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Abstract 

Linear Regression with Gradient 

Descent are used in many machine 

learning applications.  The algorithms 

are visually based in a dimensional 

coordinate system.  The dimensional 

space can also involve not so visually 

orientated data.  Deep-learning involving 

neural networks use similar weight 

algorithms as a main basis for artificial 

neurons.  Usually neural networks use 

many neurons in sequence that each 

produce weights or weighted output that 

can be fed into the next neuron, and so 

on.  Since a lot of the learning material 

was ambiguous on the “controlling” 

neurons that determine the flow and 

neural use, I was interested in seeing 

how intuitive it would be for me.  I 

wanted to focus mostly on linear 

regression in a single neuron.  The 

program I made does a linear regression 

of a 2D data plot, uses this to estimate a 

future position, and then does a second 

linear regression of an intercept path 

from a 2rd party location.  This could be 

viewed as 3 neurons.  2 linear regression 

neurons and 1 neuron in-between that 

calculates an intercept.  To apply this, I 

am simulating a fly as one party, and an 

anti-fly missile as a second party.  The 

fly is avoiding the missile, and the 

missile is chasing the fly. 

 

Introduction 

There are many machine learning 

methods in AI including clustering, 

regression, and logic.  Neural networks 

can use many techniques, but the most 

foundational and of interest for this 

article is linear regression.  This could 

also include logistic regression as the 

method uses only a different cost 

formula.  Specifically, I am interested in 

using gradient descent as a method of 

solving the regression.  Machine 

learning has been used for robotic 

imitation and learning movement, 

natural language processing, optical 

character recognition, and many other 

uses.  Deep learning is used by 

combining layers of artificial neurons, 

and controlling neural connections by 

other coding neurons (Haiqin Yang, 

2010).  The non-coding neurons have 

input and output values.  The I/O can 

chain with other neurons allowing for 

multiple processing of the same 

weighted values.  Each non-coding 

neuron may perform a wide range of 

functions.  Often that function is some 

sort of gradient regression algorithm.  

Coding neurons on the other hand can 

turn on and off non-coding neurons to 

control logic flow and determine neural 

pathways for processing of the data 

(Alexander Grubb, 2010). 

 

Background 

Learning methods often have to deal 

with a large dimensionality of data.  

Regression can be used on practically 

anything, and often certain features of 

the data can be used rather than the 

entire data (Mahdi Milani Fard, 2012).  

Often the data is sparse, meaning the 



graphed location of the data falls in 

clusters, and a large portion of the 

domain is void of data (Haiqin Yang, 

2010).  Often, such as in (Mahdi Milani 

Fard, 2012), the data is broken into equal 

training and testing segments.  This 

allows training data to be reused and 

tested against itself in multiple folds, 

making training more efficient on the 

amount of data available.  In a layered 

neural network, many of the neurons are 

performing some sort of gradient 

regression.  This method is very useful 

in minimizing losses between predicted 

and actual weights (Ofer Meshi, 2010).  

These chained neurons are composed of 

inputs and outputs to create the neural 

linking aspect.  There are other 

transforming modules that turn on and 

off the worker neurons, which can 

change neural flow of input/output 

connections (Alexander Grubb, 2010).  

Optimizations can be performed by the 

transforming modules, and even back-

propagation of gradient data for dormant 

neurons can be used to speed up the 

system (Alexander Grubb, 2010).  An 

important detail that must be addressed 

is the perils of over fitting.  If the 

regression works too hard to match the 

exact form of data, it may be fitting to a 

specific instance that is much different 

than the general rule of the data form.  

Because of this, it is usually better for 

regression formulas to limit fitting and 

give a more general regression line.  

Gradient descent algorithms are a 

method of supervised learning because 

they are trying to match a pattern.  

Linear regression formulas can also 

solve in an unsupervised environment.  

The line is fit based on the mean values 

over all the data points.  In gradient 

descent, the algorithm must check the 

divergence from its predictions to an 

actual expected result.  It works in a loop 

by slowly incrementing or decrementing 

the weight values until it to a local 

minima.  This local minima should 

represent a good weighted regression fit. 

 

Gradient descent involves iterations over 

a sub-gradient, using a differential 

function of cost (Haiqin Yang, 2010).  

The descent starts at a random weight 

selection, and checks the cost derivative.  

This tells the algorithm if the chosen 

weight is converging or diverging from a 

local minimum.  The weight is adjusted 

accordingly, modified by only a fraction 

of the cost derivative.  This iterates for a 

maximum amount of iterations, or until 

the cost differential drops below a 

certain threshold.  Assuming the latter is 

true, the chosen weights should now 

make a good regression line.  This can 

be applied in logistic regression to divide 

two cluster categories in a similar 

manner.  Other factors such as error 

bounds and n-vector bias-variance can 

be used to ensure successful descent 

(Mahdi Milani Fard, 2012).  The cost 

function affects the type of regression, 

and a derivative of that function is 

essential for gradient descent to work.  It 

is also useful to convert the data being 

regressed to the least dimensions.  This 

can be done through rotations 

(Minyoung Kim, 2010).  A 2D scatter 

plot can be rotated so that each plot is 

seen as a distance from its rotation axis.  

This makes the data much easier to 

analyze as we can use a y=f(x) rather 

than calculating for two independent 

variables. 

 

Fly vs. Anti-Fly 

Because linear regression works best in a 

visual sense, I chose to use regressions 

on trajectories on a 2D space.  In this 

case, the data is the past n data points of 

an entity’s trajectory.  I have two 



entities, a Fly and an Anti-Fly Missile.  

Both operate the same way, except one 

tries to maximize distance and the other 

tries to minimize distance.  Both the fly 

and the missile start out flying in random 

directions.  At each time-“round”, all 

entities move based on their weighted 

trajectory, and their attention counter is 

decremented.  Once the entity’s attention 

reaches zero, it is reset to a default value, 

and the entity determines a new 

trajectory based on the opponent.  The 

entities continue to fly around a 2D 

space until the user ends the program.  

Should the distance between the two 

entities reach a collision minimum, the 

missile blows up the fly and the 

simulation is over. 

 

Determining a new trajectory is done 

with 3 neurons.  The first neuron loads 

in the opponent’s last n positions and 

does a linear regression fit to the data.  

These weights are passed to a second 

neuron that takes the distance between 

both entities and based on the “self” 

entities current speed, estimates the 

location of its opponent in the time it 

would take to travel between both 

entities currently.  This is the self’s 

destination.  In the case of the missile 

this is straight forward.  The fly however 

practices avoidance, so the destination is 

estimated as a greater distance from the 

opponent’s future position rather than 

towards it.  It then draws a line of 

𝑛_𝑚𝑎𝑥 data points between self’s 

current position and its destination.  This 

line is modified by minimal random 

noise to prevent a perfect fit.  The data 

points are then passed to a 3rd neuron 

that performs another linear regression 

of the data.  The weights found are then 

used for the self’s new trajectory.  Their 

attention counter has been set to non-

zero, and they will travel in their new 

trajectory until the next time their 

attention counter reaches zero. 

 

Anti-Fly in C++ 

Coding this was more problematic than I 

first thought.  At first I tried a gradient 

descent linear regression algorithm on 

separate dimensions X and Y, and used a 

third foundational variable T for time.  I 

had problems with the cost function so I 

reduced gradient descent to 1 dimension 

where y = f(x).  I did this by rotating by 

the start and end points, and calculating 

the regression based off this rotation.  

This worked better, but I still had 

problems with my cost function, 

possibly due to scaling issues.  I am 

currently using the solved linear 

regression formula to do the linear 

regression and using offsets only for X 

and Y based on trajectory changes.  Both 

neurons 1 and 3 are the same linear 

regression function, and are pretty 

straight forward.  Neuron 2 is part of my 

pickpath() function and is hardcoded.  It 

takes the weights from neuron 1 and 

predicts the future location, picks a 

destination of there, or away from there, 

and plots a course for the destination.  It 

passes the plotted course to neuron 3 that 

simply does a regression on these plots 

to determine the new path to take.  

Because this is to work on a remote 

Linux server using G++, I did not use 

any graphics libraries.  Instead the pixel 

locations of each entity and their 

distance is printed out as plain text.  For 

testing purposes I also printed out each 

entity’s actual weights. 

 

Findings of this Program 

Due to time constraints and the 

difficulties of this material, I was unable 

to get my original plan operational.  The 

gradient descent algorithm looked 

perfect functionally, but almost never 



worked.  The cost function would sky-

rocket to infinity and cause my weights 

to overflow.  I tried various 

normalizations, and the other outcome 

was to have my weights always 

converge to a very small number 

(~10−13) every time.  There was no 

middle ground so in interest of getting a 

working prototype, I used the algebraic 

solution for linear regression.  Whereas 

in the previous methods I was doing 

rotation, this formula doesn’t require 

rotations.  I was able to pass the weights 

to the second neural stage, where it 

accurately calculates a trajectory from 

the entities current position to a 

prediction destination.  It then does a 3rd 

stage of linear regression against this 

new path, and assigns the entity new 

weights for this path.  As a result, each 

time pickpath() is called for an entity, it 

changes directions.  I still had a problem 

with regression picking weights that 

were too big after a while.  I see this as a 

problem of attempting to accelerate to a 

destination with no physical constraints.  

This could cause entities to shift 

locations unnaturally at unrealistic 

speeds, even transporting suddenly to 

new locations.  I used a normalization 

constraint on my y-weight so that it was 

never greater than ±5.  This allows the 

two entities to fly around each other 

without accelerating away too rapidly.   

 

The user interface is very simple.  I 

would like to have had a graphic 

animation of the two entities in a 2D 

space, but limited myself text based 

output in this project.  The output is as 

follows: 

T: 1    distance = 6.13418 

  Fly: 

{ 3.07564, -2.47673 }  

{ [w0:-0.17::w1:-0.75::deg:286 or 

4.99164 ] } 

 Missile: 

{ -2.86163, -0.934966 }  

{ [w0:0.41::w1:0.47::deg:296 or 

5.16617 ] } 

Continue? [y,n]: 

The T: 1 corresponds to time = 1.  Time 

is an integer value corresponding to 

rounds.  Each round increments time by 

1.  Distance = 6.13418 is the distance 

between the two entities.  The two 

entities are listed in the same format.  

After Fly: the first two numbers are the 

current (x,y) coordinate locations of the 

entity.  The rest is testing output: w0 and 

w1 are the actual weight values for the 

entity, and deg: gives degrees and 

radians (d or r).  The prompt simply 

takes a dummy string input, and 

anything other than ‘n’ continues the 

loop another round.  This will continue 

until you exit, the program will not stop 

upon collision, although this could be 

easily introduced.  For now I am just 

paying attention to distance when 

testing.  Future versions will have a 

graphical interface, which is more ideal 

for evaluating this sort of data. 

 

Conclusion 

Although the theory is fairly 

straightforward and I understand all the 

methods involved in this project, getting 

it to actually work has been quite a 

challenge.  I feel that I have re-coded 

this program 3 or 4 times, and even at its 

current state, it is debatable whether the 

algorithms are giving optimal results.  If 

this project has taught me anything, it is 

the difficulties of simple algorithms that 

have powerful machine learning 

applications in application.  When 

applying them to real world situations, 

data analysis becomes more complicated 

than expected, and issues of 

normalization, scale, and bounds come 

into play.  I don’t believe over-fitting 



was an issue, but under fitting may have 

cause problems since objects are 

changing direction frequently.  Getting 

real life data to conform to results I have 

experienced previously, from our pre-

generated environment in homework 

assignments, has not been a piece of 

cake.  I plan to revisit this project in the 

future on my own to see how things can 

be improved.  I would like to see a 

graphic animation as the output for this 

program.  I would also like to 

experiment more with gradient descents 

and perhaps use Bezier curves to 

simulate smoother directional changes 

rather than abrupt changing linear 

vectors.  My findings suggest also that 

regression on observations are useful, 

but when using regression on a 

theoretical trajectory, the regression will 

make up its own velocity - which is very 

unrealistic to the limits of the physical 

world.  Perhaps using Bezier curves and 

applying weights to curves rather than 

formulas could reduce velocity 

anomalies.  Moreover this project has 

taught me the importance of fitting your 

algorithms to your data, and dealing with 

relative locations and rotations.  There 

are a million ways to do this, and often 

the simplest methods are the most 

efficient.  I believe the answer is to use 

more neurons and use additional neurons 

to analyze the data and deal with logical 

events. 
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