must be at least (1 + €/12)r > (1 + €2/33)r, for € € (0,1).
If llc" = c|| = (e/4)r, then let H be the halfspace whose bounding hyperplane passes
through c and is orthogonal to o ,with ¢’ ¢ H. By Lemma 2, there is a point p € H
in some ball of X, with ||p — c|| = r. Thus,

, , re\? e’
r2lp=Cll= \/1*2 +|lc’ = c|> = 27|lc’ = c|| cos 6 > 72+(Z) > |1+ e 7,
where the equality follows from the law of cosines with 0 = /c’cp > 1/2, and the
last inequality uses the assumption that € < 1. Thus, in this case too we get that
" > (14 €%/33)r, completing the proof. [

Next, we show that the fact that the interior-point algorithm of Section 2 returns
only an approximation of the MEB does not jeopardize the asymptotic performance
of our algorithm. We begin with the following lemma, which allows us to constrain
any approximate MEB within a small shell that lies between a slightly smaller copy
of the (exact) MEB and a slightly larger copy of the (exact) MEB.

Lemma 4. Let B, be the MEB of a set X C R? of balls. Let By, be a (1 + 0)-
approximation to the MEB. Then, ||c’ — c|| < r+/6(5 + 2) and

Bc,r—Hc’—cH c Bc’,r’ < Bc,(1+6)r+\|c’—c\|-
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Proor. Let H be the halfspace whose bounding hyperplane passes through c

and is orthogonal to o , with ¢/ ¢ H. By Lemma 2, there is a point p € H in some
ball of X, with ||p — c|| = . Since p is in some ball of X, and X € B, ,-, we know that
llc" = pll <7 < (1 + d)r. Using the law of cosines,

llc" = cl> = I’ = pll> = * + 27|l = cllcos O < 7% — > < 5(5 +2)r?,

where 0 = £c’cp > /2. Thus, ||’ — || < r+/6( + 2), as claimed.
Now, for any x € B ,_—q, we know that ||x — ¢|| < 7 —[|c’ — c[|, so, by the triangle
inequality and the fact that » <7’ we get that

Ix=cll <llx=cll+lc" =cll <r <7,

implying that x € By ,». Thus, B ;—j¢—¢| € Be .
Similarly, for any x € B.,, we know that [[x — ¢’|| < 7/, so, by the triangle
inequality,

lx —cll < llx = cll + " = cll < (1 +0)r +Ic" = cl,
implyil‘lg that x € Be (1+6)r+llc'—d||- Thus, B C Be oyl —o)- O

The following lemma establishes that a point outside of an expanded approxi-
mate MEB is guaranteed to be outside of the appropriately expanded exact MEB.

Lemma 5. Let B, be the MEB of a set X C R? of balls. Let By, be a (1 + 6)-
approximation of MEB(X). If q € Be (14¢/2)r, then q & Be 11e/3)r, provided that 6 is chosen
so that & < €2/163.

Proor. By Lemma 4, Be14¢/2)—llcr—cl) S Be (1+e/2)r (since Bg,—j—of € By ). For
any point g ¢ Be (14¢/2)~, then, we have

lg = cll = (1 +€/2)(r = llc’ = cl) = (1 +€/2) (r = r /52 + ),
using the fact, from Lemma 4, that ||c’ — || < 7/6(6 + 2). Thus, g ¢ B (1+¢/3) if

(1+€/2)(r—ry62+06)) 2 (1 +¢/3)r,
i.e., provided that

€
1/o(2 <
02 +0) < 6+ 3¢’

2 2
o6 < 41+ (g5 ) —1. Fore < 1,itisreadily checked that €2/163 < 1+ (s5:) -1;
thus, it suffices to choose 6 < €2/163, as claimed. [J

We next show that Algorithm 1 correctly returns a (1 + €)-approximation of
MEB(S).

LemMma 6. The ball returned by Algorithm 1 is a (1 + €)-approximation of MEB(S).

Proor. Algorithm 1returns theball By (1.4¢/2), where B, is a (1+0)-approximation
of B., = MEB(X) returned by the SOCP algorithm for the set X C S.

We know by step 5 that S C Be (14¢/2)r; thus, to show that By (11¢/2) is a (1 + €)-
approximation of MEB(S), we have to show that (1 + €/2)r is at most (1 + €) times
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the radius of MEB(S). Since X C S, the radius of MEB(S) is at least r, the radius of
MEB(X); thus, it suffices to show that (1 + €/2)r < (1 + e)r.
By Lemma 4, By € B (148)r+c’~c||s SO

¥ <@ +0)r+]c -l
Thus, it suffices to show that
1+€/2)A+0)r+A+€/2)|c" —cl| <A +e)r,

or,

e =l < (55— = )

From Lemma 4, we know that [|c’ — ¢|| < 7+/6(6 + 2). Then, using the assumption
that € < 1, we see that it suffices to show that

€ €
< —6==-06.
\/6(6+2)_2+1 6=3-0

This last inequality holds if 6 < €2/(18 + 6¢), which certainly holds with our choice
of 5 = €2/163 in Algorithm 1. [

Lemma 7. The set X returned by Algorithm 1 is an e-core-set of S.

Proor. Let B., = MEB(X) be the MEB of the set X returned by the algorithm. We
know, by step 5, that at the conclusion of the algorithm, S C By (14+¢/2)», Where By -
isa (1 + 6)-approximation of B., = MEB(X).

In order to prove that X is an e-core-set of S, we must show that S C B (14¢)r-
Since S C By (14¢/2)r, it suffices to show that Be (11e/2)» € B 1+e)r-

Now, by Lemma 4, By (14¢/2) € Be(1+e/2)((146)r+]c—cl)- Thus, it suffices to show that

A+e/2)(A+O)r+]Ic" —cll) <A +e)r.
Since, by Lemma 4, ||c" — c|| < 74/6(0 + 2), and 6 < +/0(6 + 2), it suffices that
(1+€/2)(1+2/6(0+2) s 1+¢,

or,
€
\/5(6 +2) < m

Since € < 1, it suffices if § is chosen so that /6(8 + 2) < €/6, which holdsif § < €2/73,
and therefore holds for our choice of § = €2/163 in Algorithm 1. [J

We are now ready to prove Theorems 1 and 2 stated at the end of Section 3. First,
we note that an upper bound of O(1/€?) on the size of a core-set is straightforward:
By Lemma 1, the radius of MEB(X) at the first iteration of the algorithm (when
X ={gq,q'}) is at least A/(2 \/5), where A is the diameter of S. By Lemmas 3 and
5, each point added to X increases the radius of the corresponding minimum

enclosing ball by at least ﬁ% Since the radius of MEB(S) is less than the

diameter A, the loop will be executed O(1/€?) times. We now show that a more
careful analysis yields the improved bound of Theorem 2.
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Proor or THEOREM 2. Our proof is based on a careful analysis of the number of
times the loop (steps 3-11) is executed in Algorithm 1. Without loss of generality,
we assume that € = 1/2". We will obtain an upper bound on the number of
points added to X in order to obtain a (1 + €;)-approximation of MEB(S), where
€:=1/21,i=1,...,m.

Note that, since each iteration adds a point to X, the radius of MEB(X) mono-
tonically increases; thus, once the set X becomes an ¢€;-core-set of S, it remains an
e;-core-set. We consider the iterations of the algorithm to be partitioned into m
rounds. We consider round 7 to begin when X first becomes an ¢€;_;-core-set of S and
to end when X first becomes an €;-core-set of S. Note that a round may start and
end at the same instant, since it may be that when X first becomes an €;_;-core-set,
it also may become an €;-core-set (indeed, it may be that MEB(X) is now equal
to MEB(S)). Also note that our algorithm does not determine exactly when the
transitions occur between rounds, since we compute (1 + 6)-approximations of the
MEB, not the exact MEB; however, the decomposition into rounds as defined above
is useful in the analysis of the algorithm.

Let X; denote the set X at the conclusion of round i (and thus at the start of
round i + 1), let 7; denote the number of points of S added to X;_; during round
i (i.e., T; is the number of iterations in round i), and let r; denote the radius of
MEB(X;).

Consider an iteration of the algorithm during round i. Let X be the current value
of the subset of S, and let B, = MEB(X). The algorithm does not compute B, but
does compute By, a (1 + 6)-approximation of B.,. The algorithm then selects a
point p € S to be added to X that maximizes the distance from the center, c’, of
B . Since we know, by definition of rounds, that X is not an €;-core-set until the
end of round i, it must be that p lies outside of the ball By (14¢,/2)». (Otherwise, by
Lemma 7, the current set X is an e;-core-set, since § < €2/163 < eiz /163, meaning
that the round is over.) Thus, by Lemma 5, we know that p must lie outside of
Bc(1+e/3)r- Then, by Lemma 3, we know that the radius of MEB(X) goes up by at
least re?/33 with the addition of p to X. The radius r goes up with each iteration
of the round i; thus, at each iteration r is bounded below by r;_;. Since the round
starts with a set X;_1 whose MEB radius is 7;_; and ends with a set X; whose MEB
radius is 7;, with each iteration increasing the radius by at least ri_lel.z/ 33, we know
that the total number 7; of iterations during round 7 obeys

. , , A , A

rfs%=33(i—1)21333( —1)21=33(2\/§—1)21,
ri-1€;/33 Ti-1 AJ2V3

where A is the diameter of the set S, and we have used the facts that r;, < A and

rio1 > A/2V3. Finally, this implies that the total number of iterations over all

rounds is

Xl =2+ ) 7= 0@2") = O(}).
i=1

O

Proor or THEOREM 1. Since the size of the core-setis O(1/¢), each call to our SOCP
solver takes time O(% (% + d) log 1). We parse through the input O(1/e) times. At
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each iteration, it takes O(nd) time to identify the furthest point. Therefore, the total
running time is O(*4 + 6‘% (% + d) log 1). Puttingd = O(1/e), as in [5], we get a total
time bound of O(4 + 4z log 1). O

Remark 1: The improved core-set bound of Theorem 2 gives, as an immedi-
ate consequence, also improved time bounds over those of [5] for 2-center clus-
tering (improving 200/%) g to 200/9dn) and for k-center clustering (improving
20((k/e)1ogk) gy o 20((k/€)ogk) dn).

Remark 2: The timebound of Theorem 1 canbe further reduced to O (”?d +4 log® %)
by using a recent algorithm due to Har-Peled [29], which can compute a (1 + €)-
approximation to the minimum enclosing ball of #n points in d dimensions in
o log? 1) time. This is slightly better than our running time and does not use
SOCP.

Remark 3: The conference version of this paper had all the experiments done
with 6 set to O(e) instead of O(€?). For the purposes of experimentation, this is not
really an issue, since in most cases setting 6 anywhere below ¢ results in the same
radius and core-set, as we have found experimentally. However, from a theoretical
perspective, there was an oversight in [30], in that our analysis was based on the
assumption that the SOCP solver returned an exact MEB. We have addressed this
issue here. We note that a similar oversight apparently occurs in the first core-set
paper [5], in which the ellipsoid algorithm is called with 6 set to O(e) instead of
O(e?). A more careful analysis, such as the approach we present here, is needed in
order to guarantee that the algorithm for k-center clustering of [5] indeed yields a
(1 + e)-approximate solution, given that the convex programming techniques give
an inexact solution.

5. IMPLEMENTATION AND EXPERIMENTS

We have implemented Algorithm 1 and report below results of experimentation
with it. For comparison, we have also implemented a second algorithm, based on
a variant of Algorithm 1, which we devised in an attempt to improve the running
time of Algorithm 1 in practice. We refer to the (original) implementation of Algo-
rithm 1 as the pure implementation and refer to the variant as the fast implementation.

The fast implementation attempts to address the main bottleneck in Algorithm 1,
which we found to be the time spent in calls to the SOCP solver that computes
the (approximate) minimum enclosing ball of the set X after each new point (the
furthest outlier) is added. With each iteration, this computation is performed from
scratch. In an attempt to compute the “easy” core-set points more quickly, and
reduce the number of calls to the SOCP solver, we developed our fast implementa-
tion based on a hybrid algorithm that combines our Algorithm 1 with some ideas of
Badoiu and Clarkson [6]. In their simple gradient-descent method, at each iteration
the current center is shifted towards the furthest outlier, resulting in a sequence
of centers that converge to the center of the minimum enclosing ball. Badoiu and
Clarkson establish that a simple updating scheme returns a (1 + €)-approximation
in O(nd/€?) iterations. As € decreases, the running time deteriorates (in practice),
with the 1/€? term becoming quite significant. On the other hand, we find that
our Algorithm 1 performs well for small €, even better than theoretical worst-case
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analysis suggests. Thus, in order to maintain the advantages of both algorithms, in
our fast implementation we first apply the algorithm of Badoiu and Clarkson for a
prespecified number of iterations and record the furthest outliers at each iteration;
our experiments show that d/3 is a good choice for the number of these iterations.
We then apply our Algorithm 1 as a second phase, using the initial choice of X to
be the set of points that show up as furthest outliers in the d/3 iterations of the first
phase. We note that some of the points may appear as furthest outliers in more
than one iteration of the first phase. This often means that the initial size of X is
smaller than the number of iterations in the first phase; e.g., |X| = 30 after the first
phase of 85 iterations on the USPS data set (see Figure 7). The fast implementation
has the potential advantage of obtaining quickly a fairly good approximation to
the core set using a simple algorithm (not based on an SOCP solver); then, only a
few more iterations of Algorithm 1 (using an SOCP solver) are usually needed to
complete the core-set computation.

Most of our code is written in Matlab. However, in order to enhance the perfor-
mance, some of the subroutines (e.g., computing the furthest outlier) were written
in C and linked to the Matlab code using mex files. Our software is fairly compact
and is available on the web®. The current implementation takes only point sets as
input; extending it to input sets of balls should be relatively straightforward.

For the SOCP component of the algorithm, we considered two leading SOCP
solvers that are freely available: SeDuMi [31] and SDPT3 [32]. Experimentation
showed SDPT3 to be superior to SeDuMi for use in our application, so our results
here are reported using SDPT3. We refer the reader to the web site” maintained by
Hans Mittelmann for an independent benchmarking of a variety of optimization
codes.

In an attempt to minimize the size of the core-set, our implementations find the
furthest outlier at each iteration. We should emphasize, however, that the running
times of our algorithms can be reduced by introducing random sampling at the
outlier detection stage (see, e.g., Pellegrini [27]), at the expense of slightly larger
core-sets for large-scale problems.

Another desirable property of our implementation is that it is I/O-efficient if we
assume that we can solve O(1/e¢)-size subproblems in internal memory. (This was
always the case for our experiments, since the size of the core-set did not even
approach 1/e in practice.) With this assumption, the current implementation in
the I/O model does at most O(nd/Be) 1/Os, where B denotes the disk block size,
and the same bound also generalizes to the cache-oblivious model [12]. We believe
that with an efficient implementation (e.g., in C++) of our algorithm, very large
problems (n ~ 107,d ~ 10% € ~ 10™) are tractable to solve in practice on current
state-of-the-art systems with sufficient memory and hard disk space.

Platform. All of the experimental results reported in this paper were done on two
platforms. The main platform we used to do the experiments was a dual-processor
Intel(R) Xeon(TM) 2.66GHz system with 2GB RAM, running Windows XP/Matlab
6.5.0 Release 13. Unfortunately, Matlab is a single-threaded application, so was
using only 1 CPU. Figures 3-9 correspond to experiments on this platform.

6http ://www . compgeom. com/meb/
7h‘ctp ://plato.asu.edu/bench.html
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Figures 10 and 11 were generated from experiments done on a Pentium III 1Ghz,
512MB notebook computer, running Windows 2000. All of the experiments in the
conference version of this paper [30] were conducted also on this platform. Our
new implementation, on the new platform (Xeon 2.66GHz), resulted in signifi-
cantly different results than were reported in [30]; thus, all of the results reported
here (except Figures 10 and 11) are new, using the Xeon 2.66GHz platform. Fig-
ures 10 and 11 report comparison results of our algorithm with two others; due to
some software availability issues, we have not yet been able to conduct the same
comparison on the new platform, but we expect the relative performances to be
comparable.

Datasets. Most of our experiments were conducted on randomly generated point
data, according to various distributions. We also experimented with the USPS
data,® which is a dataset of feature vectors extracted from handwritten characters,
made available by the US Postal service. The USPS data contains 7291 points in 256
dimensions and is a standard data set used in the clustering and machine learning
literature. For generating random point data, we used Matlab to generate random
matrices, with rand for uniformly distributed data, randn for normally distributed
data, and random for other specific distributions. Specifically, we considered the
following four classes of point data:

—uniformly distributed within a unit cube;
—uniformly distributed on the vertices of a unit cube;

—normally distributed in space, with each coordinate chosen independently ac-
cording to a normal distribution with mean 0 and variance 1;

—Poisson distributed, with each coordinate drawn from a Poisson distribution
with parameter A = 1.

Methods for comparison. Bernd Gartner [17] provides a code on his web site that
we used for comparison. We also used the CGAL 2.4 implementation (based on
Welzl's algorithm with move-to-front for small instances and a heuristic for large
instances). We were not able to compile code available from David White’s web
page’. We were unable to replicate the timings reported in the paper of Géirtner
and Schonherr [18], since the version of the implementation of their algorithm in
CGAL 2.4 was not robust. While preparing this paper, a recently updated version
of the implementation became available in the latest release of CGAL; in future
work, we will be conducting experiments for comparison with it.

Fischer, Girtner and Kutz [16] recently presented a very fast exact method to
solve the MEB problem for points. A direct comparison of running times of their
method to our method does not seem appropriate, since we compute approximate
solutions while they compute exact solutions. Our implementation is in Matlab
(which prevents us from doing experiments on very large data sets in very high
dimension), while their implementation is in C++. A theoretical drawback of their
simplex approach for solving MEBs is that a polynomial running time cannot be

8http ://www.kernel-machines.org/data/ups.mat.gz, 29MB
9h‘ctp ://vision.ucsd.edu/ dwhite
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guaranteed, although in practice they show that the method is very fast, apparently
much faster than the earlier implementation of our algorithm reported in [30].

Experimental results. We begin with a comparison of the fast implementation of
Algorithm 1 with the pure implementation of Algorithm 1. In Figures 1 and 2 we
show how the running times and the core-set sizes vary with the dimension, for
n = 10* points that are normally distributed (with mean p = 0 and variance ¢ = 1)
and € = 0.001. Note that the fast implementation generates core-sets of essentially
the same size as the pure implementation, but does so much more quickly.

In Figure 3 we show how the running time of our fast implementation of Al-
gorithm 1 varies with dimension, for # points that are normally distributed (with
mean u = 0 and variance ¢ = 1) and € = 0.001. The plot shows two choices of
n: n = 10* and 10°. Corresponding to the same experiment, also with the fast
implementation, Figure 4 shows how the core-set size varies with dimension.

In Figures 5 and 6 we show how the running time and the core-set size varies
with dimension for each of the four distributions of n = 10* input points, with
€ = 0.001. Notable are the timings for points randomly chosen from the vertices
of a hypercube; this distribution of cospherical points represented the most time-
consuming instances for the algorithm. While we do not fully understand the
non-monotone behavior with respect to dimension in this case, it seems to be
related to the similar phenomenon observed and discussed (briefly) in [16].

We note that, while the core-set size is seen to increase somewhat with dimension,
the observed size of the core-set in all of our experiments is substantially less than
the worst-case (dimension-independent) theoretical upper bound of O(1/¢). The
upper bound, [1/e], of [7] is 1000 (for our choice of € = 0.001), while the core-set
sizes experimentally are observed to be in the range 30-170.

Figures 7 and 8 plot the running times and core-set sizes, as a function of
log,(1/e), for points that correspond to feature vectors extracted from handwritten
characters, provided by the USPS. For comparison, we also plot the results for nor-
mally distributed points of the same dimension, d = 256. On the USPS data, the
core-set size increases approximately logarithmically in 1/¢, as compared with the
theoretical linear upper bound O(1/€). Note that the fast implementation always
returns a core-set of size 30, even though it runs for 85 iterations. We also noted
that the fast implementation did not add any points to the core-set in the second
phase; all 30 points were inserted during the first phase.

In Figure 9 we show timing results for low dimensions (d = 2,3), as a function
of log,, 1, for n normally distributed points. Plots are shown with two choices of €
(e = 1072 and € = 107%); however, the running times are essentially independent of
the choice of €. In all of these experiments, the core-set size was always less than
10. This suggests that approximate 2-center clusterings may be computed in time
0O(2'%n) for low dimensions. It would be interesting to see if this result can lead to a
truly practical method for approximate 2-center clustering in low dimensions; such
a method may have applications in constructing effective hierarchies of bounding
spheres.

Figure 10 shows a timing comparison between our algorithm, the CGAL 2.4
implementation, and Bernd Gértner’s code available from his website. (The ex-
periments are done on a Pentium III 1Ghz, 512MB notebook computer, running
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Windows 2000.) Both of these codes assume that the dimension of the input point
set is fixed, and each has a threshold dimension beyond which the computation
time is seen to increase sharply.

In Figure 11 we compare the running times, as a function of dimension, of
our pure implementation (using € = 0.001) with the simple method of Badoiu
and Clarkson [6] (based on Claim 3.1 in that paper), using three choices of €
(¢ =0.1,0.05,0.03). These experiments are done on a set of n = 1000 points that are
normally distributed (u = 0, 0 = 1). (The experiments are done on a Pentium III
1Ghz, 512MB notebook computer, running Windows 2000.) Note that for e = 0.03,
the Badoiu-Clarkson algorithm is already very slow compared to Algorithm 1. We
have not yet implemented the main algorithm proposed in [6], which has a slightly
lower running time (O(nd/e + (1/€)?)) than our Algorithm 1, but it seems that when
€ is small, its running time may suffer because of the base case solver (the simple
method, based on Claim 3.1, which we tested). We suspect that the improved
algorithm suggested by Har-Peled [29] (Remark 2, Section 4) is a better candidate
for implementation.

Finally, we remark that in all of our experiments, we set 6 = €?, ignoring the
constant that we derived in the theoretical analysis. In justification of this choice,
we verified first experimentally that varying 6 had little or no effect: Running
times varied only slightly, and core-set sizes and MEB radii did not change at all.
For instance, for n = 5000 points in dimension d = 500, with € = 0.001, we varied
6 from 1073 to 10~ for two different distributions of input points. For a set of
points generated from a normal distribution, for all choices of §, the core-set size
was 75, the radius was 24.094 and the running time varied from 81.328 seconds
to 81.922 seconds. For a set of points generated randomly from the vertices of a
hypercube, the core-set size and the radius were again constant for all choices of
0, while the running time varied from 691.7 to 669.64 seconds. (Note that actually
it took less time to compute using 6 = 10~ than using 6 = 107°.) In fact, we have
not yet found a point set on which setting 6 = €2 instead of 6 = € made any change
in either the core-set size or the MEB radius. This suggests that our theoretical
analysis justifying the choice of 6 to guarantee a (1 + €)-approximation is in fact
overly conservative.
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Fig.1. Running time (in seconds) as a function of dimension, for n = 10* input points that are normally
distributed (u = 0,0 = 1). For comparison, we plot both the pure implementation (“Algorithm 1”) and
the fast implementation. Here, € = 0.001.
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Fig.2. Core-set size as a function of dimension, for n = 104 input points that are normally distributed
(4 = 0,0 = 1). For comparison, we plot both the pure implementation (“Algorithm 1”) and the fast
implementation. Here, € = 0.001.
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Fig.3. Running time (in seconds) of the fast implementation of Algorithm 1 as a function of dimension,
for two choices of n (n = 10%, n = 10°). Here, € = 0.001, and the input points are normally distributed
(u=0,0=1).
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Fig.4. Core-setsize as a function of dimension, for two choices of n (n = 10%, n = 105). Here, € = 0.001,
and the input points are normally distributed (4 = 0,0 = 1). The fast implementation of Algorithm 1
was used in this experiment.
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Fig.5. Running time (in seconds) of the fast implementation of Algorithm 1 as a function of dimension,
forn = 10* input points from each of four distributions: uniform, normal, Poisson, and random vertices
of a cube. Here, ¢ = 0.001.
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Fig.6. Core-set size for the fast implementation of Algorithm 1 as a function of dimension, for n = 10*
input points from each of four distributions: uniform, normal, Poisson, and random vertices of a cube.
Here, € = 0.001.
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Fig.7. Running time (in seconds) of the fast implementation of Algorithm 1 as a function of log,(1/€),
for input points that are normally distributed (u = 0,0 = 1) in dimension d = 256 and for input points
from the USPS. For the normally distributed points, the fast implementation is used. For the USPS data,
we plot results both for the pure implementation (indicated by “USPS”) and for the fast implementation
(indicated by “*USPS”). The USPS data contains 7291 points in 256 dimensions and is a standard data
set, based on digitized hand-written characters, used in the clustering and machine learning literature.
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Fig. 8. Core-set size as a function of log,(1/€), for input points that are normally distributed (u =
0,0 = 1) in dimension d = 256 and for input points from the USPS. For the normally distributed points,
the fast implementation is used. For the USPS data, we plot results both for the pure implementation
(indicated by “USPS”) and for the fast implementation (indicated by “*USPS”).
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Fig. 9. Running time (in seconds) of the fast implementation of Algorithm 1 as a function of log;, 7
for n input points that are normally distributed (¢ = 0,0 = 1) in dimensions d = 2 and d = 3. For
each choice of d, plots are shown for two choices of € (€ = 1072 and e = 107°), but they are essentially
identical, with no discernible difference. In every case, the core-set size was less than 10.



Approximate Minimum Enclosing Balls in High Dimensions Using Core-Sets . 25

3000

2500

2000 +

1500

1000 -

Time in seconds

500

0 - Fe & & o
10 15 20 25 30 35 40 45 50 55

Dimension

——CGAL 2.4 —=— Algorithm 1 —— Bernd's Code

Fig. 10. Timing comparison, as a function of dimension, for # = 1000 points that are normally dis-
tributed (u = 0,0 = 1). We compare the pure implementation of Algorithm 1 with CGAL 2.4 and with
Bernd Girtner’s code. Here, € = 107¢. These experiments were done on a Pentium III 1Ghz, 512MB
notebook computer, running Windows 2000.
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Fig. 11. Timing comparison, as a function of dimension, for n = 1000 points that are normally dis-
tributed (u = 0,0 = 1). We compare the pure implementation of Algorithm 1 (using € = 0.001) with
the simple method of Badoiu and Clarkson (BC), using three choices of € (¢ = 0.1,0.05,0.03). These
experiments were done on a Pentium III 1Ghz, 512MB notebook computer, running Windows 2000. As
€ approaches zero, the performance of the BC algorithm degrades substantially.



Approximate Minimum Enclosing Balls in High Dimensions Using Core-Sets . 27

6. OPEN PROBLEMS

There are many interesting theoretical and practical problems that are motivated
by our investigations.

(1) Several problems deserve experimental study. Are there practical methods for
computing an MEB with outliers? Can one practically compute approximate
solutions for 2-center and k-center problems in high dimensions? How effi-
ciently can one compute approximate minimum-volume enclosing ellipsoids?
Are there core-sets for ellipsoids of size less than ©(d?)? Does dimension re-
duction [21] help us to solve high-dimensional problems in practice? Can one
use “warm start” strategies [36] to improve running times by giving a good
starting point at every iteration? How does the improved algorithm, with
running time O(% +4 log” %), suggested by Har-Peled [29] in Remark 2 of
Section 4, compare with our implementations based on Algorithm 1?

(2) For which LP-type problems can one prove the existence of dimension-independent
core-sets? What are the tightest core-set bounds one can prove for various dis-
tributions of points, with d < 1/e?
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