
MULTIPROCESSING IN
PYTHON

NEED FOR MULTIPROCESSING

• CPU’s with multiple cores have more or less become standard.

• Programs/applications should be able to take advantage.

• However, the default Python interpreter was designed with simplicity in mind and has

a thread-safe mechanism, the so-called “GIL” (Global Interpreter Lock).

• In order to prevent conflicts between threads, it executes only one statement at a time

(so-called serial processing, or single-threading).

• We will see how we can spawn multiple subprocesses to avoid some of the GIL’s
disadvantages.

PROCESSES VS THREADS

• Depending on the application, two common approaches in parallel programming are

either to run code via threads or multiple processes, respectively.

• Using threads will lead to conflicts in case of improper synchronization.

• A better approach is to submit multiple processes to completely separate memory

locations. Every process will run completely independent from each other.

• While this has a lot of overload due to inter process communication, there are fewer

synchronization issues.

PROCESSES VS THREADS

THE PROCESS CLASS

• multiprocessing is a built-in module that contains classes that can be used to run

multiple processes at the same time.

• The most basic approach is to use the Process class.

• We will generate a random string using multiple processes.

• The results will be added to a queue and retrieved once all the sub processes are

done.

THE PROCESS CLASS

• Here, rand_string is a function with 2 parameters,

length and a Queue, that generates a random

string of a given length and adds it to the queue.

• We set up a Queue to store the results in.

• We create a list of processes where

• target is the function to be executed.

• args is the tuple of parameters to be passed into the

function

• We then start off each process. This generates a

process and makes it execute the assigned

function using the given parameters.

• Once the processes are started off, we wait for

them to complete and report their results. This is

done using the join() function.

• The results can then be extracted from the queue.

output = mp.Queue()

processes = [mp.Process(target=rand_string,

 args=(5, output)) for x in range(4)]

for p in processes:

 p.start()

for p in processes:

 p.join()

results = [output.get() for p in processes]

THE POOL CLASS

• Another and more convenient approach for simple parallel processing tasks is

provided by the Pool class.

• Pool creates a “pool” of processes first, and then we can allocate tasks to each of
them.

• We need to know how many processes we’ll need before we set up the Pool.

• There are four methods that are particularly interesting:

• Pool.apply

• Pool.map

• Pool.apply_async

• Pool.map_async

THE POOL CLASS

• Here, square is a function that takes in a

parameter and returns the square of that

number.

• The Pool class sets up a number of processes,

specified through the processes keyword

argument.

• We can then either apply or map the results.

• Both the apply and map functions lock the main

program to make sure the results are in order.

• We do not have to start or join these processes.

The Pool class handles that.

pool = mp.Pool(processes=4)

results = [pool.apply(square, args=(x,)) for

 x in range(1,7)]

print(results)

pool = mp.Pool(processes=4)

results = pool.map(square, range(1,7))

print(results)

THE POOL CLASS

• If we want to make maximum use of

multiprocessing, we should let processes

proceed out of order.

• This is especially necessary for

embarrassingly parallel applications, where

the processes do not have to communicate.

• To do this, we can use the async variants of the

map and apply functions of the Pool class.

• However, we have to explicitly get the answers

from the results queue.

• The results may be out of order.

pool = mp.Pool(processes=4)

results = [pool.apply_async(cube, args=(x,)) for

 x in range(1,7)]

output = [p.get() for p in results]

print(output)

USING THREADS

• Processes are very memory intensive, since they carry a lot of information with them.

• Threads are lightweight processes, which are created within a process. It is easier to

share information between threads.

• However, due to the Global Interpreter Lock, python does not actually do

multithreading. The threads are run one at a time, but they do not wait for

synchronization, making the program ultimately faster.

• The threading module (built –in), helps us manage threads.

USING THREADS

• We need to define a function that each

thread will run

• Each thread has a unique name. We can

get it using the current thread’s
getName function.

• The current thread is returned by the

currentThread function.

• We want a return statement even if the

function does not return anything.

def worker(val):

 global num

 num+=val

 print ("No! This is Patrick!",val,

 threading.currentThread().getName())

 print(num)

 return

USING THREADS

• The simplest way to use a Thread is to

instantiate it with a target function and

call start() to let it begin working.

• We create an empty list, then create

each thread and add the threads to the

list.

• Then, we start off the threads.

• If we use join, it forces the threads to

execute in order.

thread1 = []

for i in range(2000):

 t = threading.Thread(target = worker,

 args=(i,))

 thread1.append(t)

 t.start()

 t.join()

THREADS, CONCURRENCY AND
SYNCHRONIZATION

• If we let the threads execute out of order, then we could have race conditions.

• Two threads could read the global variable, do their own calculations and then write their

own answers to the global variable.

• This would result in one of the calculations being ignored.

• Joining the threads would result in getting the right answer, but then we are not making

use of the threads and the multiprogramming model.

• A better way to do this would be to use concurrency techniques like locks. However, these

are somewhat beyond the purview of the class.

• If you would like additional information, please let me know.

