Search: deterministic state space models

* Definition of deterministic state space models
» Motivating applications
¢ Some challenges: uncertainty and continuous spaces
o Algorithms
o DAG search, DFS
o Uniform cost search, BFS
o A* search
» Heuristics via relaxation
= Automatically deriving heuristics
o Bellman-Ford for negative costs

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

Review: methodology
Task: specified by environment e and utility function U

Rational agent: Aopy = arg max E[U(4,e€)]
AcAgents

Issue: can't achieve because lack of computation or information
Modeling: build simplified environment &’ and utility function U’
Rational agent: Agps’ = arg max E[U'(4',¢')]

A’eAgents’
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Real-world problem: route finding

Preferences: shortest? fastest? most scenic?
Constraints: traffic lights? pedestrians? construction?
Solution: a plan sequence of actions that achieves the goal
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Modeling
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Key concept: state

rDefinition: State
A state contains all information about agent/environment that are
(i) non-constant and are (ii) relevant to the task.

Example:

Position: 35.67,120.63; Orientation: 50°; Velocity: 30mph
Position of other objects: ...

Date/time: Sat Oct 06 2012 09:42:42 GMT-0700 (PDT)
Value of m: 3.14159265...

Price of gold: $1764.90/0z

Modeling: involves deciding what to include in a state
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A simple model of route finding

Actions: move to adjacent squares (discrete steps)
A A
—_—

Goal: end up in bottom-right square
N N

il
HE B

(Assumption: environment is deterministic

Know exactly how actions affect the environment.
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General formulation

rDefinition: Deterministic state space model
State: s € States

Action: @ € Actions(s)
Successor: Succ(s,a) € States
Cost: Cost(s,a) € R

Start state: Sgiart € States

Goal test: IsGoal(s)
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Simple model for route finding

States 3 8gpart = EQE

Actions(sgtart) > a = East

Succ(sstart, @) = E@H
Cost( EQE ,East) =1

IsGoal( %%) = false

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

General formulation

rDefinition: Optimization problem
Find a path (sequence of actions) p = (@1, . .. , G ) with
minimum path cost:

n
PathCost(p) &ef Z Cost(si—1,a;) if p reaches the goal:
=1
[80 = Sstart, 8i = Succ(s;_1,a;), [sGoal(s,) = true]

= 00 otherwise.
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State space graphs

Each node is a state 8 € States

Each (directed) edge is a pair (s, Succ(s, a)) with cost
Cost(s, a) for action a € Actions(s)

Goal nodes: subset of nodes that satisfy IsGoal
(S———m __F)

Optimization problem: find a path from start node to a goal node
with minimum cost

Don't need to construct full graph explicitly in code.
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Agents, environments, utilities

Environment: e = (States, Actions, Succ, Cost, Sgtart, IsSGoal)
Agent: A takes an environment e and returns a path p
Utility: U(A, e) = —PathCost(A(e))

Rational agent: solves optimization problem on (e, PathCost)

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 11




Outline

» Definition of deterministic state space models
* Motivating applications
» Some challenges: uncertainty and continuous spaces
s Algorithms
o DAG search, DFS
o Uniform cost search, BFS
o A* search
= Heuristics via relaxation
= Automatically deriving heuristics
o Bellman-Ford for negative costs

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

Application: robot navigation

b=t
v

Task: have robot transport object from one place to another

Model:

¢ State: position, orientation, joint angles, whether grasping
object

¢ Actions: flex/rotate joints, activate wheels
¢ Cost: energy/time consumed, penalty if bump into something

o Goal test: whether object is in desired place
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Application: machine translation

Task: translate English to French
the blue house

1

la maison bleue
Simple model:
e State: English words translated so far E
e Actions: choose English word e ¢ F, French word f
o Cost: —Fidelity(e, f)

e Goal test: Whether E covers whole English sentence
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Application: machine translation

Task: translate French to English

the blue house

1

la maison bleue
Improved model:
* State: English words translated so far E + last French word f’
e Actions: choose English word e ¢ E, French word f
o Cost: —Fidelity(e, f) — Fluency(f’, f)

o Goal test: Whether E covers whole English sentence
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Application: software/hardware verification

Task: ensure systems can't do bad stuff (e.g., dereference null
pointers, buffer overflow, leak sensitive information)

Model:
» State: program state (program counter, register contents, etc.)
» Actions: external inputs from user

» Goal test: whether program state violates a specification

Note: want absence of paths - everything is turned upside down!
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Unknown costs

In practice, don't know exact edge costs (e.g., traffic).

Assumption: Random edge costs
Each edge cost is a random variable:
{ LowCost(s,a) with probability o

COSt(S’ a) = UpCost(s, a,) with probability 1 — «

Rational agent:

U(A,e) = —PathCost(A(e)) = — > i, Cost(s;_1,a;)
E[U(A4,€)] = — S, E[Cost(si_1,0)]

E[Cost(s, a)] = a LowCost(s, a) + (1 — a)UpCost(s, a)
Rational agent same as with deterministic costs E[Cost(s, a)]!
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Sl

Unknown costs

States: Sg,. .., 81000
Three paths from sg to S19gg:
¢ Cost of 1000 with certainty
e Cost of 0 or 2000, each with probability %
e Cost of 0 or 2, repeated 1000 times independently
Same expected utility? Only if utility is linear in edge costs.

What if utility were 1 if path cost at most 900 and 0 otherwise?

What if traversing edge fails with probability %? Need MDPs!
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Continuous state spaces

» States: all points (z,y) € [0, 100]2
Infinite!
¢ Actions: move in any direction by any distance
Discretization:
e States: corner points of the polygons

¢ Actions: move in straight line to another corner point that
doesn't intersect rubble
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Review: methodology

Model: environment e and utility function U
Rational agent specification: Aopy € arg max E[U(4,e)]

Deterministic state space model ("graph with edge costs"):

¢ Environment
e = (States, Actions, Succ, Cost, Sgtari , IsSGoal)

« Utility U(A, e) = —PathCost(A(e))
Rational agent specification: Aqpt(€) € arg min PathCost(p)
P

Agent implementations (algorithms): DAG search, DFS, BFS,
UCS, A*, Bellman-Ford (rational? depends on model)
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Review: modeling

Example task:
» Traversing one east-west block is 3 time units; north-south is 1
« Interections: left (2 time units), straight (1), right (0)
e Want to get from point @ to b in Manhattan
* Make no more than k left turns
e Minimize commute time
5 easy steps:
o Write down possible agent outputs.
¢ Break down output into sequence of actions.
» Write down path cost (including constraints).
¢ Add things to state to enable calculation of path cost.
¢ Choose algorithm based on model.
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Different algorithms for different models

Analytic solutions

Algorithm Allow cycles? Edge costs Use case
A
DAG search no anything MT, speech
DFS yes =0 verification
BFS yes = constant simple route finding
Exploit special structure to find optimal path analytically if
UCS, A* yes >0 route finding possible.
Bellman-Ford  yes anything handle rewards Deterministic state space models don't always require search.
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Outline Directed acyclic graphs

¢ Definition of deterministic state space models
¢ Motivating applications
¢ Some challenges: uncertainty and continuous spaces
¢ Algorithms
o DAG search, DFS

Assumption: Acydicity————
( State space graph has no (directed) cycles.

Intuition: every action makes progress towards the goal state.
Example: machine translation

o Uniform cost search, BFS Example:
o A* search
= Heuristics via relaxation
= Automatically deriving heuristics
o Bellman-Ford for negative costs
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Directed acyclic graphs

Compute BackCost(s), the minimum cost from s to any goal
state, recursively:
0 if 8 = 8goal
BackCost(s) = min [Cost(s,a) + BackCost(Succ(s,a))] otherwise.
acActions(s)
rAlgorithm: DAG search
backCost = {} # state s -> minimum cost from s to goal
def GetBackCost(s):
if s == goalstate: return 0
if backCost[s] != None: return backCost[s] # Use memoization
backCost[s] = float('inf')
for a in Actions(s):
t = Succ(s, a) # Try going from s to t
backCost[s] = min(backCost[s], Cost(s, a) + GetBackCost(t))
return backCost[s]
GetBackCost(startState)
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Cyclic graphs, zero costs

What if there are cycles?

Assumption: Zero costs
(All edge costs are zero (Cost(s, a) = 0 for all s, a).

Strategy: Traverse edges in an arbitrary order until we find a goal
state.
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Cyclic graphs, zero costs

rAlgorithm: Depth-first search (DFS)——
explored = set()
def DFS(path, s):
if IsGoal(s): return path
for a in Actions(s):
t = Succ(s, a) # Try going from s to t
if t in explored: continue # Avoid cycles
explored.add(t)
path = DFS(path + [a], t)
if path != None: return path # Found
return None # Not found
DFS([], set([startState]), startState)

Complexity: O(number of edges)
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High-level strategy

Frontier

Unexplored

Keep track of:
¢ Explored: nodes we're done with
« Frontier: nodes we're seen, figuring out how to get there cheaply

¢ Unexplored: nodes we haven't seen
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Forward and backward costs

Definition: Backward costs
(Let BackCost(s) be the minimum cost from s to any goal state.

DAG search computes all BackCost(s) recursively.

Definition: Forward costs
(Let ForwCost(s) be the minimum cost from g, t0 8.

Uniform cost search (Dijkstra's algorithm) computes ForwCost(s)
in increasing order.
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Uniform cost search (UCS)

~Algorithm: Uniform cost search

explored = set()
frontier = PriorityQueue()
frontier.update(initState, 0)

while True:
if frontier.size() == 0: return None
s, priority = frontier.pop() # priority = ForwCost(s)
if IsGoal(s): return s # Found goal
explored.add(s)
for a in Actions(s):
t = Succ(s, a)
if t in explored: continue
frontier.update(t, priority + Cost(s, a))
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. .
Analysis of uniform cost search

rProposition: Correctness
When a state s is popped off the frontier, priority(s) is the
true forward cost ForwCost(s). Therefore, UCS terminates with
the optimal path.

Proof:

Explored

D
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Implementation

Priority queue (UCS):

» Pop and update operations take
O(log(number of states on frontier)) time

Regular queue (BFS):
* Pop and update Operations take O(1) time

* Works only when edge costs are all equal
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Can uniform cost search be improved?

Wasted effort?

Desiderata: prioritize exploring states "probably closer" to the goal
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Heuristics

rDefinition: Heuristic function A
A heuristic h(s) is any estimate of BackCost(s), the minimum
cost from 8 to a goal.

Example: h(s) = Distance(Location(s), GoalLocation)
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Effect of heuristic

] |

M

_ L] |
.
ForwCost(s) =1,h(s) =4

Point: two actions result in same ForwCost(s), but h(s) breaks
the tie
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ForwCost(s) = 1,h(s) =2
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A* algorithm

rAlgorithm: A* search

explored = set()
frontier = PriorityQueue()
frontier.update(initState,
while True:
if frontier.size() == 0:
s, priority = frontier.pop() # priority = ForwCost(s) + h(s)
if IsGoal(s): return s # Found goal
explored.add(s)
for a in Actions(s):
t = Succ(s, a)
if t in explored:
frontier.update(t,

h(initState))

return None

continue
priority + Cost(s, a) + h(t) - h(s))
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Does A* always work?

h=1

(Ay—>

Conditions on heuristic function

For A* to work, need conditions on the heuristic.

(Deﬁnition: Admissibility

A heuristic h is admissible if 0 < h(s) < BackCost(s).

Definition: Consistency
A heuristic h is consistent if

h(s) < Cost(s,a) + h(Succ(s,a)), and

h=6
h(s) = 0 for all goal states s.
No.
Consistency implies admissibility.
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Analysis of A* Analysis of A*

Proposition: Correctness
( If h is consistent, A* returns the minimum cost path.

Proof:
e Define Costy(s,a) &f Cost(s, a) + [h(Succ(s, a)) — h(s)].
 Running A* on Cost is equivalent to UCS on Cost,.

* By consistency, Costp, (s,a) > 0, so UCS on Costy, returns a
path with minimum PathCosty, .

« Since PathCosty, (p) = PathCost(p) — h(8start ), running
UCS on Costy, is equivalent to UCS on Cost.
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Proposition: Speed
A* explores only states 8 with
ForwCost(s) + h(s) < minPathCost(p).
P

h=0(UCS)
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Comparing heuristics

Proposition: Dominance
A h(s) dominates (is better than) A’ (s) if:
Forall s, h(8) > h'(s).

Heuristics form a lattice:
BackCost(s)

hi2(s) = max{hy(s), h2(s)}
h1(s) ha(s)

ho(s) =0
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How do we get good heuristics? Just relax...
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General idea: analytic solutions

N _EEE
S"Eun

Hard

A

Easy
Remove constraints / add edges with cost 1 (e.g., (1,1) to (2,1))

Resulting heuristic has closed form:
h(s) = Distance(Location(s), GoalLocation)

Lesson: try to make problem solvable without search
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General idea: independent subproblems

[=]E] [z
2] (][]
[l (s ][]

Original problem: tiles cannot overlap (constraint)
Relaxed problem: tiles can overlap (no constraint)

Lesson: decompose problem into independent subproblems
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General idea: state abstraction

Task: go from home to office, hitting p;, . .., pr on the way
State: (p, by, . .., bx) where p is position and b; is whether hit p;
Relaxation: only keep track of (p, by, b2 ), not bs, ..., by

Effect: treat ((5,2), 1, 0, 1, 0) and ((5,2), 1, 0, 0, 0) the same

Lesson: collapse similar states into one abstract state
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General idea: state abstraction

~Definition: Abstraction function
An abstraction «z maps a (concrete) state s to an abstract state ¢
(thereby defining a partitioning of the states).

Examples:
o Takesign: a(3) = +, a(—4) = —

» Drop attributes:
o({z:3,y: —4,d: East}) = {z:3,y: —4}
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General idea: state abstraction

rDefinition: Abstract model
o States® = {a(s) : s € States}
* IsGoal®(u) = [IsGoal(s) for some s : a(s) = u]

o Actions®, Succ®, Cost®: cost of edge from u to u' is
minimum over cost of edges from s € a™! (u) to
s ea’l()

(abstract cost from u to ' is 5)
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Heuristic function based on abstraction

Heuristic: define h(s) to be BackCost® (c(s)), minimum cost
from (s) to an abstract goal (in the abstract graph).
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Types of relaxation

» Analytic solutions: same state space, but solve in closed form

e State abstraction: reduce state space, use search

¢ Independent subproblems: break problem into several smaller
ones

What's common to the above?
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Unifying principle: relaxation

Definition: Relaxed model
A relaxed model is a one with lower costs:
Cost’' (s, a) < Cost(s,a).

Heuristic: Define h(s) = BackCost’'(s), the minimum cost from
s to a goal state using Cost’ (s, a).

Consistency of h(s):
h(s) < Cost’ (s, a) + h(Succ(s, a)) [by triangle inequality]
< Cost(s, a) + h(Succ(s, a)) [by relaxation]

Point: relaxed model is only useful if easier to solve
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Motivation

Task: start at Home, go visit Office and Store and come back

Deterministic state space model
initState = ["Home", set()]
def IsGoal(s):

return s[0] == "Home" and s[1] == set(["Office",
def Actions(s): return ["visit", ...]
def Succ(s, a): ...
def Cost(s, a):

"store"]) |+ search algorithm

return 1

Problem:
o Search algorithms treat states as black boxes
¢ Can't exploit structure of task to generate A* heuristics
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Peering inside a state space model

Represent state as a set of fluents; actions add/delete fluents.

PDDL instance
Init: At(Home)
Goal: At(Home), Visited(Office), Vvisited(Store)
Action: Move(p,q) # for all p, q

Precond: At(p), Adjacent(p,q)

Effect: At(q), -At(p)
Action: Visit(p) # for all p

Precond: At(p)

Effect: Vvisited(p)
state space model

+ search algorithms
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Relaxations for getting heuristics

PDDL instance
Init: At(Home)
Goal: At(Home), Visited(Office), Visited(Store)
Action: Move(p,q) # for all p, q

Precond: At(p), Adjacent(p,q)

Effect: At(q), -At(p)
Action: visit(p) # for all p

Precond: At(p)

Effect: visited(p)

Relaxations:
* Remove a goal condition (e.g., remove Visited(Office))
* Remove an action precondition (e.g., remove Adjacent(p,q))
* Remove all instances of a fluent (e.g., remove At(p))

* Remove all instances of a negative term (e.g., remove -At(p))
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Cycles, negative costs

Which would you choose (utility is maximize money):
e Option 1: pay $5
« Option 2: pay $100, get $99 refund later

Problem with current algorithms:
» DAG search: infinite loop (cyclic graph)
e UCS/A*: choose $5 path
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.
Cycles, negative costs

0 if 8 = 8goal
BackCost(s) = min )[Cost(s, a) + BackCost(Succ(s,a))] otherwise.

acActions(s,

rAlgorithm: Bellman-Ford algorithm
backCost = {}
for s in States: backCost[s] = float('inf')
backCost[goalState] = 0
for _ in range(len(States)): # Repeat |States| times
for s in States: # For each s, update backCost[s]
for a in Actions(s)
t = Succ(s, a)
backCost[s] = min(backCost[s], Cost(s, a) + backCost[t])

Key property: After 4 iterations, BackCost is correct for minimum
cost paths to the goal state with at most % edges.
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Summary of algorithms

0 ifs= Sgoal
BackCost(s) = min ( )[Cost(s, a) + BackCost(Succ(s,a))] otherwise.

acActions(s;

Unifying idea: construct minimum cost paths from s to the goal
state in order of "complexity"

8 OO v Sgoal

* DAG search: relies on topological ordering of states (possible
due to acyclicity)

» Uniform cost search (reversed): orders by path cost (possible

.
due to non-negative costs)

¢ Bellman-Ford: orders by number of edges (no structure)
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Next time: non-deterministic state space models...
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