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Course: CAP 4601
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Date: 10 JUN 2013

Complete the following written problems:
1. Parametric vs. Nonparametric Methods (40 Points).

For the methods below, indicate whether the method is parametric or nonparametric:

Method Parametric | Nonparametric
Linear Regression X
k-Nearest Neighbor X

Bayesian Network

Multivariate Linear Regression

Logistic Regression

Perceptron

Multilayer Feed-Forward Neural Network

Locally Weighted Regression

XXX XXX

Support Vector Machines

Kernel Density Estimation X

2. Logistic Function (100 Points).

From Page 726 of AIMA, the Logistic Function (also known as the Sigmoid Function) is:

() = —

S lte
where w are the weights attached to the independent variables in x such that
W= (W, W, W,,...,W, ) and x=(1,%,X,,..., X, ). Hence, the dot product is:
WeX
(Wou Wy, Wy, oo, W, )o(L, X, Xy, X, )
Wy -1+ W, - X 4+ W, - X, 4o+ W, - X

Wy + W, - X AW, Xy 4+ W, - X,
In other words, wex is just a "plane” ... possibly a steep "plane”. We have seen how to rotate
and translate a plane in 2 dimensions in order to classify points. From the Introduction to the
Mathematics of Classification, Part 1, we saw that we could combine rotation and translation
such that:

f(xy)=cos(8)(x—x,)+sin(0)(y—Y,)
where € is the angle that "points" towards the positive class from the point (XO, yo).



If we also wanted to adjust the steepness of our plane (aka its "slope™), we could simply add a
slope m out in front such that we would have:

f.(xy)= m(cos(@)(x—x0)+sin(.9)(y— yO))
Since "slope™ is just the change in the "y" over the change in "x", we can represent this "slope"
as:

_ sin(¢)
cos(¢)

m

=tan(¢).
Therefore, we have:

f,(x,y)=tan(g)(cos(0)(x—x%,)+sin(8)(y-Y,))-

If we wanted to use this plane f,(x,y) in a version the logistic function h, (x) above for two
dimensions, then we would have:

1
h, (X)=
w ( ) 1+ e—w-x
1
h(wo,wl,wz) (X’ y) - 1+ e*(Wo»le"Vz)‘(levy)
B 1
1+ e’(W0+W1‘X+W2'y)
B 1
14e M0
1
hxono,9,¢ (X’ y) - 1+ e—tan(qﬁ)(cos(e)(x—xo)+sin(6)(y—y0))
However, let's just use the following:
1
h ( X, y) - —tan(¢)(cos(8)(x—%, )+sin(6)(y-Yo))

l+e
where the (X,,Y,) is where we place this logistic function and @ is the direction in which this

logistic function "points” toward the positive class for a "slope™ ¢ such that 0 < ¢ <% .

For instance, given (X,,Y,)=(0,0), #=0°=0, and ¢=45°=%, we have:

1

h (X' y) = 14 e—tan(¢)(cos(6)(x—xo)+sin(9)(y—yo))
1

,tan[%}(cos(o)(x—o)ﬁin(o)( y-0))

1+e
3 1
a 1+ efl(l(X)+0(y))
1

1+e™




For the following three points:

(-2-2).(00).(2.2)}

We would have the following values:
h(-2-2)  h(0,0) h(2,2)

1 1 1
1+e? 1+e 1+e®
0.119203 0.5 0.880797

Hence, we would have the following plots:

If we increased the "slope” to ¢ =80°= 80"18Lo = 4?” , then we have:

1
1+ e—tan(¢)(cos(6)(x—x0)+sin(0)(y—yo))

1
%j(cos(o)(x-o)mn(o)(y-o))

h(xy)=

1+ e_tan(
1

4?”)(1(x)+0(y))

1+ eftan(



For those same three points, we would have the following values:

h(-2,-2) h(0,0) h(2.2)
1 1 1
14 e—tan(%z](—Z) 14 e—tan[%](o) 1+ e—tan(%[j(z)
0.0000118572 0.5 0.999988

Similar to what we did above and using the points from Written Problem 4 of Assignment 01, do
the following:



a) Write the equation of the logistic function h, (x, y) such that it is placed at (5,5) and is

oriented at @ =45°. In others words, oriented such that it points toward (10,10). Use ¢ =45°.
The plot for this logistic function would be:

h, (x,y)= .
a ( y) 1+ e—tan(¢)(cos(9)(x—x0)+sm(€)(y—yo))
1

—tan(45°)(cos(45°)(x-5)+sin(45°)(y-5))
1
o Lpr-5)+2(5-5)

1
Z

542—X—y
l+e 2 2

1+e

l+e

1

7.0710678118654755-0.7071067811865475x—-0.7071067811865475y

Clte




b) Write the equation of another logistic function h, (x, y) such that it is placed at (5,5) and is
oriented at @ =45°, but this time use ¢ =80°. The plot for this logistic function would be:

1

hy (X, Y)= .
b ( y) 1+ e—tan(¢)(cos(9)(x—x0)+sm(€)(y—yo))
1

—tan(80°)(cos(45°)(x—5)+sin(45°)(y-5))

1

—tan(80°)[g(x—5)+g( y—5)]

l+e

l+e
1
14 eStan(soo)ﬁ tan(82°)ﬁ < tan(BEO)JE ,
1

40.102018326716646-4.010201832671664 x—4.010201832671664 y

C1te




c) Compute the values of h, (x,y) and h,(x,y) for the following points from Written Problem

4 of Assignment 01:
Class 1
Point (x,y) | Value of h, (x,y) Value of h (x,y)
(0.2) 1 0.0017195681779457815 L 116036987714845x10%
942 9tan(80°)v2
l+e? l+e
(1' 0) 1 ~0.0017195681779457815 1 ~2.116036987714845x107*°
9v2 9tan(80°)v/2
l+e? l+e
(O’ 0) 1 ~0.0008486049627111867 1 ~ 3.836319130708604 x10°*®
1+ esﬁ 1+ e5tan(80°)«/§
Class 2
Point (x,y) | Value of h,(x,y) Value of h (x,y)
(10,10) 1 0.9991513950372889 | — ~ _~1.00
11e5V2 14 e SN2
10,9 1 N 1 N
(10.9) 77 ~0.9982804318220542 | —— o ~1.00
l+e 2 l+e
9,10 1 1
(9.10) - ~0.9982804318220542 | —— =100
l+e 2 l+e

d) Which class (Class 1 or Class 2) has values for h, (x,y)and h,(x,y) that are over 0.5? And
which class has values under 0.5?

Class 2 {(10,10),(10,9),(9,10)} has values for h, (x,y)and h, (x,y) that are over 0.5.

Class 1 {(0,1),(1,0),(0,0)} has values for h, (x,y)and h,(x,y) that are under 0.5.




3. Bayes Network (60 Points):

Given the following Bayes Network:

With the following probabilities:
P(X)=0.25
P(Y|X)=0.4
P(Y|-X)=0.6

a) What is P(X|Y)? Show all work.

P(=X)=1-P(X)
~1-0.25
=0.75

P(Y|X)P(X)
P(Y)
e
“P(Y[X)P(X)+P(Y[-X)P(=X)
04)(025)
(0.4)(0.25)+ (06)(0.75)
2

11
~0.18181818181818182

P(X|Y)=




b) Show that P(Y )+ P (=Y )=1. Show all work.

P(=Y|X)=1-P(Y|X)
=1-0.4
=06

P(=Y]—-X)=1-P(Y|-X)
=1-0.6
=0.4

P(Y)=P(Y|X)P(X)+P(Y]-X)P(=X)

Total Probability

0.4)(0.25)+(0.6)(0.75)

(0.
0.55

P(=Y)=P(=Y[X)P(X)+P(=Y|-X)P(=X)
(06)(0:25)+(04)(0.75
0.45

P(Y)+P(=Y)=(0.55)+(0.45)
1



Complete the following programming problem on 1inprog4.cs. fsu.edu:

Download the ZIP file containing the directory structure and files for this programming problem:
assignment_03.zip

1. Logistic Regression (100 Points):

Recalling Logistic Regression from Machine Learning with Andrew Ng, program logistic
regression using gradient descent on the data from Written Problem 4 of Assignment 01. Use the
logistic function, cost function, and gradients provided in the video lectures to fit a logistic
regression to those six points.

Using the notation from the Logistic Function in the Written Problems above, this logistic
regression will iteratively find the locally best parameters w = (W, W,,W,,...,w, ) for a given
dimension n. Since we have two dimensional data, then n=2; hence, we'll iteratively find the
locally best parameters w =(w,,w;,w, ) for x=(1,x,,x,). Note: Andrew Ng used

0= (90,6?1,...,9j ,...,Hn) to represent these same parameters in the Machine Learning course.

Start your gradient descent at with the parameters initially setto w = (O, 0, 0), use a learning rate

of =0.1, and ensure that the termination criteria for your gradient descent is set to the
following:

Stop the gradient descent when either:
e The distance between consecutive iterations of parameters w = (W,, w,,w, ) is less than
0.000001. In other words, given the n-th and n+1-th iteration, |w,,, —w, [ <0.000001.

e The number of full gradient descent iterations exceeds 1024. In other words, don't do
more than 1024 updates of gradient descent.

Given the Class 1 points (the red points below) and the Class 2 points (the blue points below),
ensure your logistic regression approximately produces parameter values w = (wo,wl, wz)
consistent with the following plots:


http://www.cs.fsu.edu/~cop4601p/assignment/03/assignment_03.zip
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HINT: Pay close attention to the y(i) terms that Andrew Ng mentions in the videos. You may
need to manipulate the class labels in the data set.

HINT: Pay close attention to the x(ji) terms that Andrew Ng mentions in the videos. Do not
forget the 1 in those terms. Note: We used the notation x =(1,x,,X, ) for this term above.

Use std: : cout to output information exactly in the following format:

0, 0, 0}

1.4, 1.4 }

-0.210437, 1.31978, 1.31978 }
-0.405597, 1.24458, 1.24458 }

DS w N -
e e N N )
(@)
~

Note: The ellipses above should not be included in your output. The ellipses represent the rest of
your properly formatted output for this gradient descent problem.



2. Cross Validation - Part 1 (100 Points):

Using OpenCV's CvMLData, create a program that reads in the Breast Cancer Wisconsin
(Diagnostic) Data Set, ignores the ID number column from the dataset, uses the Diagnosis
column as the class, and uses the remaining columns as the data.

Separate each class into its own dataset. Example: Place all the data whose Diagnosis column
reads "M" (for malignant) into one container. Place all the data that reads "B" (for benign) into
another container.

Split each container such that 95% of the data is placed into a training set and a 5% is placed into
a testing set. Therefore, 95% of malignant data and 95% of benign data will be in the training
dataset. Moreover, 5% of the malignant data and 5% of the benign data will be in the testing
dataset.

Use std: : cout to print the following:
e The number of malignant data points in the training dataset.
e The number of benign data points in the training dataset.
e The number of malignant data points in the testing dataset.
e The number of benign data points in the testing dataset.

Ensure your output is formatted exactly as follows:

Training Data

Malignant: AAA
Benign: BBB

Testing Data

Malignant: CCC
Benign: DDD

... Where ARAA, BBB, CCC, and DDD represent the counts in their respective datasets.


http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

