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Abstract 

Machine Learning is loosely described as “the study of 

systems that can learn from previously-known data.” Also simply 

put: Machine systems can be “taught” to react to certain changes 

in data. For example, the internet search engine Google.com uses 

certain algorithms which allow the system to take previous 

searches given by the user, react, and give suggested results based 

on the user’s input. In most modern video games of today’s 

world, we can see much more advanced examples of how the AI 

uses previous knowledge to come up with strategies and 

techniques used to hinder or halt the player’s progress to victory.   

Introduction    

Frequent players of games such as Starcraft can see how 

the AI responds differently depending on their previous 

actions in the game. For example, if the player is part of 

the Protoss faction, then they would need to build 

structures called pylons to be able to power their other 

structures. The AI knows this and would most likely use 

this knowledge to order its units to attack the pylons first.  

 But what if the player decided to build their pylons 

behind many lines of defense? The AI would not want to 

try and rush through the defense because this would likely 

mean a total wipe of its troops before they even reach the 

pylons. So, in learning from this new data, the AI would 

probably decide to wait and build stronger, more expensive 

units to try and destroy the lines of defense first. If the 

system decided to just rush in, the player wouldn’t be 

challenged and the game would be too easy to stay 

enjoyable. 
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 As you can see, it is indeed very important to implement 

the concept of Machine Learning into the AI systems used 

in modern gaming.  

 

Background / Prior Work 

In this section, we will provide a brief overview of some of 

the reasons as to why an AI’s ability to ‘learn’ from an 

opponent’s actions is key to giving the game a higher 

replay-ability factor, and how research in this field can 

help raise the success rate of games developed in the 

future. Software developers often need to consider the 

challenge an AI will provide and adjust the difficulty so as 

not to discourage the players from fighting against it. 

Replay-ability 

Currently, many video game agents use patterns in their 

actions that have become pretty easy to predict for human 

players. Because of this, these video games have lost their 

replay-ability, or the driving force to get players to replay 

games after they have already been completed or even just 

to get players to play them the next day. When the AI 

becomes too predictable, the game loses the player’s focus 

and lowers their interest because it becomes less of a 

challenge.  

 We as humans have a natural instinct to compete, so 

when something becomes too easy to predict for someone, 

it becomes too easy to defeat and we lose the drive to fight 

against it. It gets to the point where the player’s interest is 

only in completing the game and then afterwards throwing 

it away, because who wants to waste their time fighting 

something with the same predictable movements every 

time they are pitted against it? It becomes more of a chore 

than an achievement or accomplishment on our part. We as 

gamers strive to complete objectives and goals in a video 

game. This is also a part of our human nature. We want to 



conquer a challenge that gives us a sense of pride in doing 

so.     

So, what if the AI had the ability to ‘learn’ its 

opponents’ actions and the ability to come up with a 

counter-strategy for these actions? To not just run out and 

use the same strategy for every situation, but to come up 

with better reactions to their opponents’ moves and to 

make decisions that almost seem as if another human was 

making them? Obviously this would need to be balanced, 

or else the game would run the risk of also losing the 

player’s interest due to a challenge being too difficult to 

complete (which is why we have difficulty levels). With an 

AI that can ‘think’, that can react just as a human would, 

almost every encounter with them would be unpredictable. 

Most humans learn from their mistakes and realize that 

making them again would most likely result in failure, so 

they usually would try to figure out other methods that 

would give them a better chance of completing the 

challenge given and attempt those instead. If an AI could 

do just the same, then the game becomes more challenging 

and raises the player’s desire to play the game over, 

because every new clash with the AI would be a different 

experience. 

Research can lead to Success 

With modern video gaming gaining rise as an industry, the 

continued research of the game AI has become more and 

more critical to the success of these video games. 

Nowadays, most gamers tend to lead towards games that 

allow for online/multiplayer capabilities. The reason is not 

only to enjoy playing these games with others and to use 

them as another form of social medium, but also to quench 

the human urge to compete against each other. Humans 

have always challenged each other, be it for fame, for 

pride, or for power, since the era of cavemen. This natural 

need for competition has been passed into the gaming 

generation through the introduction of multiplayer gaming, 

because now humans have the chance to test their limits 

against opponents that think like them.  

This is the reason why these online games have become 

so successful. Developers have realized this and that is 

why research continues to make the artificial intelligence 

appear smarter, more capable, and more human. A smart 

AI also allows for a game to stand out from the others, 

which can mean the difference between making and 

breaking a sale. Players do not want to buy a game in 

which the AI performs just like the ones from their other 

games. They want to have different and new challenges, all 

of which come from the development of an adapting AI. 

Developers want to explore new ideas that might take AIs 

to the next generation, an era in which games don’t just 

provide an interesting opponent but one in which they 

can talk to the player, interact with the legions of online 

adventurers, and actually learn from game to game to be a 

more cunning and twisted opponent the next time around. 

Of course, these new AIs have to help make the game sell 

better, too. That’s always the bottom line – if a game 

doesn’t sell, then what good is the AI for? 

Main Information 

This section will focus primarily on the main topics of this 

paper. Machine Learning in game AI has become a very 

important part of game development. No longer is it 

something to just “fit” into the game if the frame-rate isn’t 

hindered by the implementation. It’s now become just as 

essential as the graphics or sound, if not more. Even so, 

with all the research being put into making smarter game 

AI, it still proves to be a tough chore. It’s almost 

impossible to come up with every solution that a human 

might have to a situation. With every game that comes out 

with new revolutionary game-play, the amount of choices 

an AI can make becomes more overwhelming to program.  

 

 To the human player, there might be two or three 

potential decisions which are “obviously” better—but 

what if the guy who coded the AI the Saturday night 

before the game’s final version was sent to the 

publisher didn’t think about those? The player sees the 

AI faced with a terrific decision upon which the entire 

fate of the game hangs—and it chooses incorrectly. Or 

worse than that, it chooses stupidly. A few instances of 

that and it’s pop! The CD is out of the drive and the 

player has moved on to something else. [Buckland] 

 

This is especially true when you play a video game with 

a cooperative AI. Take for example the 2013 game The 

Last of Us. The player plays from the perspective of a man 

named Joel who takes care of a girl named Ellie throughout 

a post-apocalyptic world. For almost the entire game (there 

are a few parts where the player switches perspectives), 

Ellie’s actions are dictated by the AI. Fortunately for the 

player, the Naughty Dog studio did very well in designing 

the AI’s reactions to certain events. If Joel is in trouble, she 

can help him out by throwing objects to distract the enemy. 

If Joel is hiding from a group of enemies, she knows that 

she also must hide and choose a safe location to do so 

while still being relatively close to the player. If Joel is 

running low on ammunition, she usually passes some along 

to him. Normally, most players would cringe at the notion 

of having to protect an AI, or even just having an AI 

partner, and with good reason. Most of these games 

(including The Last of Us) required that the AI partner stay 

alive in order to complete the game. If at any point the AI 

died, it would result in a “Game Over”.  This requirement 



usually turned out to be quite an annoyance if the AI 

wasn’t programmed to respond correctly to certain 

situations. Let’s use Resident Evil 6 as an example. I can’t 

remember how many times I had to save Helena (one of 

the AI partners) from a hulking deformity because her AI 

couldn’t seem to realize that the better thing to do would 

be to shoot it from afar rather than getting up close and 

allowing it to grab her, leaving me defenseless and having 

to try to run up and save her before she was eaten, 

squished, mutilated, etc.  

This moment seems to be every gamer’s nightmare. But 

developers have come up with different algorithms and 

practices that have evolved and have revolutionized video 

game AI mechanics so that these cases become rare. In the 

next subsections, we will go over some of these methods. 

Genetic Algorithms 

Genetic algorithms were formally introduced in the United 

States in the 1970s by John Holland at University of 

Michigan. Genetic algorithms are search heuristics that are 

designed to work in the same way as natural evolution. 

These algorithms generate solutions to optimization 

problems using techniques inspired by our world’s natural 

evolution, such as inheritance, mutation, selection, and 

crossover. In a genetic algorithm, a number of candidate 

solutions to these optimization problems are evolved 

towards better solutions. 

 

 A typical genetic algorithm requires: 

1. A genetic representation of the solution domain. 

2. A fitness function to evaluate the solution domain. 

 

To use a genetic algorithm in a program, the potential 

solutions must somehow be represented as a collection of 

sort of “digital” chromosomes (represented as bits) – the 

same way our bodies use genomes as a blueprint of our 

DNA. Once these solutions are encoded, a randomized 

population of these chromosomes is evolved over time by 

“breeding” the best fit solution and adding slight mutations 

to them so that eventually, the result is a convergence of 

the fittest individuals of the original population. Generic 

algorithms don’t always have to generate a solution, 

however. Using these algorithms might not even generate 

the best solution to the problem given. But, the best thing 

about using a genetic algorithm is that you don’t need to 

know how to solve a problem. All you need to do is encode 

it in a way in which the genetic algorithm mechanism can 

utilize and evolve it into a suitable solution. Below is a 

loop used in order to form a generic algorithm: 

 

Loop until a solution is found:  

1. Test each chromosome to see how good it is at 

solving the problem and assign a fitness score 

accordingly. 

2. Select two members from the current population. 

The probability of being selected is proportional to 

the chromosome’s fitness—the higher the fitness, 

the better the probability of being selected. A 

common method for this is called Roulette wheel 

selection. 

3. Dependent on the Crossover Rate, crossover the 

bits from each chosen chromosome at a randomly 

chosen point. 

4. Step through the chosen chromosome’s bits and 

flip dependent on the Mutation Rate. 

5. Repeat steps 2, 3, and 4 until a new population 

of one hundred members has been created. 

End Loop 

                  [Buckland] 

 

 This entire loop is known as the epoch. If you notice in 

the algorithm, the loop includes a step in which you would 

need to use a method such as the Roulette wheel selection. 

This particular method works by first making a total fitness 

chart for the whole of the population and representing this 

information as a pie chart, or roulette wheel (hence the 

name). Once this is made, you assign a slice of the wheel 

to each member of the population. However, each slice is 

proportional to the fitness score of the member, so if the 

member has a higher fitness score, then it would have a 

better chance of being selected. To choose a chromosome, 

you simply need to “spin the wheel”, “throw a ball” into 

the wheel, and pick the member which is associated to the 

slice the ball ended up on. And that’s it for the Roulette 

wheel selection A quick explanation of the Crossover Rate 

is the probability to which two chosen chromosomes would 

swap their bits to produce two new ones, and the Mutation 

Rate is the probability to which a bit within a chromosome 

would be switched or flipped from 0 to 1 or vice-versa.  

 Now, knowing the terminology and the algorithm, how 

would this method help the game AI evolve to think and to 

find better solutions to their situation? Let’s come up with 

an example. Suppose we have a maze in which Pac-man 

has to navigate through from a start to a finish. First we 

would encode every direction in which Pac-man could 

travel: up, down, left, and right (or North, South, West, and 

East). Then you must make the population of random 

chromosomes that would give Pac-man directions to 

follow (a sample chromosome, 111110011011, would 

decode to “11, 11, 10, 01, 10, 11”, or “3, 3, 2, 1, 2, 3”, 

which if we had North = 1,  South = 2, West = 3, East = 4, 

then the directions Pac-man would head to would be as 

follows: “West, West, South, North, South, West”). Setting 

Pac-man at the start and allowing him to follow the 

directions might lead him to the goal, but in a population of 



hundreds of chromosomes, normally, the odds to pick from 

the ones that would do so would probably be unlikely. 

However, if we first use the genetic algorithm to test each 

chromosome and see how close each one would get Pac-

man to the exit (if it reaches, it would be considered a 

solution), then we can breed the better solutions in the 

hopes of creating offspring chromosomes that would let 

Pac-man get even closer to the goal. And finally we could 

continue using this method until a solution is found (or 

until Pac-man eventually becomes stuck in a corner, which 

can happen). Remember, generic algorithms aren’t perfect, 

but they do help in increasing the chances of finding the 

right solutions and sometimes the best solutions to a given 

situation. Using genetic algorithms, therefore, can greatly 

improve the game AI’s logic and allow for human-like 

decision-making. 

Neural Networks 

The human brain is our biological neural network. What 

developers want to accomplish is to create a suitable 

artificial neural network for their game AI – one that 

operates in much the same way as our own network. There 

are 5 remarkable properties which our brain contains: 

 

1. It can learn without supervision. 

2. It is tolerant to damage. 

3. It can process information extremely 

efficiently. 

4. It can generalize. 

5. It is conscious. 

 

 An artificial neural network attempts to mimic this 

amount of parallelism within the constraints of a modern 

computer. In doing so, it should display a number of 

similar properties to a biological brain. These artificial 

neural networks (abbreviated ANNs) are built the same 

way as our natural brains; where our human brains use 

neurons to send information, the ANN uses similar 

building blocks called artificial neurons.  

 These neurons, just like our own, take in different inputs 

which each have a specific floating-point weight assigned 

to it. These weights determine the overall activity of the 

neural network. If we have a positive weight, then it can 

exert an excitory influence over the input. If it’s negative, it 

can exert an inhibitory influence. When the inputs are 

taken in, they are multiplied by the weights associated to 

them. Then they all convene as the nucleus of the artificial 

neuron, which contains an activation function. The 

function sums all these weight-adjusted input values 

together to get the activation value (which is also a 

negative or positive floating point number). If this final 

value is above a certain threshold, then the neuron would 

output a signal which associates to one. If it is below the 

threshold, the outputted signal would associate to zero. 

This function in particular is considered a step function, 

one of the simplest types of activation functions which are 

found in the nucleus of artificial neurons.  

 So, what can you do with these artificial neurons? 

Well, we obviously need to connect these together to 

make an artificial neural network. There are many 

varied ways of connecting neurons but the most widely 

used and easiest to understand is by connecting the 

neurons in layers. This type of neural network is called 

a feed-forward network. Each layer of neurons feeds 

their output to the next layer and so on and so forth 

until a final output is given. A feed-forward network 

consists of an input layer, one (or more) hidden layers, 

and an output layer. There can be any number of 

neurons and hidden layers in a network; however, it’s 

desirable to keep the network as small as possible 

because the speed of the network decreases as more of 

these are added. 

 Artificial neural networks are usually used for pattern 

recognition. The reason being is because ANNs are 

great at mapping an input state to an output state (a 

pattern it’s trying to recognize can be mapped to a 

pattern it’s already been trained to recognize).  

 Let’s take a look at handwriting recognition, for 

example. For each character, the network is trained to 

recognize many different versions of that letter. 

Eventually the network will not only be able to 

recognize the letters it has been trained with, but it will 

start being able to generalize. Basically, if a letter is 

drawn slightly differently than the letters in the training 

set, the network will still stand a pretty good chance of 

recognizing it. It’s this ability to generalize that has 

made the neural network an invaluable tool that can be 

applied to a variety of applications, from face 

recognition and medical diagnosis to horse racing 

prediction and, leaning closer to the topic of this paper,  

AI navigation in computer games.  

 For example, we can use neural networks to ‘train’ game 

AI to follow certain patterns in movement and positioning 

in an AI-driven Ping Pong program. The training occurs by 

first shooting the ball from the center with a random 

direction and a fixed speed. The neural network is given 

the position and the direction of the ball and the y position 

of the paddle as input. The output would be a y direction in 

which the paddle should move in order to make contact 

with the ball and send it in the other direction. The weights 

are initially made to be random values, but as generations 

(or loops) pass, these weights will change to fit the 

situation. The network will soon learn to move the paddle 

in the same direction that the ball is heading. After several 

thousand generations of training, the network would 

eventually learn to play perfectly (the exact number of 

generations to play perfectly varies because the initial 



weights are random). In this example, by varying the level 

of training, the computer opponent can vary from poor play 

to perfect play. If we train the network for some number of 

iterations up front (say 1000), and then train the network 

an additional 100 iterations every time the human player 

wins, eventually we would have a perfectly controlled 

computer opponent whose difficulty we can change by 

altering either the up-front iterations or the rate of learning 

after each win against the human. 

Method of Evaluation / Experiment 

In this section we will evaluate the performance of the 

Generic Algorithm and the Artificial Neural Network and 

go through a brief explanation of my experiment.  

 We’ll look at some of the pros and cons of using a 

genetic algorithm. The generic algorithm uses local 

minima and maxima. It is only one algorithm but can have 

various data representations. It is stochastic, meaning that 

it often requires a lot of tweaking, but sometimes you can 

tweak it as much as you want and it would still find the 

same result. There are no gradients or fancy math involved 

with genetic algorithms. They are also easily parallelized 

and also easily customized as well.  

 However, because of this, designing an objective 

function can be difficult. Unfortunately, the genetic 

algorithm can be computationally expensive depending on 

the amount of chromosomes that are implemented, but they 

are still better than most gradient search methods and are 

less likely to get stuck on a local high or low because they 

traverse the search space using the genotype rather than the 

phenotype (in other words, instead of traversing using 

specific blueprints, they follow the general schematic).  

 Now we’ll move on to the pros and cons of using 

artificial neural networks. Here are some key benefits:  

  

 It is very easy to apply ANN to problem domains 

where the relationships are quite dynamic or non-

linear among the input and output. 

 Since ANN is capable of capturing many kinds of 

relationships and complex patterns among data, 

ANN allows user to easily model the system which 

otherwise is very difficult or impossible to 

represent through traditional modeling approaches. 

 The training information is not stored in any single 

element but is distributed in the entire network 

structure. This make ANN fault tolerant and it 

reduces the impact of erroneous input on the result. 

                  [Mistry] 

 

Some of the ANN’s cons have resulted in the following 

from experimentation: 

 

 Neural networks are not magic hammers. 

Contrary to where ANNs are believed to solve 

any machine learning problem, sometimes they 

are applied indiscriminately to problems for 

which they are not well suited. 

 Neural networks are not probabilistic. For 

example, a neural network might give you a 

continuous number as its output (e.g. a score) but 

translating that into a probability would be 

difficult. 

 Neural networks are not a substitute for 

understanding your problem. If you are building a 

classifier, it’s usually better to spend your time 

visualizing your dataset and selecting the best 

input features using whatever domain-specific 

knowledge you have available to you, rather than 

throwing a neural network at your data and 

hoping for the best. 

 

 For my experiment, I have created a simplified Five 

Card Stud Poker game in which the player and the AI bluff 

against each other to win. At the end of every round, the 

hand of the winning agent is shown. The AI keeps track of 

the ratio at which the player bluffs (a bluff is considered 

going all-in on a hand with a score less than a straight) 

using a Bluff Percentage (BP) variable. My method of AI 

learning is a simple Artificial Neural Network, where the 

input is the winning hand and the player’s bet, and the 

output is the Bluff Percentage. If the player scored less 

than a straight, then the ratio of amount of times player has 

bluffed over the amount of total rounds changes, and this is 

reflected in the Bluff Percentage. The AI starts with the 

strategy of folding on an all-in raise from the player, but at 

the start of each round, if the BP has changed to be higher 

than 60%, then the AI would switch its strategy to try and 

call the player’s bluff. 

Results 

In this section we will quickly go over the results of my 

experiment and we’ll go into explanation of how the ANN 

became my choice for the AI system. 

 The AI had a bit of trouble with the first few tests. The 

programming of the ANN was a little more confusing than 

I had anticipated. The ANN and AI logic in my experiment 

is not complete, so the results of these tests cannot be taken 

with full merit. However, they should be enough to show 

how using this algorithm and not an algorithm such as, 

let’s say, the alpha-beta pruning system used in the Dots 

for the AI conference paper written by Joseph Barker and 

Richard Korf, would provide me with better results than if 

I had chosen the latter. Originally I had wanted to use a 

similar algorithm in which the AI would use a simplified 



version of the Alpha-Beta algorithm. However, this 

algorithm stops completely evaluating a move when at 

least one possibility has been found that proves the move 

to be worse than a previously examined move. Since I 

needed an algorithm that would continue viewing all 

possibilities even when a better one was found, because a 

player’s bluff percentage wouldn’t guarantee that the 

player would be bluffing the next round, I decided that 

ANN would be the best choice. With an increased time 

allowance, there might have been a way to improve both 

algorithms by combining them together in a new form. 

Even so, the AI had not reacted as well as I thought it 

would (perhaps I had not given it enough iterations through 

the rounds to better anticipate the player’s actions). 

Sometimes it wouldn’t even go all-in with the player even 

if the player had an extremely high chance of bluffing (the 

player’s BP was above 90%). However, I believe that with 

more preparation and with the use of more iterations to 

help improve the AI’s learning curve, the results would 

become more beneficial to the research in this field. 

Conclusion / Future Work 

In this paper, we have gone over a couple of the methods 

widely used to allow for machine learning in AI, 

particularly in video game AI. In modern computing, the 

advancement of artificial intelligence has become a 

necessity, now that more complex events are being 

implemented into modern game-play situations. Because of 

this, research in the field has greatly increased in the last 

decade. New advancements have resulted in more efficient 

algorithms and subsequent application of these methods in 

modern game programming. The purpose of this paper was 

to enlighten and educate the reader in the value of research 

in AI logic in gaming, to address the importance of this 

study, and to promote exploration in the topic. The results 

from my experiment might not have been as accurate as I 

had hoped because of lack of preparation, but they still 

clearly demonstrate how the advancement of machine 

learning is essential to the improvement of game 

procedures and logistics. 

Acknowledgements 

I would like to thank my family for continued support in 

the research of this paper, my friends for giving me the 

ideas needed to push me towards my goal, and the 

professor for giving us this assignment to learn the rigors 

of writing an Artificial Intelligence conference paper for 

submission. 

References 

[1] Barker, Joseph K., and Korf, Richard E. 2012. Solving Dots-
And-Boxes. AAAI Publications, Twenty-Sixth AAAI 
Conference on Artificial Intelligence. 

[2] Buckland, Mat. 2002. AI Techniques For Game 
Programming. Cincinnati, Ohio.: Premier Press.  

[3] Fabian, Nathan. 2008. Machine Learning of Human 
Behavior in Interactive Games. Albuquerque, New 
Mexico.: University of New Mexico.  

<http://www.cs.unm.edu/~ndfabian/behaviorthesis.pdf> 

[4] Wall, Matthew. Introduction to Genetic Algorithms. 
Mechanical Engineering Department.: MIT.  

 <http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001
.html> 

[5] Macri, Dean. 2011. An Introduction to Neural Networks with 
an Application to Games. Intel.  

 <http://software.intel.com/en-us/articles/an-introduction-to-
neural-networks-with-an-application-to-games> 

[6] Mistry, Kamalkumar. 2012. Intelligent Complex Event 
Processing with Artificial Neural Network. SYS-CON Media, 
Inc. 

 <http://www.sys-con.com/node/2459059> 

 

http://www.cs.unm.edu/~ndfabian/behaviorthesis.pdf
http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001.html
http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001.html
http://software.intel.com/en-us/articles/an-introduction-to-neural-networks-with-an-application-to-games
http://software.intel.com/en-us/articles/an-introduction-to-neural-networks-with-an-application-to-games
http://www.sys-con.com/node/2459059

