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Course: CAP 4601
Semester: Summer 2013
Assignment:  Assignment 04
Date: 19 JUN 2013

Complete the following written problems:
1. The Probability Density Function of the Normal Distribution (50 Points).

The Normal Distribution has the following Probability Density Function (a.k.a. the "Gaussian™):
1 7(X’/‘)2
f(x)= e 2
( ) oN2r
where 1€ R isthe mean, o € R is the standard deviation, and o >0.

If the mean 4 and the standard deviation o are such that =0 and o =1, then we have the
following bell-shaped curve:
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Note: The mean u translates this curve left or right; while the standard deviation o makes this
curve narrower or wider. For instance, the following plots show how this bell-shaped curve

changes as o changes. The plot on the left is for o = % the plot in the center is for o =1, and

the plot on the right is for o = g :
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Therefore, as o decreases, the bell-shaped curve shoots up (i.e. gets narrower). Similarly, as o
increases, the bell-shaped curve flattens out (i.e. gets wider).
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Moreover, this function has the following property:
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where erf is the Error function, erf —e’X dx , and erf (x) |=—=e™ .
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Therefore, regardless of what the value is for 1 and o, the "area under the curve" for the entire
function is always 1 for this function. This is a desirable property that we can take advantage of
in Probability.

a. Given the function for the Normal distribution:
(n)
e 20‘2

1
f(x)=
( ) o\N2r
Derive the x values that produce inflection points in the function above. In other words, using
Calculus and Algebra, find the x values that make f"(x):O for any value of ¢ and o .

To make the derivatives easier to calculate, we first decompose the function f (x) into parts:
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Next, we find the first derivative f'(x):

df (x) _di(m(n(x)))

I (m(n(x)))m'(n(x)n'(x)

dx

dx

Chain Rule
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Then, we find the second derivative f”(x):
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We then set the second derivative f"(x) equal to 0 and solve for x:
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Check x=u+o:
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Therefore, the function for the Normal distribution produces inflection points at the first
Standard Deviation o from the Mean x . Precisely, given the function for the Normal
distribution:
(n)’
1 - 2
f(x)= e %
( ) o\2r

the x value that produces inflection points are:




b. C++11 added the Error function erf ( ) shown above to the header <cmath> as the function
erf (). The following block of code shows how to use this Error function:

#tinclude <iostream>
#tinclude <cmath>

int main () {
std::cout << erf( 1.0 ) << '\n'; // 0.842701

}

Use the indefinite integration above to calculate the exact value of the following definite
integrals where ¢ =0. Exact value means keeping the square roots and reducing down to one

erf function. Note: erf (—a)=—erf (a). Also, use the C++11 er£ () function to calculate the
decimal values of those same definite integrals:
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c. For these bell-shaped curves, what is the percentage of the "area under the curve" that is
within one standard deviation from the mean? In other words, if we fixed 4 =0, what is the

blue shaded area in this plot as a percentage of the overall "area under the curve™:

=r By -7 I 20 iz

68.2689%

d. For these bell-shaped curves, how many standard deviations o from the mean covers
approximately 99.73% of the "area under the curve™?

Three Standard Deviations o from the Mean u covers approximately 99.73% of the "area
under the curve",
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2. Expectation Maximization using a Gaussian Mixture Model (50 Points).

OpenCV can perform Expectation Maximization using the cv: : EM class. Here is an excerpt of
the OpenCV code needed to perform Expectation Maximization to pull out two "Gaussians” (i.e.
the multivariate version of the Normal distribution we covered above in Written Problem 1):

int max_number_of_iterations = 1024;

double threshold = 0.000001;

cv::TermCriteria termination_criteria(
cv::TermCriteria::COUNT + cv::TermCriteria::EPS,
max_number_of_iterations,
threshold

)s

int number_of_clusters = 2;

cv::EM em(
number_of_clusters,
cv::EM: :COV_MAT_GENERIC,
termination_criteria

)s

em.train( dataset );

auto means = em.getMat( "means" );

std::cout << "means:\n" << means << "\n\n";

auto covs = em.getMatVector( "covs" );

std::cout << "covs:\n" << covs << "\n\n";

The OpenCV class cv: : TermCriteria is used to set up the termination criteria (i.e. when to
stop the EM algorithm). This is same as the termination criteria that we have used to stop
gradient descent in previous assignments. Similarly, we are stopping here after either 1024
iterations of EM or when the relative change in the likelihood logarithm is under the threshold
0.000001.

The OpenCV enumeration value cv: :EM: : COV. MAT GENERIC ensures that we will receive
"Gaussians" that are both scaled and rotated (both of these, vice just one or the other). In other
words, this enumeration value ensures that we will receive a full Covariance Matrix for each
cluster it will try to fit. A covariance matrix functions in much the same way as the standard
deviation functioned in Written Problem 1 above.

In the code excerpt above, we are requesting that "Gaussians" be fitted to two clusters of data;
therefore, after we train on a dataset, we should receive two means and two covariance matrices.

These multivariate "Gaussians" (i.e. the Probability Density Function of the Multivariate Normal
Distribution) have a similar function to that of the bell-shaped curve we saw in Written Problem
1 above:

f(x)=—7F—=e”?
(27)2[=f2
where T in the exponent means matrix or vector transpose, | | means the determinant, n is the

input dimension such that x e R", the mean < R", and the covariance matrix 3 isan nxn
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matrix such that 3 = (RS)(RS)T where R isa nxn parametric rotation matrix and S is a

nxn parametric scaling matrix. As in Written Problem 1, the "area under the curve" (or
"volume under the curve™) is 1. Note: Here 3 is a variable, not the summation symbol. Since
we are dealing with the multivariate case here, we use the uppercase Greek letter S (uppercase
sigma): 3. When we were dealing with the univariate case in Written Problem 1, we used the
lowercase Greek letter s (lowercase sigma): o .

For instance, if we have x=(X,y),amean p =(4,-2), a parametric rotation matrix that R

rotates the "Gaussian" by 6 =30°, and a parametric scaling matrix S that scales the "Gaussian"
by 4 inthe x direction and 1 inthe y direction prior to the rotation, then we would have the
following preliminary calculations:
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Then, we would have the following intermediate calculation:
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If we graphed this, we would have the following plots (with the contour plot at the end):
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Note: The ellipses in the contour plot above are the_‘first, éecond, and third "standard deviations"
from the mean point at the center.



Note: Since we're dealing with ellipses, a 30° rotation for a scaled ellipse will look the same if
the ellipse is rotated 180° in the opposite direction. In other words, a 30° rotation will look the
same as a —150° rotation.

That's a lot of math! Thank goodness the OpenCV library does most of this for us.

The data from Assignment 1, Programming Problem 5 was the following:

This data is not separated into classes; however, it does appear that there are two classes of
points in this dataset — a class for each cluster of data. These clusters also appear to be generated
from a distribution similar to the Multivariate Normal Distribution we just learned about. Why?
Because these clusters are dense at their center, that density gradually falls off as we move away
from their center, and the clusters are elliptical. Their center could be described by a mean (i.e.
their translation). Their elliptical nature could be described by a covariance matrix (i.e. their
scaling and rotation).

We need the EM algorithm to return the mean and covariance matrix of each of the clusters
above so that we can separate those clusters into classes.

Once the EM algorithm returns the mean and covariance matrix of each cluster, the following
OpenCV code extracts the elliptical information from each cluster (Note: i is the index of each
cluster [0 or 1]):

// Singular Value Decomposition
cv::Mat_<double> U, W, Vt;
cv::SVDecomp( covs[ i ], W, U, Vt );

cv::Mat_<double> center = means.row( i );

cv::Mat_<double> semi_major_axis_direction = Vt.row( 0 );

double semi_major_axis_angle_in_radians = atan2(
semi_major_axis_direction( 1 ),
semi_major_axis_direction( @ )

)s

double semi_major_axis_angle_in_degrees = (

semi_major_axis_angle_in_radians * degrees_per_radian
)

double semi_major_axis_magnitude = sqrt( W( @ ) );
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cv::Mat_<double> semi_minor_axis_direction = Vt.row( 1 );

double semi_minor_axis_angle_in_radians = atan2(
semi_minor_axis_direction( 1 ),
semi_minor_axis_direction( @ )

)s

double semi_minor_axis_angle_in_degrees = (
semi_minor_axis_angle_in_radians * degrees_per_radian

)s

double semi_minor_axis_magnitude = sqrt( W( 1 ) );

Compile and run the following code from em. zip:

—main.cpp: The file containing the OpenCV calls for the EM algorithm.
—data.cpp: The dataset from Programming Problem 5 of Assignment O1.
—makefile: The makefile for linprog4.cs. fsu.edu.

Using information about Cluster 0 from the output of the code above, the Probability Density
Function of the Bivariate Normal Distribution that generated that first cluster of data (Cluster 0)
IS approximately:

0.014082 1e—0.0385986x2+0.0492529xy—0.77767 x-0.0664186 y2 +1.30577 y—7.14869

a. Using information about Cluster 1 from the output of the code above, calculate the
approximate Probability Density Function of the Bivariate Normal Distribution that generated
that second cluster of data (Cluster 1).

The output of the code above is:

Cluster 0:

Mean:

[-4.980386812742882, 7.983244370800005]

Covariance Matrix:

[16.96770521991662, 6.291219624838922;
6.291219624838922, 9.860640038222687]

Determinant of the Covariance Matrix:

127.733

Inverse of the Covariance Matrix:

[0.07719728559724576, -0.04925289598353753;
-0.04925289598353753, 0.1328372986656427]

Cluster 1:

Mean:

[5.014875795615094, -2.976913058588646]

Covariance Matrix:

[5.346699526709194, -4.223025313527117;
-4.223025313527117, 5.21176729105072]

Determinant of the Covariance Matrix:

10.0318

Inverse of the Covariance Matrix:

[0.5195240757595713, 0.4209634084558551;
0.4209634084558551, 0.5329745122633295]
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Ellipse 0 for Cluster O:

Center:

Semi-Major Axis (Direction):
Semi-Major Axis (Angle in Degrees):
Semi-Major Axis (Magnitude) :
Semi-Minor Axis (Direction):
Semi-Minor Axis (Angle in Degrees):
Semi-Minor Axis (Magnitude) :

[-4.980386812742882,
[0.8636574004269342,
30.2703

4.54308
[-0.5040792543715624,
120.27

2.48772

7.983244370800005]
0.5040792543715624]

0.8636574004269342]

For the ellipse that should contain 99.73% of the data:

Center:

Axis
Axis

Semi-Major
Semi-Major

(Angle in Degrees) :
(3 * Magnitude) :

Axis
Axis

Semi-Minor
Semi-Minor

(Angle in Degrees) :
(3 * Magnitude):

Ellipse 1 for Cluster 1:

[-4.980386812742882, 7.983244370800005]

30.2703
13.6293

120.27
7.46315

Center: [5.014875795615094, -2.976913058588646]
Semi-Major Axis (Direction): [0.7127319764018416, -0.7014364759650903]
Semi-Major Axis (Angle in Degrees): -44.5424

Semi-Major Axis (Magnitude): 3.08266

Semi-Minor Axis (Direction): [0.7014364759650903, 0.7127319764018416]
Semi-Minor Axis (Angle in Degrees): 45.4576

Semi-Minor Axis (Magnitude) : 1.02746

For the ellipse that should contain 99.73% of the data:

Center:

Semi-Major Axis (Angle in Degrees) :
Semi-Major Axis (3 * Magnitude) :
Semi-Minor Axis (Angle in Degrees):
Semi-Minor Axis (3 * Magnitude) :

[5.014875795615094, -2.976913058588646]

-44.5424
9.24798

45.4576
3.08237

The equation for Cluster 0 was given as:

0.014082 1e—0.0385986x2+O.0492529xy—0.77767 x-0.0664186 y2 +1.30577 y—7.14869

This was produced using this portion of the output:

Cluster 0:

Mean:

[-4.980386812742882,

Covariance Matrix:

[16.96770521991662, 6.291219624838922;
6.291219624838922, 9.860640038222687]

Determinant of the Covariance Matrix:

127.733

Inverse of the Covariance Matrix:

[0.07719728559724576,
-0.04925289598353753,

7.983244370800005]

-0.04925289598353753;
0.1328372986656427]



Hence, the output gave us:
_(—4.980386812742882
#= 7.983244370800005

_ (16.96770521991662 6.291219624838922
- 6.291219624838922  9.860640038222687
|£|=127.733

1 (0.07719728559724576 —0.04925289598353753)

| -0.04925289598353753  0.1328372986656427

We know that the input dimension is two (i.e. n=2). We use the following column vector:

%

Therefore, we have the following:
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=0.0140821e VY Y
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—2{00771973X—00492529y+077767 —0.0492529X+0.ZI.32837y—1.30577)[X+ j

=0.0140821e 2 y—7.983244370800005
1

=0.0140821e 2
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With that, let's find the PDF to Cluster 1 based of this portion of the output:

Cluster 1:

Mean:

[5.014875795615094, -2.976913058588646]

Covariance Matrix:

[5.346699526709194, -4.223025313527117;
-4.223025313527117, 5.21176729105072]

Determinant of the Covariance Matrix:

10.0318

Inverse of the Covariance Matrix:

[0.5195240757595713, 0.4209634084558551;
0.4209634084558551, 0.5329745122633295]



Hence, the output gave us:
( 5.014875795615094 ]
# =

—2.976913058588646

[ 5.346699526709194  -4.223025313527117
| -4.223025313527117  5.21176729105072

£/ =10.0318
- (0.5195240757595713 0.4209634084558551j

1 0.4209634084558551  0.5329745122633295

We know that the input dimension is two (i.e. n=2). We use the following column vector:
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Therefore, we have the following PDF for Cluster 1:
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x-5.014875795615094
y+2.976913058588646




b. Using the information about Ellipse 0 and Ellipse 1 from the output of the code above, draw
the ellipse for each cluster that should contain 99.73% of the data. Draw these ellipses on the
large picture below. Ensure that you include the line for semi-major axis and the semi-minor
axis. Ensure that you pay close attention to the angle and the length of those semi-major and
semi-minor axes. For example, given the initial plot of points on the left, you would produce the
final plot of points with ellipses and axes on the right based on the output of the code above:

20

Draw the ellipses and axes on the following picture based on the output from the code above:

The code above produces the following output:

Ellipse 0 for Cluster O:

For the ellipse that should contain 99.73% of the data:

Center: [-4.980386812742882, 7.983244370800005]
Semi-Major Axis (Angle in Degrees): 30.2703

Semi-Major Axis (3 * Magnitude) : 13.6293

Semi-Minor Axis (Angle in Degrees): 120.27

Semi-Minor Axis (3 * Magnitude) : 7.46315

Ellipse 1 for Cluster 1:

For the ellipse that should contain 99.73% of the data:

Center: [5.014875795615094, -2.976913058588646]
Semi-Major Axis (Angle in Degrees): -44.5424
Semi-Major Axis (3 * Magnitude): 9.24798

Semi-Minor Axis (Angle in Degrees): 45.4576
Semi-Minor Axis (3 * Magnitude): 3.08237

where the ellipses imply output that is irrelevant to this problem.



Based on this highlighted output, we draw the following ellipses, semi-major axes, and semi-
minor axes for both Cluster 0 and Cluster 1:

e

Keep in mind that this dataset did not contain class labels. This was an unlabeled dataset. We

told the EM algorithm to find two clusters of points and it found two ... without supervision ...
and the two clusters that the EM algorithm found happened to exactly match our expectations.

Yay, Unsupervised Learning!



3. Neural Networks (100 Points).

Given the following Neural Network:

o) |

where W eX =Wy ¢ -1+W, ¢ X +W, ¢ X, Wo oX=Wo o - 14HW X +Wo - X,
wof=w, -1+w, -f +w, -f,, and activation functions f;, f,,and y are step functions
defined as follows:

W,ex>0, 1
fl(wf1.x) :{W?-X< 0, 0
W, x>0, 1
fo(w,,x) :{WZZ x<0, 0

W x>0, 1
y(Wy.X)z{wz-x<0, 0

a. Place and orient the activation functions f,, f,,and y by hand and calculate the nine Neural
Network parameters (i.e. Wy, Wy ¢, Wy ¢ W g Wog o Wy o, Wo,, W, and w, ) above needed

to compute the XOR function. In other words, calculate the nine parameters needed to create
this function:

X % |y
0O 0|0
0 111
1 0|1
1 110

HINT: It will be very helpful to plot the (x,,X,) points, draw the lines W, ex=0and w, <x=0
on that plot, and shade each positive region (i.e. where f, =1 and f, =1).



HINT: It will be very helpful to plot the (fl, fz) points, draw the line w «f =0 on that plot, and
shade the positive region (i.e. where y=1).

Note: The XOR function produces these graphs:

Remember that wex =w, -1+ w, - X, +W, - X, is just a plane that we can think of in terms of the
normal vector equation that we saw in Assignment 01:

Ae(X—X,) = (cos(e),sin(e))-((xl, X,) = (%0, leo))
=(c0s(8),sin(8))e( % —X,0. %, =Xy
=05 (0) (%, — X5 )+sin(F) (X, — X, )
=—c05(60) X, —sin(0)x,, +cos(0)x +sin()x,
= (—cos(0)x,, —sin(8) X, )1+ (cos(6)) x, +(sin(8))x,
Therefore, w, =—cos(&)x,,—sin(8)x,,, w, =cos(#), and w, =sin(6). Note: We could also

adjust the "slope™ of that plane using the tan(¢) as we saw in the Logistic Function problem
from Assignment 03, but we won't need to do that here.

Let w, +x be the following:

w, «x = (cos(135°),sin (135°))s(( X, X, ) —(0,0.5))
=c0s(135°)(x, —0)+sin(135°)(x, —0.5)
= (~0cos(135°)—0.5sin (135°) ) +(cos (135°)) x, +(sin (135°))x,

L2

4 2 2
Wo, 1, W W,

and



Let w, «x be the following:

W, ox =(cos(-45°),sin(-45°))«((x,x,)—(0.5,0))
= cos(—45°)(x,—0.5)+sin(—45°)(x, - 0)
= (—0.5c0s(—45°)—0sin (—45°))+(cos(—45°)) x, +(sin (-45°)) x,

Wo, 1, Wi, 1, Wy 1,

and

Thus, we have the following:

X % | f X % |,
0 0|0 0 010
0 1|1 and 0 1|0
1 010 1 01
1 110 1 110




Now, we have and need the following:

x
N

—h
iy

—h
N

P O OolX

o O O

_ O = O
o O +— O
O R P Ol

Let w «f be the following:
w, of =(cos(45°),sin(45°))«(( f,. f,)—(0,0.5))
=cos(45°)( f,—0)+sin(45°)( f,—-0.5)
= (—0cos(45°)—0.5sin(45°)) +(cos(45°)) f, +(sin (45°)) f,

{282

Wo,y Wiy W,y

and

2 Z . 2

0,f, — 71 1,f1__7 2, 7
2 J2 J2

0,1, :_T 1,1, :71 2,1, :_7’
2\ J2

0y — T, Ly:—,and W2,y:7



b. For the functions f, f,, and y above, calculate the following tables:

Xl XZ j Xl X2 i f1 f2 _y
0 010 0 0|0 0 010
0 1|1 0 110 1 011
1 010 1 0|1 0 1|1
1 1]0 1 1|0
Note: For that last table, you may add additional 0 or 1 values as needed for various

combinations of f, and f,.



Complete the following programming problems on 1inprog4.cs.fsu.edu:

Download the ZIP file containing the directory structure and files for these programming
problems: assignment 04.zip

1. Cross Validation — Part 2 (200 Points):

Use either the "Cross Validation — Part 1" code you wrote for Assignment 03 or the following
code:

—main.cpp: The file to be edited.

—wdbc.data: The Breast Cancer Wisconsin (Diagnostic) Data Set.

—makefile: The makefile for 1inprog4.cs. fsu.edu.

Do not__ touch the Testing dataset that contains 5% of the malignant data and 5% of the
benign data.

Program a k -fold Stratified Cross Validation:

Using just the Training dataset, divide the training dataset into class datasets (for this problem, a
"malignant” dataset and a "benign" dataset).

(Optional) Shuffle each class dataset.

Divide each class dataset into £ equal sets. For this programming problem, let £ = 10;
however, ensure that % is a variable that can change be easily changed.

THE START OF A FOLD OF CROSS VALIDATION.

Create a "Train" dataset and a "Validate" dataset. Copy 1 set from each class into the "Validate"
dataset. Copy the remaining k£ — 1 sets from each class into the "Train" dataset.

(Required) Shuffle the "Train" dataset and then shuffle the "Validate" dataset that contains
copies from each class dataset.

Choose a classifier from OpenCV's Machine Learning Library (MLL) that interests you. Train a
classifier using the "Train" dataset. Use the classifier's train () method (if available).
Validate that classifier's performance using the "Validate" dataset. Use the classifier's
predict () method (if available). Use std: : cout to report the parameters that were used
for the classifier and the performance of the classifier. For this programming problem, the
format of the output is not important.

For performance, use "Overall Accuracy":
the number of classes you predicted correctly

Overall Accuracy = —
the number of predictions you had to make


http://www.cs.fsu.edu/~cop4601p/assignment/04/assignment_04.zip
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/main.cpp
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/wdbc.data
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/makefile
http://docs.opencv.org/2.4.4/modules/ml/doc/ml.html

Store "Overall Accuracy" ina std: : vector that is maintained throughout the life of the
program.

THE END OF A FOLD OF CROSS VALIDATION.

From the £ sets that each class dataset has been divided into, use a different set for your
"Validate" set ... the next set of the & sets in each class. Use the remaining sets to create your
"Train" set. Perform another fold of Cross Validation.

Repeat this £ times until every set of each class dataset has been used in the "Validate" set. In
other words, do £ -folds of this % -fold Stratified Cross Validation.

Example: If £ = 3, then the "malignant" class would be broken up into 3 subsets ... let's call
them malignant_1, malignant_2, malignant_3. Similarly, we would have benign_1, benign_2,
and benign_3.

For the 1st fold, our "Validate" set would contain the data from malignant_1 and benign_1; while
the "Train" set would contain the data from the rest of the sets.

For the 2nd fold, our "Validate" set would contain the data from malignant_2 and benign_2;
while the "Train" set would contain the data from the rest of the sets.

For the 3rd (and final) fold, our "Validate" set would contain the data from malignant_3 and
benign_3; while the "Train" set would contain the data from the rest of the sets.



