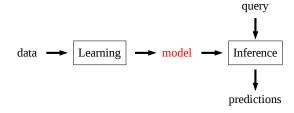


Logic

- · Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- · First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- · Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Taking a step back



Models describe how the world works (relevant to some task)

What type of models?

Help

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Some modeling paradigms

State space models: search problems, MDPs, games

Applications: route finding, game playing, etc. *Think in terms of states, actions, and costs*

Variable-based models: CSPs, Markov networks, Bayesian networks

Applications: scheduling, object tracking, medical diagnosis, etc. *Think in terms of variables and factors*

Logical models: propositional logic, first-order logic

Applications: proving theorems, program verification, reasoning *Think in terms of logical formulas and inference rules*

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- · Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- · First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Language

Language is a mechanism for expressing models/knowledge/ideas.

Natural languages:

English: *even numbers*German: *geraden Zahlen*

Programming languages:

Python: def even(x): return x % 2 == 0C++: bool even(int x) { return x % 2 == 0; }

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Desiderata: want a language than can **represent** complex facts about the world and allows for sophisticated **reasoning** about those facts...

Procedural programming languages

Procedural languages represent knowledge using data structures, algorithms manipulates data structures.

def f(positions):
 distances = [dist(pos, me) for pos in positions]
 minDistance = min(distances)
 return minDistance

Easy query: Given positions, what is minDistance?

Hard query: Given minDistance, what are positions?

Need a **declarative** language ($\mathbb{P}(positions \mid minDistance))$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Variable-based models

Variable-based models are a declarative language: define constraints/factors over variables; ask any query over variables.

Implicit representation?

All students work hard.

John is a student.

Therefore, John works hard

Variable-based models would explictly represent all the students — intuitively shouldn't be necessary.

Higher-order reasoning?

John believes it will rain.

Will it rain?

Does John believe it will not rain (assuming John is logical)?

Need something more expressive to represent...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

7

Natural languages

A **dime** is better than a **nickel**.

A **nickel** is better than a **penny**.

Therefore, a **dime** is better than **penny**.

General rule (transitivity): if A > B and B > C, then A > C.

A **penny** is better than **nothing**.

Nothing is better than **world peace**.

Therefore, a **penny** is better than **world peace**???

Natural language is not formal, can be slippery...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

A puzzle

If John likes probability, then John likes logic.

If it is Thursday, then John likes probability or John likes logic.

It is Thursday.

Does John like probability?

Does John like logic?

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

A puzzle

You get extra credit if you write a paper and you solve the problems.

You didn't get extra credit.

You solve the problems.

Did you write a paper?

Propositional logic chat demo

Tell me some something or ask me something. I will try to convert your utterance into propositional logic and apply resolution to carry out your request. I have no personality.

Example: "If it rained, then the ground is wet.", "It rained.", "Is the ground wet?" Example: "(implies (or rain snow) wet)", "rain", "(or wet cold)?"

10 CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

2) - Percy Liang

11

Notes

Ingredients

Syntax: defines a set of valid formulas (Formulas)

Semantics:

- A **model** \boldsymbol{w} describes a possible situation in the world
- An interpretation function ${\mathcal I}$ mapping each $f \in {f Formulas}$ and model w to a truth value $\mathcal{I}_w(f)$

Inference rules: what new formulas can be added without changing semantics $(\frac{f}{a})$?

Inference algorithm: apply inference rules in some clever order to answer queries (is f true?)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Different syntax, same semantics:

$$x + y \Leftrightarrow y + x$$

Same syntax, different semantics:

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- · Languages and expressiveness
 - Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite
 - Inference in full propositional logic
 - · First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses

Syntax of propositional logic

- Inference in full first-order logic
- · Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Syntax of propositional logic

Propositional symbols: A, B, C (think variables in CSPs); these are formulas

Logical connectives: \neg , \land , \lor , \rightarrow , \leftrightarrow

Build up formulas recursively—if f and g are formulas, so are the following:

• Negation: $\neg f$

• Conjunction: $f \wedge g$

• Disjunction: $f \lor g$

• Implication: $f \rightarrow g$ • Biconditional: $f \leftrightarrow g$ • Formula: $\neg A \land (\neg B \rightarrow C) \lor (\neg B \lor D)$

• Non-formula: $A \neg B$

Note: formulas are just symbols — no meaning yet!

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Model

A $\mathbf{model}\ \boldsymbol{w}$ in propositional logic is an assignment of truth values to propositional symbols

Example:

3 propositional symbols: A, B, C

$$2^3 = 8$$
 possible models **w**:

 $\begin{cases} A:0,B:0,C:0 \\ \{A:0,B:0,C:1 \} \\ \{A:0,B:1,C:1 \} \\ \{A:0,B:1,C:0 \} \\ \{A:0,B:1,C:1 \} \\ \{A:1,B:0,C:0 \} \\ \{A:1,B:0,C:1 \} \\ \{A:1,B:1,C:1 \} \\ \{A:1,B:1,C:1 \} \end{cases}$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Interpretation function

Given a formula f and a model w, interpretation function $\mathcal{I}_w(f)$ returns either true (1) or false (0).

Base case:

For a propositional symbol p (e.g., A, B, C): $\mathcal{I}_w(p) = w(p)$

Recursive case:

For any two formulas f and g:

$\mathcal{I}_w(f)$	$\mathcal{I}_w(g)$	$\mathcal{I}_w(\lnot f)$	$\mathcal{I}_w(f \wedge g)$	$\mathcal{I}_w(f \vee g)$	$\mathcal{I}_w(f o g)$	$\mathcal{I}_w(f \leftrightarrow g)$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Example

Formula: $f = (\neg A \land B) \leftrightarrow C$

Model: $w = \{A: 1, B: 1, C: 0\}$

Interpretation:

$$\mathcal{I}_{w}((\neg A \land B) \leftrightarrow C) = 1$$
 $\mathcal{I}_{w}(\neg A \land B) = 0$
 $\mathcal{I}_{w}(C) = 0$
 $\mathcal{I}_{w}(A) = 0$
 $\mathcal{I}_{w}(A) = 1$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Formulas represent sets of models

Fach formula f and model w has an interpretation $\mathcal{I}_w(f) \in \{0,1\}$

Formula:

$$f = (\neg A \land B) \leftrightarrow C$$

Models with true interpretation $\mathcal{M}(f) = \{w : \mathcal{I}_w(f) = 1\}$:

$$\{A:0,B:0,C:0\}$$

 $\{A:1,B:0,C:0\}$
 $\{A:1,B:1,C:0\}$
 $\{A:0,B:1,C:1\}$

Point: formula is symbols that *compactly* represent a set of models. Think of formula as putting constraints on the world.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

21

Types of formulas

Validity: $\mathcal{I}_w(f) = 1$ for all models w (tautologies that provide no information, e.g., $f = \text{Rain} \lor \neg \text{Rain}$)

Unsatisfiability: $\mathcal{I}_w(f) = 0$ for all models w (contradictions, e.g., $f = \operatorname{Rain} \wedge \neg \operatorname{Rain}$)

Contingent: neither valid nor unsatisfiable (provides information, e.g., $\mathbf{f} = \mathbf{Rain}$)

Knowledge base

Let $KB = \{Rain \lor Snow, Traffic\}$.

 $\mathcal{M}(\operatorname{Rain} \vee \operatorname{Snow})$ $\mathcal{M}(\operatorname{KB})$ $\mathcal{M}(\operatorname{Traffic})$

-Definition: Knowledge base

A knowledge base KB is a set of formulas with $\mathcal{M}(KB) = \bigcap_{f \in KB} \mathcal{M}(f)$.

Note: think conjunction: $\mathcal{M}(\{f,g\}) = \mathcal{M}(\{f \land g\})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Entailment

Intuition: *f* added no information/constraints (it was already known).

Definition: Entailment-

KB entails f (written **KB** \models f) iff $\mathcal{M}(f) \supset \mathcal{M}(KB)$.

Example: $Rain \land Snow \models Snow$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Contradiction

Intuition: f contradicts what we know (captured in KB).

$$\mathcal{M}(\mathrm{KB} \cup \{f\}) = \emptyset$$

Example: **Rain** \land **Snow** contradicts \neg **Snow**

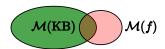
Relationship between entailment and contradiction:

KB entails $f(KB \models f)$ iff $KB \cup \{\neg f\}$ is unsatisfiable

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

25

Contingency



Intuition: f adds non-trivial information to KB

 $\emptyset \subsetneq \mathcal{M}(KB \cup \{f\}) \subsetneq \mathcal{M}(KB)$

Example: Rain V Snow and Snow

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Interacting with a knowledge base

Tell[f] or $Ask[f] \longrightarrow KB \longrightarrow response$

Tell: *It rained*. (**Tell**[**Rain**]) Possible responses:

- Already knew that: entailment (**KB** \models *f*)
- Don't believe that: contradiction (**KB** $\models \neg f$)
- Learned something new (update knowledge base): contingent

Ask: *Did it rain?* (**Ask**[**Rain**]) Possible responses:

- Yes: entailment (**KB** \models *f*)
- No: contradiction (**KB** $\models \neg f$)
- I don't know: contingent

Everything boils down to entailment (checking satisfiability)...

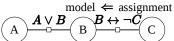
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

2

Model checking

Checking satisfiability (SAT) is special case of solving CSPs propositional symbol \Rightarrow variable

formula ⇒ constraint



Solving CSPs is **model checking** (operate over models). Popular algorithms:

- DPLL (backtracking search)
- WalkSat (Gibbs sampling)

But logic allows us to peer inside factors and exploit structure... **theorem proving** operates on formulas.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- Languages and expressiveness
- · Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Inference rules

Example of making an inference:

It rained. (Rain)

If it rained, then the ground is wet. (**Rain** \rightarrow **Wet**)

Therefore, the ground is wet. (Wet)

$$\frac{\text{Rain,} \quad \text{Rain} \rightarrow \text{Wet}}{\text{Wet}}$$

(premises) (conclusion)

-Modus Ponens inference rule-

For any formulas f and g:

$$\frac{f, \quad f \rightarrow g}{g}$$

Key: operate on **syntax**, not **semantics** (can be more efficient).

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Inference framework

In general, have a set of rules **Rules** with the following form:

$$\frac{f_1, \dots, f_k}{g}$$

Forward inference algorithm-

Repeat until no changes to **KB**:

Choose set of formulas $f_1, \ldots, f_k \in \mathrm{KB}$.

Find matching rule $\frac{f_1, \dots, f_k}{c}$.

Add \mathbf{g} to \mathbf{KB} .

Say that **KB** \vdash f (**KB** derives/proves f) if there exists sequence of rule applications that eventually adds f to KB.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Soundness and completeness

What properties does a set of inference rules **Rules** have?

Definition: Soundness (only prove entailed formulas)

A set of rules **Rules** is sound if:

 $KB \vdash f$ implies $KB \models f$

-Definition: Completeness (prove all entailed formulas)-

A set of rules **Rules** is complete if:

 $KB \models f$ implies $KB \vdash f$

Point: These properties link syntax (inference rules) and semantics (entailment).

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Soundness

$$\text{Is } \frac{\textbf{Rain,} \quad \textbf{Rain} \rightarrow \textbf{Wet}}{\textbf{Wet}} \text{ (Modus ponens) sound?}$$

$$\mathcal{M}(\operatorname{Rain}) \cap \mathcal{M}(\operatorname{Rain} \to \operatorname{Wet}) \subset ? \mathcal{M}(\operatorname{Wet})$$

Yes! Models represented by **Rain** and **Rain** \rightarrow **Wet** is **subset** of those represented by **Wet**.

 $\mathcal{M}(\{\operatorname{Rain},\operatorname{Rain} o \operatorname{Wet}\}) \subset \mathcal{M}(\operatorname{Wet})$

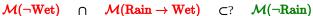
Soundness

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Wet, $\underline{\text{Rain} \rightarrow \text{Wet}}$ sound?

Soundness

Is
$$\frac{\neg \text{Wet}, \quad \text{Rain} \to \text{Wet}}{\neg \text{Rain}}$$
 (Modus tollens) sound?



$$\mathcal{M}(\mathbf{W}\mathbf{e}$$

Yes!

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

No!

SoundnessIs $\frac{\mathbf{Rain} \vee \mathbf{Snow} \quad \neg \mathbf{Snow} \vee \mathbf{Traffic}}{\mathbf{Rain} \vee \mathbf{Traffic}} \text{ (resolution rule) sound?}$ $\mathcal{M}(\mathbf{Rain} \vee \mathbf{Snow}) \cap \mathcal{M}(\neg \mathbf{Snow} \vee \mathbf{Traffic}) \subset ?\mathcal{M}(\mathbf{Rain} \vee \mathbf{Traffic})$ $Snow \quad 0 \quad 1$ $\mathcal{S}now \quad$

Completeness

Example:

Rules =
$$\left\{ \frac{f, \quad f \to g}{g} \right\}$$

Can verify that all **Rules** is sound, but not complete...for example, given $KB = \{Rain \land Snow\}$, can't infer **Rain**.

What set of rules is **complete**? This is tricker than soundness...

Plan:

- Propositional logic with only definite clauses: only need Modus ponens
- Propositional logic: only need resolution rule (+ preprocessing)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

37

Outline

- · Languages and expressiveness
- Propositional logic

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

- Specification of propositional logic
- o Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

A restriction of propositional logic

Assume knowledge base (KB) contains only definite clauses:

Definition: Definite clause-

A definite clause has the following form:

$$(p_1 \wedge \cdots \wedge p_k) \rightarrow q$$

for propositional symbols p_1, \ldots, p_k, q .

Intuition: if premises p_1, \ldots, p_k hold, then conclusion q holds.

Example: (Rain \land Snow) \rightarrow Traffic

Non-example: ¬**Traffic**

Non-example: $(Rain \land Snow) \rightarrow (Traffic \lor Peaceful)$

Allowed queries to the KB: $\mathbf{Ask}[p]$

CS221: Artificial Intelligence (Autumn 2012) - Percy Lian

3

Example scenario

Suppose we have the following knowledge base:

Queries: Ask[Traffic]? Ask[Accident]?

Inference rule

The single rule is sound and complete for propositional logic with only definite clauses:

Definition: Modus ponens $\frac{p_1, \cdots, p_k, \quad (p_1 \wedge \cdots \wedge p_k) \to q}{q}$

Proof tree:

 $\widehat{\mathbf{Rain}} \quad \widehat{\mathbf{Rain}} \to \mathbf{Wet}$

Each node is a formula derived from children using modus ponens, leaves are original formulas in **KB**.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

41

Algorithms

 $\label{eq:kb} \text{KB: } \{ \text{Rain, Weekday, Rain} \rightarrow \text{Wet, Wet} \land \text{Weekday} \rightarrow \text{Traffic} \} \\ \text{Query: } \text{Ask}[\text{Traffic}]$

Forward chaining:

- From known propositions, iteratively apply rules to derive new propositions.
- Proactively make new inferences when information comes in.
- Time: linear in size of knowledge base.

Backward chaining:

- Start from query and recursively derive premises that conclude the query.
- Make inferences tailored towards answering a particular query.
- Time: often much less than linear in size of knowledge base.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- · Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

43

High-level strategy

Goal: determine whether $\mathbf{KB} \models \mathbf{f}$

Example:
$$KB = \{A \rightarrow (B \lor C), A, \neg B\}, f = C$$

Algorithm (performs proof by contradiction):

• Set $KB' = KB \cup \{\neg f\}$.

Example:
$$KB' = \{A \rightarrow (B \lor C), A, \neg B, \neg C\}$$

- Run inference algorithm to check **satisfiability** of **KB**′.
- Conclude $\mathbf{KB} \models \mathbf{f}$ iff $\mathbf{KB'}$ is unsatisfiable.

Example: unsatisfiable

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Resolution algorithm

Goal: determine whether **KB**′ is satisfiable.

Example:
$$KB' = \{A \rightarrow (B \lor C), A, \neg B, \neg C\}$$

Algorithm:

• Convert all formulas in **KB'** into **conjunctive normal form**.

Example:
$$KB' = \{ \neg A \lor B \lor C, A, \neg B, \neg C \}$$

Repeatedly apply resolution rule.
 Example:

 $\begin{array}{c|c}
\hline
B \lor C & \neg B \\
\hline
\neg A \lor B \lor C & A
\end{array}$

• Return unsatisfiable iff derive false (0).

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

4

Conjunctive normal form

-Definition: Conjunctive normal form (CNF)-

A CNF formula is a conjunction of disjunctions of optional negations of propositional symbols.

Example: $(A \lor B \lor \neg C) \land (\neg B \lor D)$

Conversion to CNF

Goal: convert arbitrary propositional formula into CNF formula

Steps (exercise: verify semantic equivalence):

• Eliminate \leftrightarrow : $\frac{f \leftrightarrow g}{(f \to g) \land (g \to f)}$

• Eliminate \rightarrow : $\frac{f \rightarrow g}{\neg f \lor g}$

• Eliminate double negation: $\frac{\neg \neg f}{f}$

• Move \neg inwards: $\frac{\neg (f \land g)}{\neg f \lor \neg g}$

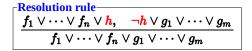
• Move \neg inwards: $\frac{\neg (f \lor g)}{\neg f \land \neg g}$

• Distribute \vee over \wedge : $\frac{f \vee (g \wedge h)}{(f \vee g) \wedge (g \vee h)}$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Resolution rule



Example:

$$\frac{\text{Rain} \vee \text{Snow}, \quad \neg \text{Snow} \vee \text{Traffic}}{\text{Rain} \vee \text{Traffic}}$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Summary

- A model describes a possible state of the world (e.g., {Rain: 0, Wet: 1}).
- Each formulas f (e.g., ¬Rain) describes a set of models M(f) (think of providing information or imposing constraints).
- **Inference rules** (e.g., $\frac{f, \quad f \rightarrow g}{g}$) allow one to derive new formulas from old ones. Soundness/completeness links syntax and semantics.
- Definite clauses only: (Rain → Wet) forward/backward chaining yields linear time inference.
- Propositional logic: (Rain V Snow) resolution yields exponential time inference.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

49

Outline

- · Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - o Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- · Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Limitations of propositional logic

Alice and Bob both know arithmetic.

 $AliceKnowsArithmetic \land BobKnowsArithmetic$

All students know arithmetic.

 $\begin{aligned} & \textbf{AliceIsStudent} \rightarrow \textbf{AliceKnowsArithmetic} \\ & \textbf{BobIsStudent} \rightarrow \textbf{BobKnowsArithmetic} \end{aligned}$

Every even integer greater than 2 is the sum of two primes.

???

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

5

Limitations of propositional logic

All students know arithmetic.

 $\begin{array}{l} \textbf{AliceIsStudent} \rightarrow \textbf{AliceKnowsArithmetic} \\ \textbf{BobIsStudent} \rightarrow \textbf{BobKnowsArithmetic} \end{array}$

Propositional logic is very clunky. What's missing?

- Objects and relations: propositions (e.g., AliceKnowsArithmetic) has more internal structure (Alice, Knows, Arithmetic)
- Quantifiers and variables: *all* is a quantifier which references all people, don't want to enumerate them all...

Outline

- Languages and expressiveness
- Propositional logic
 - $\circ\,$ Specification of propositional logic
 - $\circ\,$ Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Some examples of first-order logic

Alice and Bob both know arithmetic.

 $Knows(Alice, Arithmetic) \land Knows(Bob, Arithmetic)$

All students know arithmetic.

 $\forall x \, \mathrm{Student}(x) \to \mathrm{Knows}(x, \mathrm{Arithmetic})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Syntax of first-order logic

Ingredients:

- Connectives from propositional logic: \neg , \land , \lor , \rightarrow , \leftrightarrow
- Constant symbols (e.g., Alice, Arithmetic): refer to objects
- Predicate symbols (e.g., **Knows**): relate multiple objects
- Function symbols (e.g., **Sum**): map objects to single object
- Variables (e.g., x, y, z): refers to objects
- Quantifiers (e.g., ∀, ∃): aggregate results from different assignments to variables

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

55

Syntax of first-order logic

Terms (refer to objects): constant symbol (e.g., **Arithmetic**), variable (e.g., \boldsymbol{x}), or function applied to terms (e.g., $\operatorname{Sum}(3,4)$) Formulas (refer to truth values):

- Atomic formulas: Predicate applied to terms (e.g., Knows(x, Arithmetic)); analogue of propositional symbol in propositional logic
- Connectives applied to formulas (e.g., Student(x) → Knows(x, Arithmetic)); same as propositional logic
- Quantifiers applied to formulas (e.g.,
 ∀x Student(x) → Knows(x, Arithmetic))

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Models in first-order logic

Recall a model represents a possible state of affairs (mapping from symbols to their interpretation).

Propositional logic: Model \boldsymbol{w} maps propositional symbols to truth values.

e.g.,
$$w(A) = 0, w(B) = 1$$

First-order logic:

• Model \boldsymbol{w} maps constant symbols to objects

e.g.,
$$w(Alice) = o_1, w(Bob) = o_2, w(Arithmetic) = o_3$$

ullet Model $oldsymbol{w}$ maps predicate symbols to tuples of objects

e.g.,
$$w(\text{Knows}) = \{(o_1, o_3), (o_2, o_3), \ldots\}$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

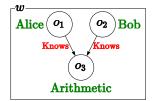
5

Notes

 $(o_3)_{\mathbf{Bob}}$

Graph representation

A model \boldsymbol{w} as be represented a directed graph (if only have binary predicates):



- Nodes are objects, labeled with constant symbols
- Directed edges are relations, labeled with predicate symbols

Database semantics (alternative)

There are two students, John and Bob.

 $Student(John) \wedge Student(Bob)$

-Definition: Unique names assumption-

Each object has **at most one** constant symbol. This rules out w_2 .

Definition: Domain closure-

Each object has **at least one** constant symbol. This rules out w_3 .

-Definition: Closed-world assumption-

All atomic formulas not known (labels not present) are false.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Quantifiers

Universal quantification (\forall) :

Every student knows arithmetic.

 $\forall x \, \text{Student}(x) \rightarrow \text{Knows}(x, \text{Arithmetic})$

Existential quantification (\exists) :

Some student knows arithmetic.

 $\exists x \, \text{Student}(x) \land \text{Knows}(x, \text{Arithmetic})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Quantifiers

Universal quantification (\forall):

Think conjunction: $\forall x \, P(x)$ is like $P(A) \land P(B) \land \cdots$

Existential quantification (\exists) :

Think disjunction: $\exists x \, P(x)$ is like $P(A) \lor P(B) \lor \cdots$

Some properties:

- $\neg \forall x P(x)$ equivalent to $\exists x \neg P(x)$
- $\forall x \exists y \operatorname{Knows}(x, y)$ different from $\exists y \forall x \operatorname{Knows}(x, y)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

61

Some examples of first-order logic

There is some course that every student has taken.

 $\exists y \operatorname{Course}(y) \land [\forall x \operatorname{Student}(x) \to \operatorname{Takes}(x,y)]$

Every even integer greater than 2 is the sum of two primes.

 $\forall x \, \text{EvenInt}(x) \land \text{Greater}(x,2) \rightarrow \exists y \, \exists z \, \text{Equals}(x, \text{Sum}(y,z)) \land \text{Prime}(y) \land \text{Prime}(z)$

If a student takes a course and the course covers some concept, then the student knows that concept.

 $\forall x\, \forall y\, \forall z\, (\mathrm{Student}(x) \wedge \mathrm{Takes}(x,y) \wedge \mathrm{Course}(y) \wedge \mathrm{Covers}(y,z)) \rightarrow \mathrm{Knows}(x,z)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- · Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- · First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

6.

Outline

- Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- CS221: Artificial Intelligence (Autor 2012) Library Liang

Definite clauses

Assume knowledge base (KB) contains only definite clauses:

Definition: Definite clause

A definite clause has the following form:

$$\forall x_1 \cdots \forall x_n \ (p_1 \wedge \cdots \wedge p_k) \rightarrow q$$

for atomic formulas p_1, \ldots, p_k, q and variables x_1, \ldots, x_n that appear in the atomic formulas.

Example:

 $\forall x\, \forall y\, \forall z\, (\mathrm{Student}(x) \wedge \mathrm{Takes}(x,y) \wedge \mathrm{Course}(y) \wedge \mathrm{Covers}(y,z)) \rightarrow \mathrm{Knows}(x,z)$

Intuition: think of first-order definite clause compactly representing all instantiations of the variables (for all objects).

64 CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Substitution and unification

Goal: define inference rules that work on formulas with quantifiers

Example:

Given P(Alice) and $\forall x P(x) \rightarrow Q(x)$. Infer Q(Alice)?

Problem: P(x) and P(Alice) don't match exactly.

Two concepts:

- Substitution: morph a formula into another
- Unification: make two formulas the same

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Substitution

-Definition: Substitution-

A substitution θ maps variables to constant symbols or variables. **Subst**[θ , f] returns the result of performing substitution θ on f.

Examples:

 $\operatorname{Subst}[\{x/\operatorname{Alice}\},P(x)]=P(\operatorname{Alice})$

 $Subst[\{x/Alice, y/z\}, P(x) \land K(x, y)] = P(Alice) \land K(Alice, z)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

67

Unification

-Definition: Unification

Unification takes two formulas ${\pmb f}$ and ${\pmb g}$ and returns a substitution ${\pmb \theta}$ which is the most general unifier:

Unify $[f, g] = \theta$ such that $Subst[\theta, f] = Subst[\theta, g]$ or fail if no θ exists.

Examples:

$$\begin{split} & \text{Unify}[\text{Knows}(\text{Alice}, \text{Arithmetic}), \text{Knows}(\pmb{x}, \text{Arithmetic})] = \{\pmb{x}/\text{Alice}\} \\ & \text{Unify}[\text{Knows}(\text{Alice}, y), \text{Knows}(\pmb{x}, z)] = \{\pmb{x}/\text{Alice}, y/z\} \\ & \text{Unify}[\text{Knows}(\text{Alice}, y), \text{Knows}(\text{Bob}, z)] = \text{fail} \\ & \text{Unify}[\text{Knows}(\text{Alice}, y), \text{Knows}(\pmb{x}, F(\pmb{x}))] = \{\pmb{x}/\text{Alice}, y/F(\text{Alice})\} \end{split}$$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Inference rule

Generalized modus ponens

 $\frac{p_1', \cdots, p_k' \quad \forall x_1 \cdots \forall x_n (p_1 \wedge \cdots \wedge p_k) \to q}{\text{Subst}(\theta, q)},$

where θ is the most general unifier $\mathrm{Subst}(\theta, p_i) = \mathrm{Subst}(\theta, p_i')$.

Example inputs:

Takes(Alice, CS221)

Covers(CS221, MDPs)

 $orall x orall y orall z \operatorname{Takes}(x,y) \wedge \operatorname{Covers}(y,z)
ightarrow \operatorname{Knows}(x,z)$

Example result:

 $\theta = \{x/\text{Alice}, y/\text{CS221}, z/\text{MDPs}\}$

Derive Knows(Alice, MDPs)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Forward/backward chaining

 $\forall x \, \forall y \, \forall z \, \mathrm{Takes}(x,y) \wedge \mathrm{Covers}(y,z) \rightarrow \mathrm{Knows}(x,z)$

Inference algorithms analogous to those for propositional logic.

Forward chaining: starting from known atomic formulas (e.g., **Takes(Alice, CS221)**), find rules whose premises unify with them, and derive conclusion.

Backward chaining: starting from query atomic formula (e.g., **Knows(Alice, MDPs)**), find rules whose conclusion unifies with it, and recursive on premises.

Time/space complexity

 $\forall x \, \forall y \, \forall z \, P(x,y,z)$

- If there are no function symbols, then bounded by number of domain elements to the maximum arity of a predicate (3 in this case).
- If there are function symbols (e.g., \boldsymbol{F}), then infinite...

Q(A) Q(F(A)) Q(F(F(A))) Q(F(F(F(A)))) \cdots

Theorem: Semi-decidability

First-order logic (even restricted to only definite clauses) is semi-decidable.

If $\mathbf{KB} \models \mathbf{\textit{f}}$, forward/backward chaining will prove $\mathbf{\textit{f}}$ in finite time.

If $\mathbf{KB} \nvDash \mathbf{f}$, no algorithm can show this in finite time.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Outline

- · Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - o Inference algorithms for propositional logic
 - Inference in propositional logic with only definite
 - Inference in full propositional logic
- First-order logic
 - o Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- · Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Resolution

Goal: given a knowledge base, can we derive a contradiction (unsatisfiable)?

Recall: First-order logic can include formulas like this (not a definite clause)

 $\forall x \operatorname{Student}(x) \to \exists y \operatorname{Knows}(x,y)$

High-level strategy (same as in propositional logic):

- · Convert all formulas to CNF
- Repeatedly apply resolution rule

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Conversion to CNF

Input:

$$\forall x \, (\forall y \, \mathrm{Animal}(y) o \mathrm{Loves}(x,y)) o \exists y \, \mathrm{Loves}(y,x)$$

Output:

 $(\operatorname{Animal}(Y(x)) \vee \operatorname{Loves}(Z(z), x)) \wedge (\neg \operatorname{Loves}(x, Y(x)) \vee \operatorname{Loves}(Z(z), x))$

New to first-order logic:

- All variables (e.g., \boldsymbol{x}) have universal quantifiers by default
- Introduce **Skolem functions** (e.g., Y(x)) to represent existential quantified variables

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Conversion to CNF

 $\forall x \ (\forall y \ \mathrm{Animal}(y) o \mathrm{Loves}(x,y)) o \exists y \ \mathrm{Loves}(y,x)$

Eliminate implications (old): $\forall x \neg (\forall y \neg Animal(y) \lor Loves(x, y)) \lor \exists y Loves(y, x)$

Push ¬ inwards (old):

 $\forall x (\exists y \, \mathrm{Animal}(y) \land \neg \mathrm{Loves}(x,y)) \lor \exists y \, \mathrm{Loves}(y,x)$

Standardize variables (new):

 $\forall x (\exists y \, \mathrm{Animal}(y) \land \neg \mathrm{Loves}(x,y)) \lor \exists z \, \mathrm{Loves}(z,x)$

Replace existentially quantified variables with Skolem functions (new): $\forall x [Animal(Y(x)) \land \neg Loves(x, Y(x))] \lor Loves(Z(x), x)$

 $\forall x \ [\text{Animal}(Y(x)) \lor \text{Loves}(Z(x), x)] \land [\neg \text{Loves}(x, Y(x)) \lor \text{Loves}(Z(x), x)]$

Remove universal quantifiers (new): $[Animal(Y(x)) \lor Loves(Z(x), x)] \land [\neg Loves(x, Y(x)) \lor Loves(Z(x), x)]$ Interpretation: Y(x) represents animal that x doesn't like, Z(x) represents person who likes ${\boldsymbol x}$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Resolution

Example:

$$rac{ ext{Animal}(Y(x)) ee ext{Loves}(Z(x), x), \quad \neg ext{Loves}(u, v) ee ext{Kills}(u, v)}{ ext{Animal}(Y(x)) ee ext{Kills}(Z(x), x)}$$

with substitution $\theta = \{u/Z(x), v/x\}$.

Outline

- Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite
 - Inference in full propositional logic
- First-order logic
 - Specification of first-order logic
 - o Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- Other logics
- Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Motivation

Goal: represent knowledge and perform inferences

Why use anything besides propositional or first-order logic?

Expressiveness:

- · Temporal logic: express time
- Modal logic: express alternative worlds
- Higher-order logic: fancier quantifiers

Notational convenience, computational efficiency:

• Description logic

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Temporal logic

Barack Obama is the US president.

President(BarackObama, US)

George Washington was the US president.

P President (George Washington, US)

Some woman will be the US president.

 $\mathbf{F} \exists x \, \mathrm{Female}(x) \wedge \mathrm{President}(x, \mathrm{US})$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

79

Temporal logic

Point: all formulas interpreted at a current time.

The following operators change the current time and quantify over it (think of $\mathbf{P}x$ as $\exists t \ (t < \mathbf{now}) \land f(t)$):

P *f*: *f* held at some point in the past

F f: f will hold at some point in the future

H *f*: *f* held at every point in the past

G *f*: *f* will hold at every point in the future

Every student will at some point never be a student again.

 $\forall x. \operatorname{Student}(x) \to \mathbf{FG} \neg \operatorname{Student}(x)$

Model: map from time points to models in first-order logic

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Modal logic for propositional attitudes

Alice believes one plus one is two.

Knows(Alice, Equals(Sum(1, 1), 2))??

Alice believes Boston is a city.

Knows(Alice, City(Boston))??

Problem: **Equals**(Sum(1, 1), 2) is true, City(Boston) is true, but two are not interchangeable in this context.

Solution: every formula interpreted with respect to a possible world, operator $\mathbf{K}_{Alice} \mathbf{f}$ interprets \mathbf{f} according to Alice's world

 \mathbf{K}_{Alice} Equals (Sum(1, 1), 2) \mathbf{K}_{Alice} City (Boston)

Model: map from possible worlds to models in first-order logic

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

8

Higher-order logic: lambda calculus

Simple:

Alice has visited some museum.

 $\exists x \, \mathrm{Museum}(x) \wedge \mathrm{Visited}(\mathrm{Alice}, x)$

More complex:

Alice has visited at least 10 museums.

 λx Museum(x) \wedge Visited(Alice, x): boolean function representing set of museums Alice has visited

 $\operatorname{Count}(\lambda x \operatorname{Museum}(x) \operatorname{Visited}(\operatorname{Alice}, x)) \geq 10$

Higher-order logic allows us to model these generalized quantifiers.

Description logic

People with at least three sons who are all unemployed and married to doctors, and at most two daughters who are professors...are weird.

Lambda calculus:

$\forall x \ (\operatorname{Person}(x)$

Description logic:

(Person

 $\sqcap (\geq 3 \, \mathrm{Son.} \, \mathrm{Unemployed} \, \sqcap \, \forall \mathrm{Spouse.} \, \mathrm{Doctor})$

 $\sqcap (\leq 2 \text{ Daughter. Professor})) \sqsubseteq \text{Weird}$

Advantages:

- Generalized quantifiers without variables: notationally more compact
- First-order is semi-decidable, description logic is decidable

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Summary of logics

• Propositional logic: $A \wedge B$

• First-order logic: $orall x \, P(x) o Q(x)$

• Temporal / modal logic: $\mathbf{F}(A \wedge B)$

• Description logic: $P \sqsubseteq Q$

• Higher-order logic (lambda calculus): $\lambda x P(x) \wedge Q(x)$

Outline

- Languages and expressiveness
- Propositional logic
 - Specification of propositional logic
 - Inference algorithms for propositional logic
 - Inference in propositional logic with only definite clauses
 - Inference in full propositional logic
- · First-order logic
 - Specification of first-order logic
 - Inference algorithms for first-order logic
 - Inference in first-order logic with only definite clauses
 - Inference in full first-order logic
- · Other logics
- · Logic and probability

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

85

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Limitations

In logic, every formula is true or false. In reality, there is uncertainty.

$$\forall x \, \forall y \, \forall z \, \mathrm{Takes}(x,y) \wedge \mathrm{Covers}(y,z) \rightarrow \mathrm{Knows}(x,z)$$

Probability used to define joint distributions: $\mathbb{P}_{\theta}(X_1,\ldots,X_n)$

Think of X_1, \ldots, X_n as propositional symbols

A model is $w = \{X_1 : x_1, \dots, X_n : x_n\}$

We are placing a **distribution over possible worlds** \boldsymbol{w} .

Probability theory:

- Pro: allows us to manage uncertainty in a coherent way
- Con: captures propositional logic

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Markov logic

Assume database semantics. Defines Markov network:

W = (P(A), P(B), R(A, A), R(A, B), R(B, A), R(B, B), Q(A), Q(B))First-order formula:

$$egin{aligned} f &= \left[orall x \, orall y \, P(x) \wedge R(x,y)
ightarrow P(y)
ight] \ g &= \left[orall x \, Q(x)
ight] \end{aligned}$$

Equivalent propositional logic formulas:

$$f_1 = [P(A) \land R(A,A) \rightarrow P(A)]$$

 $f_2 = [P(A) \land R(A,B) \rightarrow P(B)]$
 $f_3 = [P(B) \land R(B,A) \rightarrow P(A)]$
 $f_4 = [P(B) \land R(B,B) \rightarrow P(B)]$
 $g_1 = Q(A)$

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

8

Markov logic

One parameter for each first-order formula (e.g., f, g) $\mathcal{I}_w(f) \in \{0, 1\}$ is the interpretation of f in w Markov logic defines a **Markov network**:

$$\mathbb{P}_{ heta}(W = w) \propto \exp\{ heta_f \sum_i \mathcal{I}_w(f_i) + heta_g \sum_i \mathcal{I}_w(g_i)\}$$

- Defines distribution over possible worlds (models)
- All grounded instances of a formula have same parameter weight
- Can do lifted probabilistic inference for efficiency (important for learning)
- As $\theta_f, \theta_g \to \infty$, get ordinary logic

Summary

- · Logic is a language for expressing facts in a knowledge base
- Considerations: expressiveness, notational convenience, inferential complexity
- Propositional logic with definite clauses, propostional logic, description logic, first-order logic, temporal logic, modal logic, higher-order logic
- Markov logic: marry logic (abstract reasoning by working on formulas) and probability (maintaining uncertainty)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang