

Generative models

- Bayesian networks, factors, Markov networks
- Applications / examples of Bayesian networks
- · Bayesian inference

Outline

- · Bayesian networks, factors, Markov networks
- Applications / examples of Bayesian networks
- Bayesian inference

Help

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Factors?

Markov networks:

$$\mathbb{P}(X_1=x_1,\ldots,X_n=x_n)=rac{ ext{Weight}(x)}{\sum_{x'} ext{Weight}(x')}$$
 $ext{Weight}(x)=\prod_{j=1}^m f_j(x)$

What are these factors f_j 's and how does one construct them?

- Hard constraints (CSPs): $f(x_1, x_2) = [x_1 \neq x_2]$
- Soft preferences (weighted CSPs, Markov networks): $f(x_1, x_2) = \{(R, R) : 1, (R, B) : 10, (B, R) : 10, (B, B) : 1\}$

Can we find a more natural/interpretable way to create factors...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Generative story: describe how the world works...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Generative story

Once upon a time, there was a girl who lived at (0,0).

One day, she wanted to to go visit her grandma's house at (10, 10).

At every moment, she just chose a random direction that got her closer.

Once he reached her grandma's house, she stayed there and lived happily ever after.

Generative process

Generative process: Going to grandma's- $X_1=(0,0)$ for each time step $t=2,\ldots,T$:

Generate position $X_t\sim p(X_t\mid X_{t-1})$

Factors:

• $p(x_t \mid x_{t-1})$: uniform distribution over x_t which are (i) at most distance one away from x_{t-1} and (ii) at least as close to the goal

$$p((0,0) \mid (0,0)) = p((1,0) \mid (0,0)) = p((0,1) \mid (0,0)) = \frac{1}{3}$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 4 CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Running the generative process

Generative model defines a distribution over complete paths.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Notational aside

"is proportional to":

•
$$p(x) \propto w(x) \Leftrightarrow p(x) = rac{w(x)}{\sum_{x'} w(x')}$$

ullet Example: $p(x,y) \propto [x < y]$ places uniform distribution over pairs (x, y) such that x < y

"is drawn/sampled/generated from":

•
$$X \sim f(X) \Leftrightarrow \mathbb{P}(X = x) = f(x)$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Markov models

Generative process: Going to grandma's- $X_1 = (0,0)$

for each time step t = 2, ..., T:

Generate position $X_t \sim p(X_t \mid X_{t-1})$

Bayesian network representation:

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow (X_5)$$

Variables are nodes, add directed edge to each variable from variables it depends on.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Factor graph representation

Generative process: Going to grandma's $X_1 = (0,0)$ for each time step $t = 2, \dots, T$: Generate position $X_t \sim p(X_t \mid X_{t-1})$

Weight of assignment is product of factors:

$$ext{Weight}(x) = \prod_{t=1}^T p(x_t \mid x_{t-1})$$

$$\square - (X_1) - \square - (X_2) - \square - (X_3) - \square - (X_4) - \square - (X_5)$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Factor graph representation

$$\mathbb{P}(X = x) = rac{\mathbb{W} ext{eight}(x)}{\sum_{x'} \mathbb{W} ext{eight}(x')} \quad \mathbb{W} ext{eight}(x) = \prod_{t=1}^T p(x_t \mid x_{t-1})$$

What is the normalization constant? Do variable elimination:

 $f_4(x_4) = \sum_{x_5} p(x_5 \mid x_4) = 1$

 $f_3(x_3) = \sum_{x_4} p(x_4 \mid x_3) f_4(x_4) = 1$

Important: normalization constant
$$\sum_{x'} ext{Weight}(x') = 1$$
 $\mathbb{P}(X = x) = ext{Weight}(x) = \prod_{t=1}^T p(x_t \mid x_{t-1})$

This holds for all generative models.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Generative models summary

Described by a generative process (randomized program): convenient representation for modeling

Example: Generative process: Going to grandma's—
$$X_1 = (0,0)$$
 for each time step $t = 2, ..., T$:
Generate position $X_t \sim p(X_t \mid X_{t-1})$

Defines a Bayesian network (directed graphical model):

Example: $(x_1) \rightarrow (x_2) \rightarrow (x_3) \rightarrow (x_4) \rightarrow (x_5)$

Defines a Markov network (undirected graphical model / factor graph): convenient representation for inference

Example:
$$\mathbb{P}(X = x) = \text{Weight}(x) = \prod_{t=1}^{T} p(x_t \mid x_{t-1})$$

$$\mathbf{P}(X_t \mid x_{t-1}) = \mathbf{P}(X_t \mid x_{t-1}) = \mathbf{P}(X_t \mid x_{t-1})$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- · Bayesian networks, factors, Markov networks
- · Applications / examples of Bayesian networks
- · Bayesian inference

General approach: model the world via a set of variables and how they were generated (don't solve the problem directly)...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

12

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Application: language modeling

 \lceil Generative process: n-gram model —

For each word position $t = 1, 2, \dots, T$:

Generate word $X_t \sim p(X_t \mid X_{t-n+1:t-1})$

Bigram model: $(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow (X_5)$

$$\mathbb{P}(X=x) = \prod_{t=1}^T p(x_t \mid x_{t-n+1:t-1})$$
: fluency of sentence x .

Applications:

- Generate random stories
- Machine translation: make sure output looks like English
- Speech recognition: "I recognize speech" versus "I wreck a nice beach"

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Application: reasoning under uncertainty

Question: At the office, you get a call from your neighbor John. What's the probability that there was a burglary?

- \boldsymbol{L} : location
- **B**: burglary happened?
- **E**: there was an earthquake?
- A: alarm went off?
- \boldsymbol{J} : John called?
- M: Mary called?

 $\mathbb{P}(L=l,B=b,E=e,A=a,J=j,M=m) = p(l)p(b\mid l)p(e\mid l)p(a\mid b,e)p(j\mid a)p(m\mid a)$ [Demo of simplified network]

- Allows principled incorporation of diverse long-range evidence
- Account for natural reasoning patterns such as explaining away

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

15

Application: document classification

Question: given a text document, what is it about?

-Generative process: Naive Bayes-

Generate the document category $Y \sim p(Y)$

For each word index i = 1, ..., L:

Generate word $X_i \sim p(X_i \mid Y)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Application: medical diagostics

Question: If patient has has a cough and fever, what disease(s) does he/she have?

-Generative process: Diseases and symptoms

For each disease $i = 1, \dots, m$:

Generate whether patient has that disease $X_i \sim p(X_i)$

For each symptom $j = 1, \dots, n$:

Generate whether patient has that symptom $Y_j \sim p(Y_j \mid X_{1:m})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

17

Application: social network analysis

Question: Given a social network (graph over n people), what types of people are there?

Generative process: Stochastic block model-

For each person $i = 1, \dots, n$:

Generate the type of that person $X_i \sim p(X_i)$

For each pair of people $i \neq j$:

Generate whether i and j are linked $E_{ij} \sim p(E_{ij} \mid X_i, X_j)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Application: object tracking

Generative process: Hidden Markov model For each time step t = 1, ..., T:

Generate object location $X_t \sim p(X_t \mid X_{t-1})$ Generate sensor reading $E_t \sim p(E_t \mid X_t)$

Other applications:

- Computational biology: gene finding
- · Natural language: speech recognition, information extraction

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

19

Application: tracking multiple objects

-Generative process: Dynamic Bayesian network-For each time step t = 1, ..., T:

For each object $o \in \{a, b\}$:

Generate location $G_t^o \sim p(G_t^o \mid G_{t-1})$

Generate sensor reading $E_t^o \sim p(E_t^o \mid G_t^o)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- Bayesian networks, factors, Markov networks
- Applications / examples of Bayesian networks
- Bayesian inference

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

21

General framework: Bayesian networks

- Coined by Judea Pearl in 1985, popularized probability in AI
- Variables X_1, \dots, X_n
- For each variable X_i , have a local conditional probability distribution $p(x_i \mid x_{\text{Parents}(i)})$:

$$\mathbb{P}(X=x) = \prod_{i=1}^n p(x_i \mid x_{ ext{Parents}(i)})$$

Bayesian inference

Generative models so far have two types of variables:

 \pmb{X} : hidden variables describing the world (e.g., actual positions) \pmb{E} : variables you observe about the world (e.g., sensor readings)

General approach: Define a generative process over both hidden and observed variables ("how the observed values came to be").

$$\mathbb{P}(X = x, E = e) = p_{\text{prior}}(x) \cdot p_{\text{likelihood}}(e \mid x)$$

Objective: compute **posterior** $\mathbb{P}(X_i = x_i \mid E = e)$ for some query variable $X_i \subset X$?

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

23

Bayesian inference

Objective: compute is the **posterior** $\mathbb{P}(X_i = x_i \mid E = e)$?

Algorithm:

- Condition on E = e and produce a factor graph.
- Run inference algorithm (sum variable elimination, Gibbs sampling, or particle filtering).

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Summary

- Markov networks: factors specify **local** dependencies, **Weight**(x) induces **global** dependencies (analogy with rewards and utilities); normalize to get $\mathbb{P}(x = x)$.
- Inference algorithm: compute distribution over query variables taking into account all global dependencies
- Bayesian networks / generative processes: randomized program
 that assigns values to variables (think of a story of how the
 observed variables got there via hidden dynamics in the world);
 defines factor graph where factors are local probability
 distributions
- \bullet Bayesian inference: observe $\pmb{E} = \pmb{e}$, play detective to get $\mathbb{P}(\pmb{X} = \pmb{x} \mid \pmb{E} = \pmb{e})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

25