Machine learning

¢ Supervised learning

o

o

o

o

o

o

Principles of learning and loss minimization
Linear regression

Stochastic gradient descent

Linear classification

Linearity, non-linearity, and kernels
Complexity control via regularization
Maximum likelihood for Bayesian networks

¢ Unsupervised learning

o

o

K-means clustering
Latent-variable models and hard EM

* Reinforcement learning

Where do models come from?

Models have parameters:

« State space models: search problems have Cost(s, a), MDPs
have Reward(s, a) and transitions T'(s, a, s'), games have
evaluation functions Eval(s)

¢ Graphical models: Markov networks have factors fj (a:,-_l, a:,-),
Bayesian networks have local conditional probability
distributions p(z; | i—1)

Can only construct rational agents (optimal policies) with respect
to model with fixed parameters.

learning reasoning
training data | == model | == | policy

o Q-learning
o Exploration/exploitation
(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang (CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 1
Applications Outline
(Almost) everything. s Supervised learning

natural language processing
computer vision
robotics
information retrieval
medical diagnosis
computational biology
cognitive science
social science
fraud detection
spam recognition
speech recognition
handwriting recognition
finance
game playing
recommendation systems
computer security
computer architecture
programming languages
etc.

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

o Principles of learning and loss minimization

o Linear regression

o Stochastic gradient descent

o Linear classification

o Linearity, non-linearity, and kernels

o Complexity control via regularization

o Maximum likelihood for Bayesian networks
o Unsupervised learning

o K-means clustering

o Latent-variable models and hard EM
» Reinforcement learning

o Q-learning

o Exploration/exploitation

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

¢S

Outline

upervised learning

o Principles of learning and loss minimization

o Linear regression

o Stochastic gradient descent

o Linear classification

o Linearity, non-linearity, and kernels

o Complexity control via regularization

o Maximum likelihood for Bayesian networks

» Unsupervised learning

o K-means clustering

o Latent-variable models and hard EM

¢ Reinforcement learning

CS221: Arti

o Q-learning
o Fvnlaratinn/avnlnitatinn
ificial Intelligence (Autumn 2012) - Percy Liang

Application: spam classification

Input: £ = email message

From: a9k62n@hotmail.com
Date: November 1, 2012
Subject: URGENT

From: pliang@cs.stanford.edu
Date: November 1, 2012
Subject: CS221 announcement

Dear Sir or maDam:
my friend left sum of 10m dollars...

Hello students,
There will be a review session...

Output: y € {spam, not-spam}

Objective: build predictor f that maps input « to (hopefully correct)
prediction y = f(z)

CS221: Antificial Intelligence (Autumn 2012) - Percy Liang

Supervised learning

Training data: examples of desired input-output behavior
Train = {(“...10m dollars...”, +1), (“...CS221...”, -1)}

Predictor: a function f mapping input & to prediction y = f(z)
f(z) = +1if z contains “10m dollars” else — 1
f(%...10m dollars...”) = +1

Learning algorithm: takes training data and creates a predictor

This is what we're going to build!

. Predictor

Training data Learning algorithm

Types of prediction problems

Classification: y is yes/no (binary), one of K labels (multiclass),
subset of K labels (multilabel)

Regression: y is a real number, e.g., housing prices
Structured prediction: ¥ is a sentence, e.g., machine translation
Ranking: y is an ordering (e.g., ranking web pages)

This lecture: focus on binary classification and regression.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 6 | CS221: Antificial Intelligence (Autumn 2012) - Percy Liang 7
Rote learning algorithm Majority algorithm

Idea: memorize the training data and regurgitate.

Algorithm: rote learning
Let X be set of inputs seen in Train. Return predictor:

f(:c):{ ifreX

arg max[# times(z,y) € Train]
Y

random guess

otherwise
Implementation: hash z (linear in # examples), constant time
prediction!
» Pros: simple, works well when lots of examples compared to
number of possible inputs, can "learn" anything

» Cons: doesn't generalize at all to unseen examples (overfitting)!

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

Idea: always predict the most frequent output based on training
data.

Algorithm: majority
Let y* be the most frequent output in Train
Return predictor: f(z) = y* (don't even need to look at z!)

e Pros: simple, provides a useful baseline

¢ Cons: not very accurate

CS221: Antificial Intelligence (Autumn 2012) - Percy Liang 9

Abstraction + rote learning

Idea: map each input & onto abstract input a(z); do rote learning.

Example: a(z) = last three characters of x:
a(“abc@hotmail.com”) = a(“xyz@gmail.com”) = “com”

gov edu

« partitions input space, e.g.:
com

org

Finea(z) =z

many parameters

high training accuracy
worse generalization

Coarse az) = 1
few parameters

low training accuracy
better generalization

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang

Evaluation of predictors

Question: how good is a predictor f?
On a single example (,), might penalize for each mistake:

Loss(z,y, f) = [f(z) #l: | M@ +1 1
whether f erred on T o

Terminology: average loss = error = 1 — accuracy
Predictor f has high utility if:
o Ehashicl - .

. lf has high accuracy over future examples|

Key challenge: don't know future examples, we cannot evaluate our
true utility function (in contrast with policy evaluation)!

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 11

Evaluation of predictors

 Split examples into Train and Test either randomly or based
on time if examples are time-stamped (training examples
happened before test examples)

Train H Test ‘

¢ Run learning algorithm on Train, report accuracy on Test
(provides estimate of accuracy on future examples).

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 12

Training error and test error

As model complexity increases, usually:
» Training error decreases

» Test error decreases (fitting) and then increases (overfitting)

0.5
§ = Training
&) = Test
0.0+
0
model complexity
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 13

Key question: how can a learning algorithm generalize?

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 14

Nearest neighbors

Idea: find most similar input, and regurgitate its output.

How to measure similarity?

rDefinition: Distance function
A distance function Dist(z, 2') > 0 measures how different ' is
from z.

Example: Dist(z, 2') = [# words in exactly one of z and z']
Dist(“make 10m dollars”, “make 20m dollars”) = 2

Dist(“make 10m dollars”, “make a movie”) = 4

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 15

Nearest neighbors

rAlgorithm: nearest neighbors
Return predictor that takes output of closest example:
flz) ={

(z*,y*) + arg min

Dist(x, «’
(=',y')€Train 8 (:D,:B)

return y*

}

Implementation: data structures k-d trees or approximate hashing
» Pros: simple, works when have a lot of data, can "learn" almost
anything, very useful in practice

» Cons: generalizes only a little bit better than rote learning

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 16

Features

Objective: Given input z, extract (feature, value) pairs which might
be related to y.

length 113
contains(@) 01
endsWith(.com) : 1
endsWith(.org) : 0

feature extraction

“abc@gmail.com”

For notation: number the features 1,. .., d, represent key-value
map as vector (e.g., [13, 1, 1, 0])

Definition: Feature vector
For each input @, have feature vector ¢(z) = (¢1(z),- - ., da(x)).

Think of ¢(z) € R? as a point in a high-dimensional space.

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 17

&P

Feature engineering
Arguably the most important part of machine learning!

Examples of features:
» Natural language: words, parts-of-speech, capitalization pattern

» Computer vision: HOG, SIFT, image transformations,
smoothing, histograms

» In general: use domain knowledge about problem

Intuition: define many features (akin to multiple
incomparable/overlapping abstractions)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 18

Weight vector

Weight vector: for each feature j, have weight w; representing
contribution of feature to prediction

length :-1.2
contains(@) :3
endsWith(.com):2
endsWith(.org) :1

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 19

Linear predictors

Weight vector w € R%

length :-0.4
contains(@) :5
endsWith(.com):4
endsWith(.org) :1

Feature vector ¢(z) € R?

length 113
contains(@) :1
endsWith(.com):1
endsWith(.org) :0

Take weighted combination of features:
w-g(z) = S, wile);
Example: —0.4(13) + 5(1) + 4(1) + 1(0) = 3.8
Definition: Linear predictors
Regression: fy (z) = w - ¢(z)
Binary classification: fy (z) = sign(w - ¢(z))

Two perspectives on features ¢(x)

Ensemble perspective: each feature ¢; (z) is a weak predictor based
on partial view of ; prediction is weighted combination of ¢;(z)

Useful for designing features: what parts of & are relevant for
predicting y?

Geometric perspective: ¢(x) is a high-dimensional point
Useful for designing algorithms: how to separate positive and
negative points

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 20 | €S221: Artificial Intelligence (Autumn 2012) - Percy Liang 21
. .
How to get the weight vector? Outline

Learning algorithm sets weights w based on training data.
Loss minimization framework:

Objective (version 1)

Set weights to minimize training error:

min Z Loss(z,y, w)
v (z,y)€Train

Loss functions:
» Regression: Ly (least squares), Ly (least absolute deviations)
¢ Classification: zero-one (minimize # mistakes), perceptron,
hinge (SVM), logistic
Many popular algorithms fall into this framework.

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 22

e Supervised learning

o Principles of learning and loss minimization

o Linear regression

o Stochastic gradient descent

o Linear classification

o Linearity, non-linearity, and kernels

o Complexity control via regularization

o Maximum likelihood for Bayesian networks
e Unsupervised learning

o K-means clustering

o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 23

Linear regression

If one feature ¢(x):

3
*
2| residual w - ¢(z) — yi

—_
)
T

g1

ol
0

2
rDefinition: Residual #()
The residual of an example (2, y) with respect to weights w is
(w - ¢(z)) — y, the amount by which model prediction
fw(2) = w - ¢(x) overshoots y. Regression losses depend on the
residual.

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

24

Regression loss functions

4
E 3
3 by 'Losssquared
5 - LosSabsdev
g 1
Q
[

0!

-3 -2 -1 0 1 2 3

residual (w - ¢(z)) — y
LOSSsquared (maya W) = % (W . ¢(m) - y)2

Lossabsdev (w’ Y, W) = |W : ¢(.’B) - yl

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 25

Which loss to use?

Assume one feature with value 1 (¢(z) = 1 for all z).
For least squares (Lg) regression:
Losssqua.red (:‘l:, Y, W) = % (W - y)2

w that minimizes training loss is mean y
For least absolute deviation (L4) regression:
Lossapsdev (‘B’ Y, W) = |W - yl
w that minimizes training loss is median y
Pros/cons:

e Ly: penalizes outliers more (try to make every example happy);
popular, easier to optimize

¢ [: more robust to outliers

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

26

Outline

¢ Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
» Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
» Reinforcement learning
o Q-learning
o Exploration/exploitation

CS221: Antificial Intelligence (Autumn 2012) - Percy Liang 27

Optimization problem

Objective: min Z Loss(z,y, w)
v (z,y)€Train

d = 2 features

d = 1 feature

total Loss(z, y, w)
O N B O @

'
w

2 -1 0 1 2 3
. weight wy
Iterative approach:

e Start with a guess for w (e.g., w = 0)
¢ Change w to decrease the loss using the gradient:
w w — 1: Vi Loss(z, y, w)

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang

28

Gradient for least squares regression

Consider one feature, one example, squared loss.
Objective function:

Loss(z,y,w) = + (w- ¢(z) — y)?
Gradient (use chain rule):

Vs Loss(z,y, w) = (W - ¢(z) — y)$(z)
Update of weights:
W w—n(w-d(z) —y)d(x)
————

prediction—target

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 29

Stochastic gradient descent Outline
Objective: s Supervised learning
min Z Loss(z,y,) o Principles of learning and loss minimization
v (2,y) €Train o Linear regression
Strategy: go through training examples and adjust weights (using ° St'OChaSﬁC grfi(.iien't descent
gradient) to decrease loss o Linear classification
Algorithm: stochastic gradient descent (SGD) o Linearity, non-linearity, and kernels
w + (0,...,0) o Complexity control via regularization
Fort —1.92 T o Maximum likelihood for Bayesian networks
YR e Unsupervised learning
Choose an example (z,y) € Train o K-means clustering

o Latent-variable models and hard EM
¢ Reinforcement learning

o QQ-learning

o Exploration/exploitation

30 | CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

w « w — 7; V Loss(z, y, W)
Step size: my = % for & € [0, 1], (update less over time)

31

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

Linear classification Classification: zero-one loss

Recall predictor: fi (z) = sign(w - ¢(z)) Losso.1 (z,y, w) = [(w- ¢(z))y < 0]

4
$(x)y : $(z)y -
¢in ! : ? margin B 3
mar ' i ! mar -
——— < 0 (wrong) H { —=—— > 0 (correct) >
Il : vl T2
: H N 0880-1
| 5 FLoseo]
decision boundary 8 1—W
i
rDefinition: Margin % % 101 2 3
The margin of an example x with respect to weights w is margin (w - ¢(z))y
(w - ¢(x))y. The margin is positive (prediction and y have the Problems:
same sign) iff the example‘ls classified correctly. Classification « Gradient of Lossg. is 0 everywhere, SGD not applicable
losses depend on the margin. ¢ Lossg. is insensitive to how badly model messed up
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 32 | ©S221: Artificial Intelligence (Autumn 2012) - Percy Liang 33

Classification: perceptron loss Hinge loss

LosSperceptron (2, ¥, W) = max{—(w - ¢(z))y, 0} LosShinge (4:1:, y,w) = max{1 — (w - ¢(z))y, 0}

~ ® 3
B 3 = » Losso
::S - Lossg.1 i 2 = Los8perceptron
% 2 = LOSSperceptron %’ 1 - LoSShinge
0 32 -1 0 1 2 3
32101 23 margin (w - ¢(z))y
margin (w - ¢(z))y « Intuition: not enough to barely get example correct, want
Perceptron algorithm is SGD on perceptron loss: . fjn;;agt:enw%iglhts when margin < 1: w < w + 7 $(2)y
« Update weights only when make mistake: w < w + n;¢(z)y) > ’ EPA)
o If barely classify correctly (0.01 margin), zero loss; not robust... * (Cso\l;li\(i[sp;onds to online learning of support vector machines
s).

34 (CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 35

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang

Logistic regression

Losslogistic (IB, Y, W) = log(l + e—(w~¢(z))y)

4
—
3“ 3 =Lossg
= 2 - Lossperceptron
8 .
\%, Losspinge
o 1 Losslogistic
0

3 2 -1 0 1 2 3
margin (w - ¢(z))y

e Intuition: even if example correct, want large margin

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 36

Logistic regression

Probabilistic interpretation:
 Two assignments y € {—1,+1}
» Non-negative Weight(y) = e™8i0/2 — ¢"4(2)y/2

» Normalize to get distribution:
— Weight(y) _ 1
Pa(y|2) = Weight(—1)1 Weight(l) _ 1+e "9@w

Optimization:

* Goal: maximize probability of correct classification py (y |)
* Same: minimize LosSogistic (2, ¥, W) = log(1 + e~"¢(®)¥)

o Update weights (always): w < w + (1 — pw (v | z))¢(2)y

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 37

Summary

Linear models: prediction governed by w - ¢(z)

Loss functions: capture various desiderata (e.g., robustness) for both
regression and binary classification (can be generalized to many
other problems)

Objective function: minimize loss over training data

The entire pipeline

Features ¢(z) + training examples

Learning: minimize training loss

. . Input £ = | Weights w (defines predictor = T

Strategy: take stochastic gradient steps on w to decrease loss P 5 (P Fv) fv(@)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 38 | CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 39
Outline Linearity

e Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
e Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 40

Linear predictors:
* Regression: f(z) = w - ¢(z)
* Binary classification: f (2) = sign(w - ¢(z))

Linear in what?
o Prediction is linear in w
s Prediction is net linear in & (doesn't even make sense)
« Prediction is linear in ¢(z) (can define however we want)

[Examples]

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 41

Kernels S

Observation: all updates are of form w <— w — (number)¢(z)

Implication: Final w is some linear combination of training

examples: w = Z(Z 4)€Train 0y (), where coefficients gy
9.

specifies contribution of example (z, y).

Key identity: w - ¢(2') = 3_(;) cTrain oy (#() - $(2'))
=K(z,2')

Algorithms only need a black box that computes kernel function
K(x,z'") (captures similarity between & and z'), don't have to
explicitly create ¢(z).

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 42

Kernels S

Linear kernel (assume z € R?):
K(z,o')=xz-a

Corresponds to ¢(z) = .

Polynomial kernel (assume z €]Rd):
K(z,2')=(1+z-2')
If » = 2,d = 2, corresponds to:
¢($) = (la \/§$1’ \/5132, $2{, \/ﬁzlzz, zg)
In general, ¢(z) is (g) dimensions (huge!), but computing

K(z,z') only takes O(d) time. Algorithms can take
O(|Train|?) time.

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 43

More examples of kernels

20?2

7112
Radial basis function kernel: K(z,z') = exp (— M)

(similar effect to nearest neighbors)

String and tree kernels: count number of common
substrings/subtrees (applications in computational biology and
NLP)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 44

Kernels: summary
Modifying ¢(x) induces rich non-linear decision boundaries in
K(2,2) = ¢(c) - 9() |

Think in terms of similarity between inputs rather than features of
input

K(z,z') is easy to compute when ¢(x) is high-dimensional or
infinite

Applicable to any linear model (regression, classification losses)

Store o5,y instead of w (pay O(|Train|) rather than O(d))

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 45

Outline

e Supervised learning

o Principles of learning and loss minimization

o Linear regression

o Stochastic gradient descent

o Linear classification

o Linearity, non-linearity, and kernels

o Complexity control via regularization

o Maximum likelihood for Bayesian networks
e Unsupervised learning

o K-means clustering

o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 46

Regularization

Definition: Regularizer
A regularizer prevents the weights from being too big (complex).
Commonly used Lo regularizer (squared length of weight vector):
1 2 _ 1y
Penalty(w) = 3 [[w]|* = 3 25 "”;2'

Objective:
min Z Loss(z, ¥y, fw) + A - Penalty(w)
——

¥ (2,4)eTrai
s i prefer simpler model

fit data
As regularization A increases, shrink weights w towards zero.

Weight update:

A
Ww— 1 (VwLoss(z,y, fw) + m VwPenalty(w))

6.8, =(w-(z)—)p(z) y

€81 = T ¥

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 47

Hyperparameters
Parameters: weights w set by learning algorithm

Hyperparameters: properties of the learning algorithm (features,
regularization parameter A, number of iterations T, step size n) -
how to set them?

Choose hyperparameters to minimize Train error? No - solution
would be to include all features, set A = 0, T — oo.

Choose hyperparameters to minimize Test error? No - choosing
based on Test makes it an unreliable estimate of error!

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

48

Cross-validation

Partition training data Train into K folds:

‘ Train; ‘ Traing ‘ Traing ‘ Traing ‘ Traing ‘

rAlgorithm: cross-validation
For each hyperparameter value (say, A = 0.1, 1,10, ...):
Foreachk =1,...,K:
Run learning algorithm on Train — Traing
Compute error on Traing (validation set)
Let Error()) be error averaged over K folds

Choose hyperparameter A with minimum Error(\)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 49

Other classifiers

Naive Bayes: linear classifier, independently estimate weights in
closed form (probabilistic interpretation as generative model)

Neural networks: cascade of logistic regressions; maps raw data to
internal representation to output; requires less feature engineering

Decision trees: partition input space (learning abstraction
functions); yields interpretable rules

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

50

Summary

Learning algorithm: want to fit (small loss) but not overfit (small
model complexity)

Features: represent inputs as feature vectors (important, use domain
knowledge)

Linear predictors: weighted combination of features w - ¢(z);
remember linear in weights, not features (e.g., kernels)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 51

Outline

e Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
e Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

From predictors to distributions

* So far, focused on prediction (regression and binary

classification): predictor fy maps input & to output g
w

Goal: estimate weights w given training data
¢ Now, focus on learning Bayesian networks

3oy~ ~(x) (%)

Goal: estimate local conditional probability distributions
D(Z: | Tparents(i)) £iven training data

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 53

Example: one variable

One variable X representing the rating of a movie {1,2, 3, 4,5}

(X) BX=2)=p()

Parameters: 6 = (p(1), p(2),p(3),p(4),p(5))

Training data: Train is multi-set of example assignments to X
(user ratings)

Example: Train = {1, 3,4, 4, 4,4,4,5,5,5}
Learning:

Train = 6

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

54

Example: one variable

Learning:

Train = 40
Intuition: p(z) o frequency of z in Train
Example:

Train = {1, 3,4,4,4,4,4,5,5,5}

|

o(z)
0.1

0
0.1
0.5

T
1
2
3
4
5 03

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

55

Example: two variables

Variables:
¢ Genre X; € {drama, comedy}
 Rating X5 € {1,2,3,4, 5}

P(Xy =z, X2 = x2) = p1(x1)p2(z2 | 1)

Train = {(d,4), (d, 4), (d, 5), (c,1),(c,5)}

What are parameters § = (py, p2)?

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 56

Example: two variables

Train = {(d’ 4)a (da 4)1 (da 5)’ (ca 1)7 (ca 5)}
Intuitive strategy:

¢ Estimate each local conditional distribution separately (p; and
p2)

o For each value of conditioned variable (e.g., €1), estimate
distribution over values of unconditioned variable (e.g., £2)

zL 22 pa(es | 1)
1 pl(:cl) d 4 2/3
6 |d 35 d s 13
c 25 c 1 12
c 5 12

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

57

Example: Naive Bayes

Variables:

» Y € {sports, politics, - - -}: possible document classes
e X1,...,X1: X is the i-th word in the document

sports

()

Giants win

d
wL) = Pclass (y) prord ("Bj | y)
=1

P(Y =y, X1 =21,..., X1

Parameters: @ = (Pclass Pword)
Train is a set of full assignments to (¥, Xy, ...,Xz)

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 58

Example: Hidden Markov models (HMMs)

Variables:

* X1,...,Xr (e.g., part-of-speech tags, actual positions)
e Ey,..., Er (e.g., words, sensor readings)

E)——~E—®)
® @& @& ®

P(X1r = z1.7, B1r = e11) =]___[Pmnsition(wt | @1)Pemission (€t | Z¢)
=1

Parameters: @ = (Ptransition , Pemission)

Train is a set of full assignments to (Xy., Br.1)

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

General case

Bayesian network: variables Xy,..., X,

Parameters: collection of distributions = {py : d € D} (e.g.,
D = {class, word})
Each variable Xj; is generated from distribution py, :
n
]P(Xl =&1,...,Xp = zn) =]___[pd¢ (wi | xPa.rents(i))
=1
Training data: Train set of assignments £ = (21, ..., %5)
Learning:
Train = @

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 60

General case: learning algorithm

Input: training examples Train of full assignments
Output: parameters § = {p; : d € D}
rAlgorithm: maximum likelihood for Bayesian networks
For each distribution d € D:
Count:

For each z € Train:

For each variable x; generated from d; = d:
Increment count for partial assignment (Zparents(s), i) for d

Normalize:

For each partial assignment Tparents(s) -

Set pq (:Bi | TParents(7)) o county (mParents(i)) w,‘)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 61

Maximum likelihood

Recall loss minimzation framework:

mv.;}n Z Loss(z,y,)
(z,y)€Train

Maximum likelihood framework:

max H Py(X = =)

z€Train

Algorithm on previous slide exactly computes maximum likelihood
parameters (closed form solution).

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 62

Problem with maximum likelihood

Scenario 1: Suppose you have a coin with an unknown probability
of heads p(H). You flip it 100 times, resulting in 23 heads, 77 tails.
What is estimate of p(H)?

Maximum likelihood estimate: p(H) = 0.23 p(T) = 0.77

Scenario 2: Suppose you flip a coin once and get heads. What is
estimate of p(H)?

Maximum likelihood estimate: p(H) =1 p(T) =0
Intuition: This is a bad estimate; real p(H) is closer to half

When have less data, maximum likelihood not reliable, want a more
reasonable estimate...

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 63

Regularization: Laplace smoothing

Maximum likelihood:

pE)=1 p(T)=7
Maximum likelihood with Laplace smoothing:
pM)=33=3 PO =13=3

rLaplace smoothing
For each distribution d and partial assignment (Zparents(i)» i)» add
A to county (zParents(i) ’ :E,‘)

Interpretation: hallucinate A occurrences of each partial assignment

Larger A means more smoothing = probabilities closer to uniform.
Analogous to regularization for learning predictors.

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 64

Example: two variables

Train = {(d, 4), (d,4), (d, 5), (c,1),(c,5)}

8
Ay

Z2 pa(ze | 71)
1/8
1/8
1/8
3/8
2/8
217
17
17
17
2/7

z1 pi(z1)
6: d 4/7
c 3/7

e B B e B e B e B =V =~V =Py = PRy =}
U WN= O WN =

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 65

The entire pipeline

(Bayesian network without parameters) + training examples

Learning: maximum likelihood (with Laplace smoothing)

Parameters 8
Query A | B = (defines Bayesi twork) = Py(A | B)
elines bayesian networ (use inference algorithm)
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 66

Outline

» Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
¢ Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
» Reinforcement learning
o Q-learning
o Exploration/exploitation
(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 67

Supervision?

Supervised learning:
« Prediction: Train contains input-output pairs (z,)

» Fully-labeled data is very expensive to obtain, sometimes don't
know what "correct labels" are (get 10000 labeled examples)

Unsupervised learning:
e Clustering: Train only contains inputs &

» Unlabeled data is much cheaper to obtain (get 100 million
unlabeled examples)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 68

[Brown et al, 1992]

Word clustering using HMMs

Input: raw text (100 million words of news articles)...
Output:

Cluster 1: Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
Cluster 2: June March July April January December October November September August

Cluster 3: water gas coal liquid acid sand carbon steam shale iron

Cluster 4: great big vast sudden mere sheer gigantic lifelong scant colossal

Cluster 5: man woman boy girl lawyer doctor guy farmer teacher citizen

Cluster 6: American Indian European Japanese German African Catholic Israeli Italian Arab

Cluster 7: pressure temperature permeability density porosity stress velocity viscosity gravity tension
Cluster 8: mother wife father son husband brother daughter sister boss uncle

Cluster 9: machine device controller processor CPU printer spindle subsystem compiler plotter

Cluster 10: John George James Bob Robert Paul William Jim David Mike

Cluster 11: anyone someone anybody somebody

Cluster 12: feet miles pounds degrees inches barrels tons acres meters bytes

Cluster 13: director chief professor commissioner commander treasurer founder superintendent dean custodian
Cluster 14: had hadn't hath would've could've should've must've might've

Cluster 15: head body hands eyes voice arm seat eye hair mouth

Impact: used in many state-of-the-art NLP systems

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 69

[Le etal, 2012]

Feature learning using neural networks

Input: 10 million images (sampled frames from YouTube)

Output:

- ‘1‘

| wwmﬁ%ﬁﬁ%
! ‘ quf ._“ "E‘w

gl

Impact: state-of-the-art results on object recognition (22,000
categories)

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 70

Key: data has lots of rich latent structures; want methods to
discover this structure automatically

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 71

Types of unsupervised learning

Clustering (e.g., K-means): Dimensionality reduction (e.g., PCA):

Latent-variable models (e.g., HMMs):

DRORORIRD
® &6 ® ®

Feature learning (e.g., neural networks):

L

al

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 72

Outline

» Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
¢ Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
» Reinforcement learning
o Q-learning
o Exploration/exploitation

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 73

Clustering

Clustering task
Input: training set of input points Train = {z1,- -+, }
Output: assignment of each input into a cluster z; € {1,...,K}

Desiderata: Want similar points to be put in same cluster, dissimilar
points to put in different clusters

[Demo]

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 74

K-means model

Setup:
¢ Eachcluster k =1,..., K is represented by a center point
pi € R? (think of it as a prototype)
o Intuition: encode each point ¢(z;) by its cluster center ., , pay
for deviation
Variables:
o Cluster assignments 2 = (21, ..., 2,)
o Cluster centers g = (ft1,. .., lK)

Loss function based on reconstruction:
n

LosS:econstruct (za /1‘) = E ||ﬂ'z; - ¢(w1)”2
=1

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 75

K-means algorithm

Goal:

min min LoSSreconstruct (%) 14)

Strategy: alternating minimization / coordinate-wise descent
 E-step: if know cluster centers p, can find best z

e M-step: if know cluster assignments 2, can find best cluster
centers p

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 76

K-means algorithm (E-step)

Goal: given cluster centers yq, ..., [tx, assign each point to the
best cluster.

Solution:
Foreachpointz =1,...,n:
Assign 4 to cluster with closest center:

. ; N 2
z < arg min[lé(w;) — pll”

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 77

K-means algorithm (M-step)

Goal: given cluster assignments 21, . . . , 2,, find the best cluster
centers fi1, ..., K-

Solution:
For each cluster k = 1,..., K:

Set center py, to average of points assigned to cluster k:

Outline

» Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
¢ Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
» Reinforcement learning
o Q-learning
o Exploration/exploitation

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 78 (CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 79

Learning latent-variable models
Given Bayesian network with unknown parameters:
 Observed variables: X

e Latent variables: Z
o Parameters:

Py(Z=2X=x)

Optimization problem:

max Po(X =2,Z =2)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

80

Expectation maximization (EM)

E-step:

¢ Find latent variables with highest probability:

z4 argmax, Py(X =2,Z =

¢ MAP inference: max variable elimination
M-step:

» Find the maximum likelihood parameters:

 argmaxy Py (X =x,7Z = 2)
» Supervised learning: count and normalize

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 81

Unsupervised learning summary

latent variables z parameters

Properties:
e Strategy: turn one hard problem into two easy problems

e Warning: not guaranteed to converge to global optimum (same
issue with ICM, Gibbs sampling)

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang

82

Outline

Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
e Unsupervised learning
o K-means clustering

o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 83

[Francis wyffels]

Crawling robot

Goal: maximize distance travelled by robot

i

Markov decision process (MDP)?
e States: positions (4 possibilities) for each of 2 servos
e Actions: choose a servo, move it up/down
¢ Transitions: move into new position (unknown dynamics)

¢ Rewards: distance travelled (unknown dynamics)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

84

From MDPs to reinforcement learning

Markov decision process (offline)
States: States

Actions: Actions(s) for each state s
Transitions: T'(s, a, s')

Rewards: Reward(s, a)

Reinforcement learning (online)
States: States

Actions: Actions(s) for each state s

Samples of transitions or rewards by acting!

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

85

Example

e States: board positions

o Actions: {N, S, E, W} (that stay on board)

* Rewards: points for entering square

* Discount 4 = 0.95

e Terminal states: squares with non-zero reward

0 0 -1 5

1 0 -1 | 10

Average utility: 0.62

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang

86

Solving MDP via modified value iteration

0 0 0 0

1 0 -1 | 10

Average utility: 0.82
Board

Average utility: 0
Q(s, a) by solving MDP

* Q(s, a) is maximum expected utility if take action @ in state 8

» Given @, optimal policy is 7ep (8) = arg max Q(s, a)
a
Q(s,a) = Reward(s,a) +7 E T(s,a,s")V(s'), where
7

V()= max Q(s',a’) is max. expected utility starting in state s’
a

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

87

Outline

* Supervised learning

o Principles of learning and loss minimization

o Linear regression

o Stochastic gradient descent

o Linear classification

o Linearity, non-linearity, and kernels

o Complexity control via regularization

o Maximum likelihood for Bayesian networks
e Unsupervised learning

o K-means clustering

o Latent-variable models and hard EM
¢ Reinforcement learning
o Q-learning

o Exploration/exploitation
CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

88

Q-learning

MDP:
Q(s,a) = Reward(s,a) + 'yZT(s,a, $V(s')

Reinforcement learning (Q-learning):
In state s, took action a, got reward , ended up in state s':
Think regression:
input z = (s,a) = outputy =74~V (s')
Stochastic gradient update with step size 7;: [compare]
Q(s,a) « Q(s,a) —m[Q(s,a) — (r +V(5))]
S—_—— N—,——
target

prediction

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang

89

Outline

» Supervised learning
o Principles of learning and loss minimization
o Linear regression
o Stochastic gradient descent
o Linear classification
o Linearity, non-linearity, and kernels
o Complexity control via regularization
o Maximum likelihood for Bayesian networks
¢ Unsupervised learning
o K-means clustering
o Latent-variable models and hard EM
» Reinforcement learning
o Q-learning
o Exploration/exploitation

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 90

Generating samples from a following a policy

Where do samples (s, a,r, 8') come from? Agent obtains them by
executing some policy maet (unlike supervised learning, agent gets
to determine data).

rQ-learning algorithm
Loop:
Choose action @ = Tyt (8)-
Execute action a, observe reward 7 and new state s’.
Update Q(s, @) using (s, a, r, s') (might affect 7).
Setsto s'.

(CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 91

Generating samples from a policy

What policy e (8) to follow? .
Attempt 1: Set T, (8) = arg max, Q(s,a) based on current
estimates Q(s,a).

Average utility: 0 Average utility: 0.99
True Q(s, a) Q-learning with current optimal policy
Problem: (s, @) estimates are inaccurate, too greedy!

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 92

e-greedy, exploration/exploitation tradeoff

Intuition: need to balance exploration and exploitation
e-greedy policy:
arg max Q(a, a) probability 1 — e,
Tact (8) = a
uniform over Actions(s) probability e.

Press ctrl-enter to run.

numEpisodes = 1 // How long to run Q-learning
epsilon = 0.5 // How much exploration [0, 1]7

eta = 0.5 // Aggressiveness of update [0, 1]7?
discount = ©.95 // Discount [0, 1]

Average utility: -0.9

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 93

Function approximation

Stochastic gradient update:

Q(s,a) - Q(s,a) —[Q(s,0) — (r +7V(s"))]
—— N ——
prediction target

This is rote learning: every Q(s,) has different value; doesn't
generalize to unseen states/actions.
Linear regression model: define features ¢(s, a) and set
Q(s,a) = w- ¢(s,a)
w W —n[Q(s,a) — (r +7V(s'))]¢(s,a)
SNm—— N——
target

prediction

(€8221: Artificial Intelligence (Autumn 2012) - Percy Liang 94

Supervision summary

Supervised learning
input-output pairs (z, y)

Reinforcement learning
state-action-rewards-state (s, a,r, 8')
new: actions determine data

Unsupervised learning

inputs & .
Less supervision

CS221: Artificial Intelligence (Autumn 2012) - Percy Liang 95

Summary

» Learning: training data = model = predictions

Real goal: loss on future inputs; can't even evaluate!

Objective function: loss minimization/maximum likelihood on
training data + regularization/smoothing to mitigate overfitting

» Features: encode domain knowledge, arbitrary non-linear
properties of inputs

¢ Algorithms:
o stochastic gradient descent (supervised/reinforcement
learning)
o count+normalize (maximum likelihood)
o alternating minimization (unsupervised learning)

€S221: Artificial Intelligence (Autumn 2012) - Percy Liang 96

