
The Fly & Anti-Fly Missile

Rick Tilley
Florida State University (USA)

rt05c@my.fsu.edu

Abstract

Linear Regression with Gradient

Descent are used in many machine

learning applications. The algorithms

are visually based in a dimensional

coordinate system. The dimensional

space can also involve not so visually

orientated data. Deep-learning involving

neural networks use similar weight

algorithms as a main basis for artificial

neurons. Usually neural networks use

many neurons in sequence that each

produce weights or weighted output that

can be fed into the next neuron, and so

on. Since a lot of the learning material

was ambiguous on the “controlling”

neurons that determine the flow and

neural use, I was interested in seeing

how intuitive it would be for me. I

wanted to focus mostly on linear

regression in a single neuron. The

program I made does a linear regression

of a 2D data plot, uses this to estimate a

future position, and then does a second

linear regression of an intercept path

from a 2rd party location. This could be

viewed as 3 neurons. 2 linear regression

neurons and 1 neuron in-between that

calculates an intercept. To apply this, I

am simulating a fly as one party, and an

anti-fly missile as a second party. The

fly is avoiding the missile, and the

missile is chasing the fly.

Introduction

There are many machine learning

methods in AI including clustering,

regression, and logic. Neural networks

can use many techniques, but the most

foundational and of interest for this

article is linear regression. This could

also include logistic regression as the

method uses only a different cost

formula. Specifically, I am interested in

using gradient descent as a method of

solving the regression. Machine

learning has been used for robotic

imitation and learning movement,

natural language processing, optical

character recognition, and many other

uses. Deep learning is used by

combining layers of artificial neurons,

and controlling neural connections by

other coding neurons (Haiqin Yang,

2010). The non-coding neurons have

input and output values. The I/O can

chain with other neurons allowing for

multiple processing of the same

weighted values. Each non-coding

neuron may perform a wide range of

functions. Often that function is some

sort of gradient regression algorithm.

Coding neurons on the other hand can

turn on and off non-coding neurons to

control logic flow and determine neural

pathways for processing of the data

(Alexander Grubb, 2010).

Background

Learning methods often have to deal

with a large dimensionality of data.

Regression can be used on practically

anything, and often certain features of

the data can be used rather than the

entire data (Mahdi Milani Fard, 2012).

Often the data is sparse, meaning the

graphed location of the data falls in

clusters, and a large portion of the

domain is void of data (Haiqin Yang,

2010). Often, such as in (Mahdi Milani

Fard, 2012), the data is broken into equal

training and testing segments. This

allows training data to be reused and

tested against itself in multiple folds,

making training more efficient on the

amount of data available. In a layered

neural network, many of the neurons are

performing some sort of gradient

regression. This method is very useful

in minimizing losses between predicted

and actual weights (Ofer Meshi, 2010).

These chained neurons are composed of

inputs and outputs to create the neural

linking aspect. There are other

transforming modules that turn on and

off the worker neurons, which can

change neural flow of input/output

connections (Alexander Grubb, 2010).

Optimizations can be performed by the

transforming modules, and even back-

propagation of gradient data for dormant

neurons can be used to speed up the

system (Alexander Grubb, 2010). An

important detail that must be addressed

is the perils of over fitting. If the

regression works too hard to match the

exact form of data, it may be fitting to a

specific instance that is much different

than the general rule of the data form.

Because of this, it is usually better for

regression formulas to limit fitting and

give a more general regression line.

Gradient descent algorithms are a

method of supervised learning because

they are trying to match a pattern.

Linear regression formulas can also

solve in an unsupervised environment.

The line is fit based on the mean values

over all the data points. In gradient

descent, the algorithm must check the

divergence from its predictions to an

actual expected result. It works in a loop

by slowly incrementing or decrementing

the weight values until it to a local

minima. This local minima should

represent a good weighted regression fit.

Gradient descent involves iterations over

a sub-gradient, using a differential

function of cost (Haiqin Yang, 2010).

The descent starts at a random weight

selection, and checks the cost derivative.

This tells the algorithm if the chosen

weight is converging or diverging from a

local minimum. The weight is adjusted

accordingly, modified by only a fraction

of the cost derivative. This iterates for a

maximum amount of iterations, or until

the cost differential drops below a

certain threshold. Assuming the latter is

true, the chosen weights should now

make a good regression line. This can

be applied in logistic regression to divide

two cluster categories in a similar

manner. Other factors such as error

bounds and n-vector bias-variance can

be used to ensure successful descent

(Mahdi Milani Fard, 2012). The cost

function affects the type of regression,

and a derivative of that function is

essential for gradient descent to work. It

is also useful to convert the data being

regressed to the least dimensions. This

can be done through rotations

(Minyoung Kim, 2010). A 2D scatter

plot can be rotated so that each plot is

seen as a distance from its rotation axis.

This makes the data much easier to

analyze as we can use a y=f(x) rather

than calculating for two independent

variables.

Fly vs. Anti-Fly

Because linear regression works best in a

visual sense, I chose to use regressions

on trajectories on a 2D space. In this

case, the data is the past n data points of

an entity’s trajectory. I have two

entities, a Fly and an Anti-Fly Missile.

Both operate the same way, except one

tries to maximize distance and the other

tries to minimize distance. Both the fly

and the missile start out flying in random

directions. At each time-“round”, all

entities move based on their weighted

trajectory, and their attention counter is

decremented. Once the entity’s attention

reaches zero, it is reset to a default value,

and the entity determines a new

trajectory based on the opponent. The

entities continue to fly around a 2D

space until the user ends the program.

Should the distance between the two

entities reach a collision minimum, the

missile blows up the fly and the

simulation is over.

Determining a new trajectory is done

with 3 neurons. The first neuron loads

in the opponent’s last n positions and

does a linear regression fit to the data.

These weights are passed to a second

neuron that takes the distance between

both entities and based on the “self”

entities current speed, estimates the

location of its opponent in the time it

would take to travel between both

entities currently. This is the self’s

destination. In the case of the missile

this is straight forward. The fly however

practices avoidance, so the destination is

estimated as a greater distance from the

opponent’s future position rather than

towards it. It then draws a line of

𝑛_𝑚𝑎𝑥 data points between self’s

current position and its destination. This

line is modified by minimal random

noise to prevent a perfect fit. The data

points are then passed to a 3rd neuron

that performs another linear regression

of the data. The weights found are then

used for the self’s new trajectory. Their

attention counter has been set to non-

zero, and they will travel in their new

trajectory until the next time their

attention counter reaches zero.

Anti-Fly in C++

Coding this was more problematic than I

first thought. At first I tried a gradient

descent linear regression algorithm on

separate dimensions X and Y, and used a

third foundational variable T for time. I

had problems with the cost function so I

reduced gradient descent to 1 dimension

where y = f(x). I did this by rotating by

the start and end points, and calculating

the regression based off this rotation.

This worked better, but I still had

problems with my cost function,

possibly due to scaling issues. I am

currently using the solved linear

regression formula to do the linear

regression and using offsets only for X

and Y based on trajectory changes. Both

neurons 1 and 3 are the same linear

regression function, and are pretty

straight forward. Neuron 2 is part of my

pickpath() function and is hardcoded. It

takes the weights from neuron 1 and

predicts the future location, picks a

destination of there, or away from there,

and plots a course for the destination. It

passes the plotted course to neuron 3 that

simply does a regression on these plots

to determine the new path to take.

Because this is to work on a remote

Linux server using G++, I did not use

any graphics libraries. Instead the pixel

locations of each entity and their

distance is printed out as plain text. For

testing purposes I also printed out each

entity’s actual weights.

Findings of this Program

Due to time constraints and the

difficulties of this material, I was unable

to get my original plan operational. The

gradient descent algorithm looked

perfect functionally, but almost never

worked. The cost function would sky-

rocket to infinity and cause my weights

to overflow. I tried various

normalizations, and the other outcome

was to have my weights always

converge to a very small number

(~10−13) every time. There was no

middle ground so in interest of getting a

working prototype, I used the algebraic

solution for linear regression. Whereas

in the previous methods I was doing

rotation, this formula doesn’t require

rotations. I was able to pass the weights

to the second neural stage, where it

accurately calculates a trajectory from

the entities current position to a

prediction destination. It then does a 3rd

stage of linear regression against this

new path, and assigns the entity new

weights for this path. As a result, each

time pickpath() is called for an entity, it

changes directions. I still had a problem

with regression picking weights that

were too big after a while. I see this as a

problem of attempting to accelerate to a

destination with no physical constraints.

This could cause entities to shift

locations unnaturally at unrealistic

speeds, even transporting suddenly to

new locations. I used a normalization

constraint on my y-weight so that it was

never greater than ±5. This allows the

two entities to fly around each other

without accelerating away too rapidly.

The user interface is very simple. I

would like to have had a graphic

animation of the two entities in a 2D

space, but limited myself text based

output in this project. The output is as

follows:

T: 1 distance = 6.13418

 Fly:

{ 3.07564, -2.47673 }

{ [w0:-0.17::w1:-0.75::deg:286 or

4.99164] }

 Missile:

{ -2.86163, -0.934966 }

{ [w0:0.41::w1:0.47::deg:296 or

5.16617] }

Continue? [y,n]:

The T: 1 corresponds to time = 1. Time

is an integer value corresponding to

rounds. Each round increments time by

1. Distance = 6.13418 is the distance

between the two entities. The two

entities are listed in the same format.

After Fly: the first two numbers are the

current (x,y) coordinate locations of the

entity. The rest is testing output: w0 and

w1 are the actual weight values for the

entity, and deg: gives degrees and

radians (d or r). The prompt simply

takes a dummy string input, and

anything other than ‘n’ continues the

loop another round. This will continue

until you exit, the program will not stop

upon collision, although this could be

easily introduced. For now I am just

paying attention to distance when

testing. Future versions will have a

graphical interface, which is more ideal

for evaluating this sort of data.

Conclusion

Although the theory is fairly

straightforward and I understand all the

methods involved in this project, getting

it to actually work has been quite a

challenge. I feel that I have re-coded

this program 3 or 4 times, and even at its

current state, it is debatable whether the

algorithms are giving optimal results. If

this project has taught me anything, it is

the difficulties of simple algorithms that

have powerful machine learning

applications in application. When

applying them to real world situations,

data analysis becomes more complicated

than expected, and issues of

normalization, scale, and bounds come

into play. I don’t believe over-fitting

was an issue, but under fitting may have

cause problems since objects are

changing direction frequently. Getting

real life data to conform to results I have

experienced previously, from our pre-

generated environment in homework

assignments, has not been a piece of

cake. I plan to revisit this project in the

future on my own to see how things can

be improved. I would like to see a

graphic animation as the output for this

program. I would also like to

experiment more with gradient descents

and perhaps use Bezier curves to

simulate smoother directional changes

rather than abrupt changing linear

vectors. My findings suggest also that

regression on observations are useful,

but when using regression on a

theoretical trajectory, the regression will

make up its own velocity - which is very

unrealistic to the limits of the physical

world. Perhaps using Bezier curves and

applying weights to curves rather than

formulas could reduce velocity

anomalies. Moreover this project has

taught me the importance of fitting your

algorithms to your data, and dealing with

relative locations and rotations. There

are a million ways to do this, and often

the simplest methods are the most

efficient. I believe the answer is to use

more neurons and use additional neurons

to analyze the data and deal with logical

events.

References

Alexander Grubb, J. A. (2010). Boosted

Backpropogation Learning for

Traning Deep Modular Networks

- Paper Id: 451. International

Conference on Machine

Learning.

Haiqin Yang, Z. X. (2010). Online

Learning for Group Lasso -

Paper Id: 473. International

Conference on Machine

Learning.

Mahdi Milani Fard, Y. G. (2012).

Compressed Least-Squares

Regression on Sparse Spaces.

Conference on Artificial

Intelligence (AAAI) - 26th.

Minyoung Kim, F. D. (2010). Local

Minima Embedding - Paper Id:

374. International Conference on

Machine Learning.

Ofer Meshi, D. S. (2010). Learning

Efficiently with Approximate

Inference via Dual Losses -

Paper Id: 587. International

Conference on Machine

Learning.

