

Machine Learning in Video Games:

The Importance of AI Logic in Gaming

Johann Alvarez

1408 California Street, Tallahassee FL, 32304
jga09@my.fsu.edu

Abstract

Machine Learning is loosely described as “the study of

systems that can learn from previously-known data.” Also simply

put: Machine systems can be “taught” to react to certain changes

in data. For example, the internet search engine Google.com uses

certain algorithms which allow the system to take previous

searches given by the user, react, and give suggested results based

on the user’s input. In most modern video games of today’s

world, we can see much more advanced examples of how the AI

uses previous knowledge to come up with strategies and

techniques used to hinder or halt the player’s progress to victory.

Introduction

Frequent players of games such as Starcraft can see how

the AI responds differently depending on their previous

actions in the game. For example, if the player is part of

the Protoss faction, then they would need to build

structures called pylons to be able to power their other

structures. The AI knows this and would most likely use

this knowledge to order its units to attack the pylons first.

 But what if the player decided to build their pylons

behind many lines of defense? The AI would not want to

try and rush through the defense because this would likely

mean a total wipe of its troops before they even reach the

pylons. So, in learning from this new data, the AI would

probably decide to wait and build stronger, more expensive

units to try and destroy the lines of defense first. If the

system decided to just rush in, the player wouldn’t be

challenged and the game would be too easy to stay

enjoyable.

Copyright © 2013, Johann Alvarez

 As you can see, it is indeed very important to implement

the concept of Machine Learning into the AI systems used

in modern gaming.

Background / Prior Work

In this section, we will provide a brief overview of some of

the reasons as to why an AI’s ability to ‘learn’ from an

opponent’s actions is key to giving the game a higher

replay-ability factor, and how research in this field can

help raise the success rate of games developed in the

future. Software developers often need to consider the

challenge an AI will provide and adjust the difficulty so as

not to discourage the players from fighting against it.

Replay-ability

Currently, many video game agents use patterns in their

actions that have become pretty easy to predict for human

players. Because of this, these video games have lost their

replay-ability, or the driving force to get players to replay

games after they have already been completed or even just

to get players to play them the next day. When the AI

becomes too predictable, the game loses the player’s focus

and lowers their interest because it becomes less of a

challenge.

 We as humans have a natural instinct to compete, so

when something becomes too easy to predict for someone,

it becomes too easy to defeat and we lose the drive to fight

against it. It gets to the point where the player’s interest is

only in completing the game and then afterwards throwing

it away, because who wants to waste their time fighting

something with the same predictable movements every

time they are pitted against it? It becomes more of a chore

than an achievement or accomplishment on our part. We as

gamers strive to complete objectives and goals in a video

game. This is also a part of our human nature. We want to

conquer a challenge that gives us a sense of pride in doing

so.

So, what if the AI had the ability to ‘learn’ its

opponents’ actions and the ability to come up with a

counter-strategy for these actions? To not just run out and

use the same strategy for every situation, but to come up

with better reactions to their opponents’ moves and to

make decisions that almost seem as if another human was

making them? Obviously this would need to be balanced,

or else the game would run the risk of also losing the

player’s interest due to a challenge being too difficult to

complete (which is why we have difficulty levels). With an

AI that can ‘think’, that can react just as a human would,

almost every encounter with them would be unpredictable.

Most humans learn from their mistakes and realize that

making them again would most likely result in failure, so

they usually would try to figure out other methods that

would give them a better chance of completing the

challenge given and attempt those instead. If an AI could

do just the same, then the game becomes more challenging

and raises the player’s desire to play the game over,

because every new clash with the AI would be a different

experience.

Research can lead to Success

With modern video gaming gaining rise as an industry, the

continued research of the game AI has become more and

more critical to the success of these video games.

Nowadays, most gamers tend to lead towards games that

allow for online/multiplayer capabilities. The reason is not

only to enjoy playing these games with others and to use

them as another form of social medium, but also to quench

the human urge to compete against each other. Humans

have always challenged each other, be it for fame, for

pride, or for power, since the era of cavemen. This natural

need for competition has been passed into the gaming

generation through the introduction of multiplayer gaming,

because now humans have the chance to test their limits

against opponents that think like them.

This is the reason why these online games have become

so successful. Developers have realized this and that is

why research continues to make the artificial intelligence

appear smarter, more capable, and more human. A smart

AI also allows for a game to stand out from the others,

which can mean the difference between making and

breaking a sale. Players do not want to buy a game in

which the AI performs just like the ones from their other

games. They want to have different and new challenges, all

of which come from the development of an adapting AI.

Developers want to explore new ideas that might take AIs

to the next generation, an era in which games don’t just

provide an interesting opponent but one in which they

can talk to the player, interact with the legions of online

adventurers, and actually learn from game to game to be a

more cunning and twisted opponent the next time around.

Of course, these new AIs have to help make the game sell

better, too. That’s always the bottom line – if a game

doesn’t sell, then what good is the AI for?

Main Information

This section will focus primarily on the main topics of this

paper. Machine Learning in game AI has become a very

important part of game development. No longer is it

something to just “fit” into the game if the frame-rate isn’t

hindered by the implementation. It’s now become just as

essential as the graphics or sound, if not more. Even so,

with all the research being put into making smarter game

AI, it still proves to be a tough chore. It’s almost

impossible to come up with every solution that a human

might have to a situation. With every game that comes out

with new revolutionary game-play, the amount of choices

an AI can make becomes more overwhelming to program.

 To the human player, there might be two or three

potential decisions which are “obviously” better—but

what if the guy who coded the AI the Saturday night

before the game’s final version was sent to the

publisher didn’t think about those? The player sees the

AI faced with a terrific decision upon which the entire

fate of the game hangs—and it chooses incorrectly. Or

worse than that, it chooses stupidly. A few instances of

that and it’s pop! The CD is out of the drive and the

player has moved on to something else. [Buckland]

This is especially true when you play a video game with

a cooperative AI. Take for example the 2013 game The

Last of Us. The player plays from the perspective of a man

named Joel who takes care of a girl named Ellie throughout

a post-apocalyptic world. For almost the entire game (there

are a few parts where the player switches perspectives),

Ellie’s actions are dictated by the AI. Fortunately for the

player, the Naughty Dog studio did very well in designing

the AI’s reactions to certain events. If Joel is in trouble, she

can help him out by throwing objects to distract the enemy.

If Joel is hiding from a group of enemies, she knows that

she also must hide and choose a safe location to do so

while still being relatively close to the player. If Joel is

running low on ammunition, she usually passes some along

to him. Normally, most players would cringe at the notion

of having to protect an AI, or even just having an AI

partner, and with good reason. Most of these games

(including The Last of Us) required that the AI partner stay

alive in order to complete the game. If at any point the AI

died, it would result in a “Game Over”. This requirement

usually turned out to be quite an annoyance if the AI

wasn’t programmed to respond correctly to certain

situations. Let’s use Resident Evil 6 as an example. I can’t

remember how many times I had to save Helena (one of

the AI partners) from a hulking deformity because her AI

couldn’t seem to realize that the better thing to do would

be to shoot it from afar rather than getting up close and

allowing it to grab her, leaving me defenseless and having

to try to run up and save her before she was eaten,

squished, mutilated, etc.

This moment seems to be every gamer’s nightmare. But

developers have come up with different algorithms and

practices that have evolved and have revolutionized video

game AI mechanics so that these cases become rare. In the

next subsections, we will go over some of these methods.

Genetic Algorithms

Genetic algorithms were formally introduced in the United

States in the 1970s by John Holland at University of

Michigan. Genetic algorithms are search heuristics that are

designed to work in the same way as natural evolution.

These algorithms generate solutions to optimization

problems using techniques inspired by our world’s natural

evolution, such as inheritance, mutation, selection, and

crossover. In a genetic algorithm, a number of candidate

solutions to these optimization problems are evolved

towards better solutions.

 A typical genetic algorithm requires:

1. A genetic representation of the solution domain.

2. A fitness function to evaluate the solution domain.

To use a genetic algorithm in a program, the potential

solutions must somehow be represented as a collection of

sort of “digital” chromosomes (represented as bits) – the

same way our bodies use genomes as a blueprint of our

DNA. Once these solutions are encoded, a randomized

population of these chromosomes is evolved over time by

“breeding” the best fit solution and adding slight mutations

to them so that eventually, the result is a convergence of

the fittest individuals of the original population. Generic

algorithms don’t always have to generate a solution,

however. Using these algorithms might not even generate

the best solution to the problem given. But, the best thing

about using a genetic algorithm is that you don’t need to

know how to solve a problem. All you need to do is encode

it in a way in which the genetic algorithm mechanism can

utilize and evolve it into a suitable solution. Below is a

loop used in order to form a generic algorithm:

Loop until a solution is found:

1. Test each chromosome to see how good it is at

solving the problem and assign a fitness score

accordingly.

2. Select two members from the current population.

The probability of being selected is proportional to

the chromosome’s fitness—the higher the fitness,

the better the probability of being selected. A

common method for this is called Roulette wheel

selection.

3. Dependent on the Crossover Rate, crossover the

bits from each chosen chromosome at a randomly

chosen point.

4. Step through the chosen chromosome’s bits and

flip dependent on the Mutation Rate.

5. Repeat steps 2, 3, and 4 until a new population

of one hundred members has been created.

End Loop

 [Buckland]

 This entire loop is known as the epoch. If you notice in

the algorithm, the loop includes a step in which you would

need to use a method such as the Roulette wheel selection.

This particular method works by first making a total fitness

chart for the whole of the population and representing this

information as a pie chart, or roulette wheel (hence the

name). Once this is made, you assign a slice of the wheel

to each member of the population. However, each slice is

proportional to the fitness score of the member, so if the

member has a higher fitness score, then it would have a

better chance of being selected. To choose a chromosome,

you simply need to “spin the wheel”, “throw a ball” into

the wheel, and pick the member which is associated to the

slice the ball ended up on. And that’s it for the Roulette

wheel selection A quick explanation of the Crossover Rate

is the probability to which two chosen chromosomes would

swap their bits to produce two new ones, and the Mutation

Rate is the probability to which a bit within a chromosome

would be switched or flipped from 0 to 1 or vice-versa.

 Now, knowing the terminology and the algorithm, how

would this method help the game AI evolve to think and to

find better solutions to their situation? Let’s come up with

an example. Suppose we have a maze in which Pac-man

has to navigate through from a start to a finish. First we

would encode every direction in which Pac-man could

travel: up, down, left, and right (or North, South, West, and

East). Then you must make the population of random

chromosomes that would give Pac-man directions to

follow (a sample chromosome, 111110011011, would

decode to “11, 11, 10, 01, 10, 11”, or “3, 3, 2, 1, 2, 3”,

which if we had North = 1, South = 2, West = 3, East = 4,

then the directions Pac-man would head to would be as

follows: “West, West, South, North, South, West”). Setting

Pac-man at the start and allowing him to follow the

directions might lead him to the goal, but in a population of

hundreds of chromosomes, normally, the odds to pick from

the ones that would do so would probably be unlikely.

However, if we first use the genetic algorithm to test each

chromosome and see how close each one would get Pac-

man to the exit (if it reaches, it would be considered a

solution), then we can breed the better solutions in the

hopes of creating offspring chromosomes that would let

Pac-man get even closer to the goal. And finally we could

continue using this method until a solution is found (or

until Pac-man eventually becomes stuck in a corner, which

can happen). Remember, generic algorithms aren’t perfect,

but they do help in increasing the chances of finding the

right solutions and sometimes the best solutions to a given

situation. Using genetic algorithms, therefore, can greatly

improve the game AI’s logic and allow for human-like

decision-making.

Neural Networks

The human brain is our biological neural network. What

developers want to accomplish is to create a suitable

artificial neural network for their game AI – one that

operates in much the same way as our own network. There

are 5 remarkable properties which our brain contains:

1. It can learn without supervision.

2. It is tolerant to damage.

3. It can process information extremely

efficiently.

4. It can generalize.

5. It is conscious.

 An artificial neural network attempts to mimic this

amount of parallelism within the constraints of a modern

computer. In doing so, it should display a number of

similar properties to a biological brain. These artificial

neural networks (abbreviated ANNs) are built the same

way as our natural brains; where our human brains use

neurons to send information, the ANN uses similar

building blocks called artificial neurons.

 These neurons, just like our own, take in different inputs

which each have a specific floating-point weight assigned

to it. These weights determine the overall activity of the

neural network. If we have a positive weight, then it can

exert an excitory influence over the input. If it’s negative, it

can exert an inhibitory influence. When the inputs are

taken in, they are multiplied by the weights associated to

them. Then they all convene as the nucleus of the artificial

neuron, which contains an activation function. The

function sums all these weight-adjusted input values

together to get the activation value (which is also a

negative or positive floating point number). If this final

value is above a certain threshold, then the neuron would

output a signal which associates to one. If it is below the

threshold, the outputted signal would associate to zero.

This function in particular is considered a step function,

one of the simplest types of activation functions which are

found in the nucleus of artificial neurons.

 So, what can you do with these artificial neurons?

Well, we obviously need to connect these together to

make an artificial neural network. There are many

varied ways of connecting neurons but the most widely

used and easiest to understand is by connecting the

neurons in layers. This type of neural network is called

a feed-forward network. Each layer of neurons feeds

their output to the next layer and so on and so forth

until a final output is given. A feed-forward network

consists of an input layer, one (or more) hidden layers,

and an output layer. There can be any number of

neurons and hidden layers in a network; however, it’s

desirable to keep the network as small as possible

because the speed of the network decreases as more of

these are added.

 Artificial neural networks are usually used for pattern

recognition. The reason being is because ANNs are

great at mapping an input state to an output state (a

pattern it’s trying to recognize can be mapped to a

pattern it’s already been trained to recognize).

 Let’s take a look at handwriting recognition, for

example. For each character, the network is trained to

recognize many different versions of that letter.

Eventually the network will not only be able to

recognize the letters it has been trained with, but it will

start being able to generalize. Basically, if a letter is

drawn slightly differently than the letters in the training

set, the network will still stand a pretty good chance of

recognizing it. It’s this ability to generalize that has

made the neural network an invaluable tool that can be

applied to a variety of applications, from face

recognition and medical diagnosis to horse racing

prediction and, leaning closer to the topic of this paper,

AI navigation in computer games.

 For example, we can use neural networks to ‘train’ game

AI to follow certain patterns in movement and positioning

in an AI-driven Ping Pong program. The training occurs by

first shooting the ball from the center with a random

direction and a fixed speed. The neural network is given

the position and the direction of the ball and the y position

of the paddle as input. The output would be a y direction in

which the paddle should move in order to make contact

with the ball and send it in the other direction. The weights

are initially made to be random values, but as generations

(or loops) pass, these weights will change to fit the

situation. The network will soon learn to move the paddle

in the same direction that the ball is heading. After several

thousand generations of training, the network would

eventually learn to play perfectly (the exact number of

generations to play perfectly varies because the initial

weights are random). In this example, by varying the level

of training, the computer opponent can vary from poor play

to perfect play. If we train the network for some number of

iterations up front (say 1000), and then train the network

an additional 100 iterations every time the human player

wins, eventually we would have a perfectly controlled

computer opponent whose difficulty we can change by

altering either the up-front iterations or the rate of learning

after each win against the human.

Method of Evaluation / Experiment

In this section we will evaluate the performance of the

Generic Algorithm and the Artificial Neural Network and

go through a brief explanation of my experiment.

 We’ll look at some of the pros and cons of using a

genetic algorithm. The generic algorithm uses local

minima and maxima. It is only one algorithm but can have

various data representations. It is stochastic, meaning that

it often requires a lot of tweaking, but sometimes you can

tweak it as much as you want and it would still find the

same result. There are no gradients or fancy math involved

with genetic algorithms. They are also easily parallelized

and also easily customized as well.

 However, because of this, designing an objective

function can be difficult. Unfortunately, the genetic

algorithm can be computationally expensive depending on

the amount of chromosomes that are implemented, but they

are still better than most gradient search methods and are

less likely to get stuck on a local high or low because they

traverse the search space using the genotype rather than the

phenotype (in other words, instead of traversing using

specific blueprints, they follow the general schematic).

 Now we’ll move on to the pros and cons of using

artificial neural networks. Here are some key benefits:

 It is very easy to apply ANN to problem domains

where the relationships are quite dynamic or non-

linear among the input and output.

 Since ANN is capable of capturing many kinds of

relationships and complex patterns among data,

ANN allows user to easily model the system which

otherwise is very difficult or impossible to

represent through traditional modeling approaches.

 The training information is not stored in any single

element but is distributed in the entire network

structure. This make ANN fault tolerant and it

reduces the impact of erroneous input on the result.

 [Mistry]

Some of the ANN’s cons have resulted in the following

from experimentation:

 Neural networks are not magic hammers.

Contrary to where ANNs are believed to solve

any machine learning problem, sometimes they

are applied indiscriminately to problems for

which they are not well suited.

 Neural networks are not probabilistic. For

example, a neural network might give you a

continuous number as its output (e.g. a score) but

translating that into a probability would be

difficult.

 Neural networks are not a substitute for

understanding your problem. If you are building a

classifier, it’s usually better to spend your time

visualizing your dataset and selecting the best

input features using whatever domain-specific

knowledge you have available to you, rather than

throwing a neural network at your data and

hoping for the best.

 For my experiment, I have created a simplified Five

Card Stud Poker game in which the player and the AI bluff

against each other to win. At the end of every round, the

hand of the winning agent is shown. The AI keeps track of

the ratio at which the player bluffs (a bluff is considered

going all-in on a hand with a score less than a straight)

using a Bluff Percentage (BP) variable. My method of AI

learning is a simple Artificial Neural Network, where the

input is the winning hand and the player’s bet, and the

output is the Bluff Percentage. If the player scored less

than a straight, then the ratio of amount of times player has

bluffed over the amount of total rounds changes, and this is

reflected in the Bluff Percentage. The AI starts with the

strategy of folding on an all-in raise from the player, but at

the start of each round, if the BP has changed to be higher

than 60%, then the AI would switch its strategy to try and

call the player’s bluff.

Results

In this section we will quickly go over the results of my

experiment and we’ll go into explanation of how the ANN

became my choice for the AI system.

 The AI had a bit of trouble with the first few tests. The

programming of the ANN was a little more confusing than

I had anticipated. The ANN and AI logic in my experiment

is not complete, so the results of these tests cannot be taken

with full merit. However, they should be enough to show

how using this algorithm and not an algorithm such as,

let’s say, the alpha-beta pruning system used in the Dots

for the AI conference paper written by Joseph Barker and

Richard Korf, would provide me with better results than if

I had chosen the latter. Originally I had wanted to use a

similar algorithm in which the AI would use a simplified

version of the Alpha-Beta algorithm. However, this

algorithm stops completely evaluating a move when at

least one possibility has been found that proves the move

to be worse than a previously examined move. Since I

needed an algorithm that would continue viewing all

possibilities even when a better one was found, because a

player’s bluff percentage wouldn’t guarantee that the

player would be bluffing the next round, I decided that

ANN would be the best choice. With an increased time

allowance, there might have been a way to improve both

algorithms by combining them together in a new form.

Even so, the AI had not reacted as well as I thought it

would (perhaps I had not given it enough iterations through

the rounds to better anticipate the player’s actions).

Sometimes it wouldn’t even go all-in with the player even

if the player had an extremely high chance of bluffing (the

player’s BP was above 90%). However, I believe that with

more preparation and with the use of more iterations to

help improve the AI’s learning curve, the results would

become more beneficial to the research in this field.

Conclusion / Future Work

In this paper, we have gone over a couple of the methods

widely used to allow for machine learning in AI,

particularly in video game AI. In modern computing, the

advancement of artificial intelligence has become a

necessity, now that more complex events are being

implemented into modern game-play situations. Because of

this, research in the field has greatly increased in the last

decade. New advancements have resulted in more efficient

algorithms and subsequent application of these methods in

modern game programming. The purpose of this paper was

to enlighten and educate the reader in the value of research

in AI logic in gaming, to address the importance of this

study, and to promote exploration in the topic. The results

from my experiment might not have been as accurate as I

had hoped because of lack of preparation, but they still

clearly demonstrate how the advancement of machine

learning is essential to the improvement of game

procedures and logistics.

Acknowledgements

I would like to thank my family for continued support in

the research of this paper, my friends for giving me the

ideas needed to push me towards my goal, and the

professor for giving us this assignment to learn the rigors

of writing an Artificial Intelligence conference paper for

submission.

References

[1] Barker, Joseph K., and Korf, Richard E. 2012. Solving Dots-
And-Boxes. AAAI Publications, Twenty-Sixth AAAI
Conference on Artificial Intelligence.

[2] Buckland, Mat. 2002. AI Techniques For Game
Programming. Cincinnati, Ohio.: Premier Press.

[3] Fabian, Nathan. 2008. Machine Learning of Human
Behavior in Interactive Games. Albuquerque, New
Mexico.: University of New Mexico.

<http://www.cs.unm.edu/~ndfabian/behaviorthesis.pdf>

[4] Wall, Matthew. Introduction to Genetic Algorithms.
Mechanical Engineering Department.: MIT.

 <http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001
.html>

[5] Macri, Dean. 2011. An Introduction to Neural Networks with
an Application to Games. Intel.

 <http://software.intel.com/en-us/articles/an-introduction-to-
neural-networks-with-an-application-to-games>

[6] Mistry, Kamalkumar. 2012. Intelligent Complex Event
Processing with Artificial Neural Network. SYS-CON Media,
Inc.

 <http://www.sys-con.com/node/2459059>

http://www.cs.unm.edu/~ndfabian/behaviorthesis.pdf
http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001.html
http://lancet.mit.edu/mbwall/presentations/IntroToGAs/P001.html
http://software.intel.com/en-us/articles/an-introduction-to-neural-networks-with-an-application-to-games
http://software.intel.com/en-us/articles/an-introduction-to-neural-networks-with-an-application-to-games
http://www.sys-con.com/node/2459059

