Logic

¢ Languages and expressiveness
« Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
o First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
e Other logics
¢ Logic and probability
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Taking a step back

query

|

Inference

|

predictions

data = = model =—>

Learning

Models describe how the world works (relevant to some task)

What type of models?
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Some modeling paradigms

State space models: search problems, MDPs, games

Applications: route finding, game playing, etc.
Think in terms of states, actions, and costs

Variable-based models: CSPs, Markov networks, Bayesian
networks

Applications: scheduling, object tracking, medical diagnosis, etc.
Think in terms of variables and factors

Logical models: propositional logic, first-order logic

Applications: proving theorems, program verification, reasoning
Think in terms of logical formulas and inference rules
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Language
Language is a mechanism for expressing models/knowledge/ideas.
Natural languages:

English: even numbers
German: geraden Zahlen

Programming languages:

Python: def even(x): return x % 2 ==

C++: bool even(int x) { return x % 2 == 0; }
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Desiderata: want a language than can represent complex facts
about the world and allows for sophisticated reasoning about those
facts...
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Procedural programming languages
Procedural languages represent knowledge using data structures,
algorithms manipulates data structures.

def f(positions):

distances = [dist(pos, me) for pos in positions]

minDistance = min(distances)
return minDistance

Easy query: Given positions, whatisminDistance?
Hard query: Given minDistance, what are positions?

Need a declarative language (P(positions | minDistance))
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Variable-based models

Variable-based models are a declarative language: define
constraints/factors over variables; ask any query over variables.
Implicit representation?

All students work hard.

John is a student.

Therefore, John works hard.
Variable-based models would explictly represent all the students —
intuitively shouldn't be necessary.
Higher-order reasoning?

John believes it will rain.

Will it rain?

Does John believe it will not rain (assuming John is logical)?
Need something more expressive to represent...
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Natural languages

A dime is better than a nickel.
A nickel is better than a penny.

Therefore, a dime is better than penny.
General rule (transitivity): if A > Band B > C,then A > C.

A penny is better than nothing.
Nothing is better than world peace.

Therefore, a penny is better than world peace???

Natural language is not formal, can be slippery...
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A puzzle

If John likes probability, then John likes logic.

If it is Thursday, then John likes probability or John likes logic.
It is Thursday.

Does John like probability?

Does John like logic?

CS221: Antificial Intelligence (Autumn 2012) - Percy Liang 9

A puzzle

You get extra credit if you write a paper and you solve the
problems.

You didn't get extra credit.
You solve the problems.

Did you write a paper?

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang

Propositional logic chat demo

Tell me some something or ask me something. I will try to convert your utterance into propositional
logic and apply resolution to carry out your request. I have no personality.

Example: "If it rained, then the ground is wet.", "It rained.", "Is the ground wet?"

Example: "(implies (or rain snow) wet)", "rain", "(or wet cold)?"
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Ingredients

Syntax: defines a set of valid formulas (Formulas)
Semantics:
* A model w describes a possible situation in the world

* An interpretation function Z mapping each f € Formulas
and model w to a truth value Z,, (f)

Inference rules: what new formulas can be added without changing
semantics (%)?

Inference algorithm: apply inference rules in some clever order to
answer queries (is f true?)
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Syntax versus semantics
Syntax: what are valid expressions in the language?
Semantics: what do these expressions mean?
Different syntax, same semantics:
X+y & y+ X
Same syntax, different semantics:

3 / 2 (Python) < 3 / 2 (Javascript)
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¢ Languages and expressiveness
¢ Propositional logic
o Specification of propositional logic
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Syntax of propositional logic

Propositional symbols: A, B, C' (think variables in CSPs); these are
formulas

Logical connectives: =, A, V, —, <>

Build up formulas recursively—if f and g are formulas, so are the
following:

e Negation: —f

 Conjunction: fA g

« Disjunction: fV g

e Implication: f — g

e Biconditional: f <> g
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Syntax of propositional logic

e Formula: ~A A (-B — C)V (-BV D)
¢ Non-formula: A—B

Note: formulas are just symbols — no meaning yet!
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Model

A model w in propositional logic is an assignment of truth values
to propositional symbols

Example:
3 propositional symbols: A, B, C
28 — 8 possible models w:

Interpretation function
Given a formula f and a model w, interpretation function Z,, ( f)

returns either true (1) or false (0).

Base case:

For a propositional symbol p (e.g., 4, B, C): I, (p) = w(p)

{A:0,B:0,C:0} Recursive case:
Eﬁ 8’g (l)’g (1):}} For any two formulas f and g:
{4:0,B:1,C:1} L(f) Twl) Tu(~f) Tu(frg) Tu(fVe) Tul(f—+9) Zu(f+ )
{A:1,B:0,C:0} 0 0 0 0 1 1
{A:1,B:0,C:1} 0 1 1 0 1 1 0
{A:1,B:1,C: 0} 1 0 0 0 1 0 0
{A:1,B:1,C:1} 1 1 0 1 1 1 1
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Example Formulas represent sets of models

Formula: f = (wAAB) « C
Model: w={A4:1,B:1,C: 0}

Interpretation:

[Z.(FAAB) <+ C) =1

L,(C)=0

[Zo(-A A B) =0

Zo(-4)
Z,(4)

0] [Zu(B)

=1

1
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Fach formula f and model w has an interpretation I, (f) € {0,1}

Formula:

f=(AAB) o C

Models with true interpretation M(f) = {w : Z,,(f) = 1}
{A:0,B:0,C:0}
{A:1,B:0,C: 0}
{A:1,B:1,C:0}
{A:0,B:1,C: 1}

Point: formula is symbols that compactly represent a set of models.
Think of formula as putting constraints on the world.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 21

Types of formulas

Validity: Z, (f) = 1 for all models w (tautologies that provide no
information, e.g., f = Rain V —Rain)

Unsatisfiability: Z,, (f) = 0 for all models w (contradictions, e.g.,
f = Rain A —Rain)

Contingent: neither valid nor unsatisfiable (provides information,

e.g., f = Rain)

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Knowledge base

Let KB = {Rain V Snow, Traffic}.

M(Rain V Snow) M(Traffic)

Definition: Knowledge base
A knowledge base KB is a set of formulas with

M(KB) = (] M(f).

feKB

Note: think conjunction: M({f, g}) = M({f A g})
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Entailment

M(5)

Intuition: f added no information/constraints (it was already
known).

(Definition: Entailment

KB entails f (written KB = f) ifft M(f) > M(KB).

Example: Rain A Snow |= Snow

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Contradiction

D

Intuition: f contradicts what we know (captured in KB).
MEKBU{f}) =0

Example: Rain A Snow contradicts ~Snow

Relationship between entailment and contradiction:

KB entails f (KB = f) iff KB U {—f} is unsatisfiable
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Contingency

M(f)

Intuition: f adds non-trivial information to KB
0 MEKBU{f}) & M(KB)

Example: Rain V Snow and Snow

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Interacting with a knowledge base

Tell[f] or Ask[f] — —> response

Tell: It rained. (Tell[Rain]) Possible responses:

o Already knew that: entailment (KB [= f)

« Don't believe that: contradiction (KB = —f)

. : contingent
Ask: Did it rain? (Ask[Rain]) Possible responses:

* Yes: entailment (KB |= f)

* No: contradiction (KB = —f)

. : contingent
Everything boils down to entailment (checking satisfiability)...
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Model checking

Checking satisfiability (SAT) is special case of solving CSPs
propositional symbol =- variable
formula = constraint
model <= assignment

OnnOnn0

Solving CSPs is model checking (operate over models).
Popular algorithms:

* DPLL (backtracking search)

o WalkSat (Gibbs sampling)

But logic allows us to peer inside factors and exploit structure...

theorem proving operates on formulas.

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Outline

¢ Languages and expressiveness
 Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
e First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic

= Inference in first-order logic with only definite clauses
= Inference in full first-order logic

¢ Other logics

¢ Logic and probability
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Inference rules

Example of making an inference:
It rained. (Rain)
If it rained, then the ground is wet. (Rain — Wet)
Therefore, the ground is wet. (Wet)
Rain, Rain — Wet
Wet
Modus Ponens inference rule

For any formulas f and g:

f, g
g

(premises)
(conclusion)

Key: operate on syntax, not semantics (can be more efficient).
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Inference framework

In general, have a set of rules Rules with the following form:

fl’ )fk
g9

Forward inference algorithm
Repeat until no changes to KB:
Choose set of formulas fi,..., fi € KB.

Find matching rule %

Add g to KB.

Say that KB |- f (KB derives/proves f) if there exists sequence
of rule applications that eventually adds f to KB.
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Soundness and completeness

What properties does a set of inference rules Rules have?

Definition: Soundness (only prove entailed formulas)
A set of rules Rules is sound if:

KBF f KB E f

Definition: Completeness (prove all entailed formulas)
A set of rules Rules is complete if:

KBE f KBF f

Point: These properties link syntax (inference rules) and semantics
(entailment).

implies

implies

Soundness
Is Rain, Rain — Wet (Modus ponens) sound?
Wet
M@Rain) N M(Rain —» Wet) c? M(Wet)
Wet Wet Wet
0 1 0 1

7 s T

Yes! Models represented by Rain and Rain — Wet is subset of
those represented by Wet.

M({Rain, Rain — Wet}) C M(Wet)
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Soundness Soundness
-Wet, Rain —» Wet Wet, Rain —+ Wet
s il .n d (Modus tollens) sound? AL .n @ sound?
—Rain Rain

M(-Wet) n M(Rain - Wet) c? M(—Rain) M(Wet) N M(Rain - Wet) ? M(Rain)
Wet Wet Wet Wet Wet Wet
0 1 0 1 0 1 0 1 0 1 0 1

Raiz

=

L]
Rain
==
Rain
= o
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B

No!

1N §
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Soundness

S Rain V Snow —Snow V Traffic

Rain V Traffic
M (Rain V Snow)NM(—Snow V Traffic) c? M(Rain V Traffic)

I

(resolution rule) sound?

Snow Snow Snow
0 1 0 1 0 1
© 0,0 © 0,0 © 0,0
&é 0,1 éﬁ,ﬁ. 0,1 % 0,1
= H =
g1L0 810 g10
1,1 1,1 1,1
Yes!
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Completeness

Example:

Rules = {%}
Can verify that all Rules is sound, but not complete...for example,
given KB = {Rain A Snow}, can't infer Rain.
What set of rules is complete? This is tricker than soundness...
Plan:

» Propositional logic with only definite clauses: only need Modus
ponens

» Propositional logic: only need resolution rule (+ preprocessing)
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Outline

¢ Languages and expressiveness
¢ Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
» Other logics
» Logic and probability
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A restriction of propositional logic

Assume knowledge base (KB) contains only definite clauses:
Definition: Definite clause
A definite clause has the following form:
(PLA--Apr) > g
for propositional symbols py, ..., Pk, q.

Intuition: if premises pj, ..., pr hold, then conclusion ¢ holds.
Example: (Rain A Snow) — Traffic
Non-example: = Traffic
Non-example: (Rain A Snow) — (Traffic V Peaceful)
Allowed queries to the KB: Ask|[p]
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Example scenario

Suppose we have the following knowledge base:

Rain
Weekday

Rain — Wet
Wet A Weekday — Traffic

Traffic A Careless — Accident

Queries: Ask[Traffic]? Ask[Accident]?
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Inference rule

The single rule is sound and complete for propositional logic with
only definite clauses:
Definition: Modus ponens

p1, Py (DLA---Apr) > g
q

Proof tree:

(Weekday] (Wet A Weekday — Traffic|

(Rain) (Rain — Wet])
Each node is a formula derived from children using modus ponens,
leaves are original formulas in KB.
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Algorithms

KB: {Rain, Weekday, Rain — Wet, Wet A Weekday — Traffic}
Query: Ask[T'raffic]
Forward chaining:
* From known propositions, iteratively apply rules to derive new
propositions.
o Proactively make new inferences when information comes in.
e Time: linear in size of knowledge base.
Backward chaining:
e Start from query and recursively derive premises that conclude
the query.
» Make inferences tailored towards answering a particular query.
» Time: often much less than linear in size of knowledge base.
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Outline

» Languages and expressiveness
» Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
e First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
¢ Other logics
¢ Logic and probability
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High-level strategy

Goal: determine whether KB = f
Example: KB ={A — (BVC),A,~B},f=C
Algorithm (performs proof by contradiction):
 Set KB’ = KBU {~f}.
Example: KB’ = {4 — (BV C), A,—B,-C}
« Run inference algorithm to check satisfiability of KB'.

» Conclude KB = f iff KB' is unsatisfiable.

Example: unsatisfiable

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Resolution algorithm

Goal: determine whether KB’ is satisfiable.
Example: KB' = {4 — (BV C), A,—B,~C}
Algorithm:
« Convert all formulas in KB’ into conjunctive normal form.
Example: KB’ = {-AV BV C, A,-B,-C}
» Repeatedly apply resolution rule.
Example:

» Return unsatisfiable iff derive false (0).
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Conjunctive normal form

~Definition: Conjunctive normal form (CNF)
A CNF formula is a conjunction of disjunctions of optional
negations of propositional symbols.

Example: (AV BV —C) A (—-BV D)

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang
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Conversion to CNF

Goal: convert arbitrary propositional formula into CNF formula

Steps (exercise: verify semantic equivalence):

R - . feg
Eliminate <: TFooneh
=g

—fvg
¢ Eliminate double negation:
~(fAg)

-fV-g
~(fvg)
e
. . . . g
Distribute V over A: R

o Eliminate —:

-
f
e Move — inwards:

e Move — inwards:
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Resolution rule

Resolution rule
iV VaVh, —hVgiVe-Vgnm

FIVoNFaVaVeVgm

Example:

Rain V Snow, —Snow V Traffic
Rain V Traffic
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Summary

» A model describes a possible state of the world (e.g.,
{Rain : 0, Wet : 1}).

 Each formulas f (e.g., -Rain) describes a set of models
M(f) (think of providing information or imposing
constraints).

o Inference rules (e.g., %) allow one to derive new
formulas from old ones. Soundness/completeness links syntax
and semantics.

¢ Definite clauses only: (Rain — Wet) forward/backward
chaining yields linear time inference.

* Propositional logic: (Rain V Snow) resolution yields
exponential time inference.
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= Inference in full propositional logic
 First-order logic
o Specification of first-order logic
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Limitations of propositional logic
Alice and Bob both know arithmetic.
AliceKnowsArithmetic A BobKnowsArithmetic

All students know arithmetic.

AliceIsStudent — AliceKnowsArithmetic
BobIsStudent — BobKnowsArithmetic

Every even integer greater than 2 is the sum of two primes.

7?

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 51

Limitations of propositional logic

All students know arithmetic.

AliceIsStudent — AliceKnowsArithmetic
BoblIsStudent — BobKnowsArithmetic

Propositional logic is very clunky. What's missing?

» Objects and relations: propositions (e.g.,
AliceKnowsArithmetic) has more internal structure (Alice,
Knows, Arithmetic)

* Quantifiers and variables: all is a quantifier which references all
people, don't want to enumerate them all...
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Some examples of first-order logic

Alice and Bob both know arithmetic.
Knows(Alice, Arithmetic) A Knows(Bob, Arithmetic)
All students know arithmetic.

Vz Student(z) — Knows(z, Arithmetic)
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Syntax of first-order logic

Ingredients:
= Connectives from propositional logic: =, A, V, —, <>
 Constant symbols (e.g., Alice, Arithmetic): refer to objects
* Predicate symbols (e.g., Knows): relate multiple objects
 Function symbols (e.g., Sum): map objects to single object
e Variables (e.g., x, y, 2): refers to objects

e Quantifiers (e.g., V, J): aggregate results from different
assignments to variables
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Syntax of first-order logic

Terms (refer to objects): constant symbol (e.g., Arithmetic),
variable (e.g., ), or function applied to terms (e.g., Sum(3, 4))
Formulas (refer to truth values):

¢ Atomic formulas: Predicate applied to terms (e.g.,

Knows(z, Arithmetic)); analogue of propositional symbol in
propositional logic

» Connectives applied to formulas (e.g.,
Student(z) — Knows(z, Arithmetic)); same as
propositional logic

¢ Quantifiers applied to formulas (e.g.,
Vz Student(z) — Knows(z, Arithmetic))
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Models in first-order logic

Recall a model represents a possible state of affairs (mapping from
symbols to their interpretation).

Propositional logic: Model w maps propositional symbols to truth
values.

eg,w(A)=0,w(B)=1
First-order logic:
¢ Model w maps constant symbols to objects
e.g., w(Alice) = o1, w(Bob) = 0q, w(Arithmetic) = o3
* Model w maps predicate symbols to tuples of objects

e.g., w(Knows) = {(01,03), (02,03),...}
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Graph representation

A model w as be represented a directed graph (if only have binary

predicates):
w
Alice e @ Bob

Knows

Arithmetic

nows

¢ Nodes are objects, labeled with constant symbols

» Directed edges are relations, labeled with predicate symbols
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. .
Database semantics (alternative)

There are two students, John and Bob.

Student(John) A Student(Bob)
w:

w:
Student  Student ’7

John @ Bob

Student Student Student

2 3
s o | 1n(0) () (ot

rDefinition: Unique names assumption
Each object has at most one constant symbol. This rules out ws.

rDefinition: Domain closure
Each object has at least one constant symbol. This rules out ws.

rDefinition: Closed-world assumption
All atomic formulas not known (labels not present) are false.
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Quantifiers
Universal quantification (V):
Every student knows arithmetic.
Vz Student(z) — Knows(z, Arithmetic)
Existential quantification (3):
Some student knows arithmetic.

Iz Student(z) A Knows(z, Arithmetic)

Quantifiers
Universal quantification (V):
Think conjunction: Yz P(z) is like P(A) AP(B) A - -+
Existential quantification (d):
Think disjunction: 3z P(z) is like P(A) V P(B) V - - -

Some properties:
o =Yz P(z) equivalent to 3z —P(x)
* Vz JyKnows(z, y) different from Jy Vz Knows(z, y)
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Some examples of first-order logic Outline

There is some course that every student has taken.
Jy Course(y) A [Vz Student(z) — Takes(z, )]
Every even integer greater than 2 is the sum of two primes.
Vz Evenlnt(z) A Greater(z, 2) — Jy 32 Equals(z, Sum(y, 2)) A Prime(y) A Prime(2)

If a student takes a course and the course covers some concept, then
the student knows that concept.

Vz VyVz (Student(z) A Takes(z,y) A Course(y) A Covers(y, z)) — Knows(z, 2)
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o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
 First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
o Other logics
» Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 63
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= Inference in full first-order logic
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SR TEBTeedi protabilitey b o

Definite clauses

Assume knowledge base (KB) contains only definite clauses:

rDefinition: Definite clause

A definite clause has the following form:

Vzy Ve, (M A Apg) = ¢
for atomic formulas py, . .., Pk, q and variables z, . . . , &, that
appear in the atomic formulas.

Example:
Vi Vy Vz (Student(z) A Takes(z,y) A Course(y) A Covers(y, 2)) — Knows(z, 2)

Intuition: think of first-order definite clause compactly representing
all instantiations of the variables (for all objects).
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Substitution and unification

Goal: define inference rules that work on formulas with quantifiers
Example:

Given P(Alice) and Vz P(z) — Q(z).

Infer @Q(Alice)?

Problem: P(z) and P(Alice) don't match exactly.

Two concepts:
» Substitution: morph a formula into another

e Unification: make two formulas the same
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Substitution

Definition: Substitution
A substitution # maps variables to constant symbols or variables.

Subst[6, f] returns the result of performing substitution 8 on f.

Examples:
Subst[{z/Alice}, P(z)] = P(Alice)

Subst[{z/Alice,y/z}, P(z) A K(z,y)] = P(Alice) A K(Alice, z)
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Unification

rDefinition: Unification

Unification takes two formulas f and g and returns a substitution @
which is the most general unifier:

Unify[f, g] = 0 such that Subst[0, f] = Subst[0, g]

or fail if no @ exists.

Examples:

Unify[Knows(Alice, Arithmetic), Knows(z, Arithmetic)] = {x/Alice}
Unify[Knows(Alice, y), Knows(z, z)] = {z/Alice, y/z}
Unify[Knows(Alice, y), Knows(Bob, 2)] = fail

Unify[Knows(Alice, y), Knows(z, F(z))] = {x/Alice, y/F(Alice)}
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Inference rule

Generalized modus ponens
p, 1Pk VT VEa(pL Ao Apr) 2 g

Subst(9, q) ’
where 6 is the most general unifier Subst (6, p;) = Subst(6, p;').

Example inputs:

Takes(Alice, CS221)

Covers(CS221, MDPs)

Va VyVzTakes(x, y) A Covers(y, z) — Knows(z, z)
Example result:

0 = {z/Alice, y/CS221, z/MDPs}

Derive Knows(Alice, MDPs)
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Forward/backward chaining
Vz VyVz Takes(z, y) A Covers(y, z) — Knows(z, 2)
Inference algorithms analogous to those for propositional logic.
Forward chaining: starting from known atomic formulas (e.g.,
Takes(Alice, CS221)), find rules whose premises unify with
them, and derive conclusion.
Backward chaining: starting from query atomic formula (e.g.,

Knows(Alice, MDPs)), find rules whose conclusion unifies with
it, and recursive on premises.
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Time/space complexity

Ve VyVz P(z,y, 2)

o If there are no function symbols, then bounded by number of
domain elements to the maximum arity of a predicate (3 in this
case).

o If there are function symbols (e.g., F), then infinite...

Q(4) Q(F(4)) Q(F(F(4))) QF(F(F(4))))

rTheorem: Semi-decidability

First-order logic (even restricted to only definite clauses) is semi-
decidable.

If KB = f, forward/backward chaining will prove f in finite time.
If KB ¥ f, no algorithm can show this in finite time.
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Outline

e Languages and expressiveness
» Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
e First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
e Other logics
¢ Logic and probability
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Resolution

Goal: given a knowledge base, can we derive a contradiction
(unsatisfiable)?

Recall: First-order logic can include formulas like this (not a
definite clause)

Va Student(z) — JyKnows(z, y)

High-level strategy (same as in propositional logic):
¢ Convert all formulas to CNF
» Repeatedly apply resolution rule
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Conversion to CNF

Input:
Ve (Vy Animal(y) — Loves(z,y)) — 3y Loves(y, z)

Output:

(Animal(Y (2)) V Loves(Z(2), £)) A (~Loves(z, Y (2)) V Loves(2(2), z))

New to first-order logic:
e All variables (e.g., ) have universal quantifiers by default

« Introduce Skolem functions (e.g., Y/(z)) to represent
existential quantified variables
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Conversion to CNF

Input:

Vz (Vy Animal(y) — Loves(z, y)) — JyLoves(y, )

Eliminate implications (old):

Vz —(Vy —Animal(y) V Loves(z, y)) V JyLoves(y, z)

Push = inwards (old):

Vz (3y Animal(y) A —Loves(z, y)) V JyLoves(y, z)

Standardize variables (new):

Vi (3y Animal(y) A —Loves(z, y)) V 3zLoves(z, z)

Replace existentially quantified variables with Skolem functions (new):

Vz [Animal(Y (z)) A ~Loves(z, Y (z))] V Loves(Z(z), z)

Distribute V over A (old):

Vz [Animal(Y (z)) V Loves(Z(z), )] A [-Loves(z, Y(x)) V Loves(Z(z), z)]
Remove universal quantifiers (new):

[Animal(Y(z)) V Loves(Z(z), z)] A [-Loves(z,Y(z)) V Loves(Z(z), z)]
Interpretation: ¥'(z) represents animal that & doesn't like, Z(z) represents person
who likes &
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Resolution

Generalized resolution rule
V-V fVh, —haVgV---Vgp

Subst[@, fi V.-V VgL V-V gm]
where § = Unify[h;, —hs).

Example:

Animal(Y(z)) V Loves(Z(z),z), -Loves(u,v)V Kills(u,v)

Animal(Y(z)) v Kills(Z(z), )

with substitution 8 = {u/Z(z),v/z}.
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Outline

¢ Languages and expressiveness
¢ Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
e First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic

= Inference in first-order logic with only definite clauses
= Inference in full first-order logic

¢ Other logics

¢ Logic and probability
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Motivation

({

Goal: represent knowledge and perform inferences
Why use anything besides propositional or first-order logic?

Expressiveness:
¢ Temporal logic: express time
¢ Modal logic: express alternative worlds

¢ Higher-order logic: fancier quantifiers

Notational convenience, computational efficiency:

¢ Description logic
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Temporal logic
Barack Obama is the US president.
President(BarackObama, US)
George Washington was the US president.
P President(GeorgeWashington, US)
Some woman will be the US president.

F 3z Female(z) A President(z, US)
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Temporal logic

Point: all formulas interpreted at a current time.

The following operators change the current time and quantify over
it (think of Pz as 3¢ (¢ < now) A f(¢)):

P f: f held at some point in the past
F f: f will hold at some point in the future
H f: f held at every point in the past
G f: f will hold at every point in the future

Every student will at some point never be a student again.
Vz. Student(z) — FG—Student(z)
Model: map from time points to models in first-order logic
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Modal logic for propositional attitudes

Alice believes one plus one is two.
Knows(Alice, Equals(Sum(1, 1), 2))??
Alice believes Boston is a city.
Knows(Alice, City(Boston))??
Problem: Equals(Sum(1, 1), 2) is true, City(Boston) is true,
but two are not interchangeable in this context.
Solution: every formula interpreted with respect to a possible
world, operator K 53¢ f interprets f according to Alice's world
K atice Equals(Sum(1, 1),2))
K a1ice City(Boston)
Model: map from possible worlds to models in first-order logic
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Higher-order logic: lambda calculus

Simple:

Alice has visited some museum.

Jz Museum(z) A Visited(Alice, z)
More complex:

Alice has visited at least 10 museums.

Az Museum(x) A Visited(Alice, z): boolean function
representing set of museums Alice has visited

Count(Az Museum(z) Visited(Alice, z)) > 10

Higher-order logic allows us to model these generalized quantifiers.
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Description logic

People with at least three sons who are all unemployed and married to doctors, and
at most two daughters who are professors...are weird.
Lambda calculus:
Vz (Person(z)
ACount(Ay Son(z,y) A Unemployed(y) A VzSpouse(y, z) A Doctor(2)) > 3
ACount(\y Daughter(z, y) A Professor(y)) < 2) — Weird(z)
Description logic:
(Person
MN(> 3 Son. Unemployed M VYSpouse. Doctor)
N(< 2Daughter. Professor)) C Weird
Advantages:
¢ Generalized quantifiers without variables: notationally more
compact

o First-order is semi-decidable, description logic is decidable
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Summary of logics

« Propositional logic: A A B

* First-order logic: V& P(z) — Q(x)

« Temporal / modal logic: F(A A B)

e Description logic: P C @

» Higher-order logic (lambda calculus): Az P(z) A Q(z)
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Outline

e Languages and expressiveness
» Propositional logic
o Specification of propositional logic
o Inference algorithms for propositional logic
= Inference in propositional logic with only definite
clauses
= Inference in full propositional logic
e First-order logic
o Specification of first-order logic
o Inference algorithms for first-order logic
= Inference in first-order logic with only definite clauses
= Inference in full first-order logic
¢ Other logics
¢ Logic and probability
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Limitations

In logic, every formula is true or false. In reality, there is
uncertainty.

Vz VyVzTakes(z, y) A Covers(y, z) — Knows(z, 2)
Probability used to define joint distributions: Py (X7, ..., Xy)
Think of X4,..., X, as propositional symbols
Amodelisw={X; 1 z1,...,Xp : 2o}

We are placing a distribution over possible worlds w.
Probability theory:
» Pro: allows us to manage uncertainty in a coherent way

» Con: captures propositional logic
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Markov logic

Assume database semantics. Defines Markov network:
Random variables:
W = (P(4), P(B), R(A, A), R(4, B), R(B, A), R(B, B), Q(4), Q(B))
First-order formula:
f = [VaVy P(z) A R(z,y) — P(y)]
g=1[VzQ(z
Equivalent propositional logic formulas:

fi =[P(A) AR(A, A) — P(A)]
f2 =[P(A) A R(A, B) — P(B)]
fs =[P(B) A R(B, A) — P(A)]
fa =[P(B) A R(B, B) = P(B)]
g1 = Q(4)
g2 = Q(B)

Markov logic

One parameter for each first-order formula (e.g., f, g)
T, (f) € {0,1} is the interpretation of f inw
Markov logic defines a Markov network:

Po(W = w) o exP{‘gf ZIw(fi) + 09 ZIw(gi)}

¢ Defines distribution over possible worlds (models)

¢ All grounded instances of a formula have same parameter
weight

e Can do lifted probabilistic inference for efficiency (important
for learning)

e Asfg,0; — oo, get ordinary logic
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Summary
» Logic is a language for expressing facts in a knowledge base

» Considerations: expressiveness, notational convenience,
inferential complexity

¢ Propositional logic with definite clauses, propostional logic,
description logic, first-order logic, temporal logic, modal logic,

higher-order logic

e Markov logic: marry logic (abstract reasoning by working on
formulas) and probability (maintaining uncertainty)
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