
Parallel Computing Concepts

What is Parallel Computing?

 Does it include:

• super-scalar processing (more than one instruction at once)?

• client/server computing?

• what if RPC calls are non-blocking?

• vector processing (same instruction to several values)?

• collection of PC’s not connected to a network?

What is Parallel Computing?

For us, parallel computing requires:

• more than one processing element

• nodes connected to a communication network

• nodes working together to solve a single problem

Why Parallelism?

Speed

• need to get results faster than possible with
sequential

• a weather forecast that is late is useless

• could come from

• more processing elements (P.E.)

• more memory (or cache)

• more disks

Why Parallellism?

Cost

• Cheaper to buy many smaller machines

• This is only recently true due to

• VLSI

• Commodity hardware

What Does a Parallel Computer Look Like?

Hardware

• processors

• communication

• memory

• coordination

Software

• programming model

• communication libraries

• operating system

Processing Elements (PE)

A Processing Element (PE) is a unit of usually commodity hardware that
is capable of performing computation, usually supported by some
amount of memory.

PE’s include processors, core, GPU cores, etc.

Key Processor Choices

• How many?

• How powerful?

• Custom or off-the-shelf?

Major Styles of Parallel Computing

• SIMD - Single Instruction Multiple Data

• one master program counter (PC)

• MIMD - Multiple Instruction Multiple Data

• separate code for each processor

• SPMD - Single Program Multiple Data

• same code on each processor, separate PC’s on each

• Dataflow - instruction waits for operands

• “automatically” finds parallelism

SIMD

MIMD

SPMD

Dataflow

Interconnects

• An interconnect is a communication network used to commect
Processing Elements.

• Also allows the Processing Elements to interact with memory, handle
I/O, etc.

• The arrangement of PE’s using a communication network is called a
“Topology” (not to be confused with topologies in mathematics).

• Key Performance Issues

• latency: time for first byte

• throughput: average bytes/second

Topologies

• bus - simple, but doesn’t scale

• ring - orders delivery of messages

Topologies
• tree - needs to increase bandwidth near the top

• mesh - two or three dimensions

Topologies

• hypercube - needs a power of number of nodes

Memory Systems

Key Performance Issues
• latency: time for first byte

• throughput: average bytes/second

Design Issues

• Where is the memory

• divided among each node

• centrally located (on communication network)

• Access by processors

• can all processors get to all memory?

• is the access time uniform?

Coordination

• Synchronization
• protection of a single object (locks)

• coordination of processors (barriers)

• Size of a unit of work by a processor

• need to manage two issues

• load balance - processors have equal work

• coordination overhead - communication and sync.

• often called “grain” size - large grain vs. fine grain

Sources of Parallelism

• Statements
• called “control parallel”

• can perform a series of steps in parallel

• Loops

• called “data parallel”

• most common source of parallelism

• each processor gets one (or more) iterations to perform

Examples of Parallelism

• Easy (embarrassingly parallel)
• multiple independent jobs (i.e..., different simulations)

• Scientific
• Largest users of parallel computing
• dense linear algebra (divide up matrix)
• physical system simulations (divide physical space)

• Databases
• biggest commerical success of parallel computing (divide tuples)

• exploits semantics of relational calculus

• Artificial Intelligence
• search problems (divide search space)
• pattern recognition and image processing (divide image)

Metrics in Application Performance

Speedup (often call strong scaling)

• ratio of time on n nodes to time on a single node

• hold problem size fixed

• should really compare to best serial time

• goal is linear speedup

• super-linear speedup is possible due to:

• adding more memory

• search problems

Metrics in Application Performance

• Weak Scaling (also called Iso-Speedup)
• scale data size up with number of nodes

• goal is a flat horizontal curve

• Amdahl's Law

• max speedup is 1/(serial fraction of time)

• Computation to Communication Ratio
• goal is to maximize this ratio

How to Write Parallel Programs

• Use old serial code
• compiler converts it to parallel

• called the dusty deck problem

• Serial Language plus Communication Library
• no compiler changes required!

• PVM and MPI use this approach (Parallel Virtual Machines)

• New language for parallel computing
• requires all code to be re-written

• hard to create a language that provides performance on different platforms

• Hybrid Approach
• HPF - add data distribution commands to code

• add parallel loops and synchronization operations

Application Example - Weather

• Typical of many scientific codes

• computes results for three dimensional space

• compute results at multiple time steps

• uses equations to describe physics/chemistry of the problem

• grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

• Simplifications (for example, not in real code)

• earth is flat (no mountains)

• earth is round (poles are really flat, earth buldges at equator)

• second order properties

Grid Points
• Divide Continuous space into discrete parts

• For this code, grid size is fixed and uniform

• Possible to change grid size or use multiple grids

• Use three grids

• Two for latitude and longitude

• One for elevation

• Total of M * N * L points

• Design Choice: where is the grid point?

• Left, right, or center of the grid

• In multiple dimensions this multiples:

• For 3 dimensions have 27 possible points

Serial Computation

• Convert equations to discrete form

• Update from time t to t + delta t

• You do not need to understand the
process here – just get the general
idea of vector computations in loops

foreach longitude, latitude, altitude

 ustar[i,j,k] = n * pi[i,j] * u[i,j,k]

 vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]

 sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end

foreach longitude, latitude, altitude

 D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k]

 + q[i-1,j,k]) + terms in {i,j,k}{+,-}{1,2}

 piq[i,j,k] = piq[i,j,k] + D * delat

 similar terms for piu, piv, piT, and pi

end

foreach longitude, latitude, altitude

 q[i,j,k] = piq[i,j,k]/pi[i,j,k]

 u[i,j,k] = piu[i,j,k]/pi[i,j,k]

 v[i,j,k] = piv[i,j,k]/pi[i,j,k]

 T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end

Shared Memory Version
• In each loop nest, iterations are independent

• Use a parallel for-loop for each loop nest

• Synchronize (barrier) after each loop nest
• this is overly conservative, but works

• could use a single sync variable per item, but would incur excessive overhead

• Potential parallelism is M * N * L

• Private variables: D, i, j, k

• Advantages of shared memory
• easier to get something working (ignoring performance)

• Hard to debug
• other processors can modify shared data

Distributed Memory Version
• Decompose data to specific processors

• assign a cube to each processor
• maximize volume to surface ratio

• minimizes communication/computation ratio

• called a <block,block,block> distribution

• Need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
• use send/receive to move the data

• no need for barriers, send/receive operations provide sync
• sends earlier in computation too hide communication time

• Advantages
• easier to debug?

• consider data locality explicitly with data decomposition

• Problems
• harder to get the code running

Ensuring a fair speedup

• Tserial = faster of

• best known serial algorithm

• simulation of parallel computation

• use parallel algorithm

• run all processes on one processor

• parallel algorithm run on one processor

• If it appears to be super-linear

• check for memory hierarchy

• increased cache or real memory may be reason

• verify order operations is the same in parallel and serial cases

