
Repetitive Structures

Lecture 8
CGS 3416 Spring 2020

January 30, 2020



Control Flow

Control flow refers to the specification of the order in which the
individual statements, instructions or function calls of an
imperative program are executed or evaluated



Types of Control Flow

Flow of control through any given function is implemented with
three basic types of control structures:

I Sequential: Default mode. Statements are executed line by
line.

I Selection: Used for decisions, branching – choosing between
2 or more alternative paths.
I if
I if - else
I switch
I conditional statements

I Repetition: Used for looping – repeating a piece of code
multiple times in a row.
I while
I do - while
I for

The function construct, itself, forms another way to affect flow of
control through a whole program. This will be discussed later in
the course.



Repetition Statement

I Repetition statements are called loops, and are used to repeat
the same code multiple times in succession.

I The number of repetitions is based on criteria defined in the
loop structure, usually a true/false expression.

I The three loop structures in Java are:
I while loops
I do-while loops
I for loops

Three types of loops are not actually needed, but having the
different forms is convenient.



while loop

I Format for a while loop
while (boolean expression)

{
statement1;

statement2;

// ...

statementN;

}
I The boolean expression in these formats is sometimes known

as the loop continuation condition.

I The loop body must be a block, or a single statement (like
with the if-statements).



do-while loop

I Format for a do-while loop
do

{
statement1;

statement2;

// ...

statementN;

} while (boolean expression);

I The boolean expression is a test condition that is evaluated to
decide whether the loop should repeat or not.
I true means run the loop body again.
I false means quit.

I The while and do/while loops both follow the same basic
flowchart – the only exception is that:
I In a while loop, the test expression is checked first
I In a do/while loop, the loop ”body” is executed first



Examples

Both of these examples add all the numbers from 1 through 50.

// while loop example

//loop runs 50 times, condition checked 51 times

int i = 1, sum = 0;

while (i <= 50)

{
sum += i; // means: sum = sum + i

i++; // means: i = i + 1

}

System.out.println("Sum of numbers from 1

through 50 is " + sum);



Examples

// do-while loop example

//loop runs 50 times, condition checked 50 times

int i = 1, sum = 0;

do

{
sum += i; // means: sum = sum + i

i++; // means: i = i + 1

}while (i <= 50);

System.out.println("Sum of numbers from 1

through 50 is " + sum);



The for loop

The for loop is most convenient with counting loops – i.e. loops
that are based on a counting variable, usually a known number of
iterations.

Format of a for loop:

for (initialCondition; boolean Expression;

iterativeStatement)

{
statement1;

statement2;

// ...

statementN;

}



The for loop

How it works:

I The initialCondition runs once, at the start of the loop.
I The boolean Expression is checked. (This is just like the

expression in a while loop). If it’s false, quit. If it’s true, then:
I Run the loop body
I Run the iterativeStatement
I Go back to the boolean Expression step and repeat

Example:
//loop runs 50 times, condition checked 51 times

int i, sum = 0;

for (i = 1; i <= 50; i++)

{
sum += i;

}
System.out.println("Sum of numbers from 1

through 50 is " + sum);



More examples

I This loop prints “Hello” 10 times.
for (int i = 0; i <10; i++)

System.out.println("Hello");

I Loops can also be nested. This prints a rectangle
for (int i = 0; i <10; i++)

{
for (int j = 0; j <15; j++)

{
System.out.print(’*’);

}
System.out.println();

}
}



Some notes on the for loop

It should be noted that if the control variable is declared inside the
for header, it only has scope through the for loop’s execution.

Once the loop is finished, the variable is out of scope:

for (int counter = 0; counter <10; counter++)

{
// loop body

}

System.out.println(counter);

// illegal. counter out of scope



Some Notes on the for loop

This can be avoided by declaring the control variable before the
loop itself.

int counter; // declaration of control variable

for (counter = 0; counter <10; counter++)

{
// loop body

}

System.out.println(counter);

// OK. counter is in scope



Some Notes on the for loop

For loops also do not have to count one-by-one, or even upward.
Examples:

for (i = 100; i >0; i--)

for (c = 3; c <= 30; c+=4)

The first example gives a loop header that starts counting at 100
and decrements its control variable, counting down to 1 (and
quitting when i reaches 0).

The second example shows a loop that begins counting at 3 and
counts by 4’s (the second value of c will be 7, etc).



break and continue

I These statements can be used to alter the flow of control in
loops, although they are not specifically needed. (Any loop
can be made to exit by writing an appropriate test expression).

I break: This causes immediate exit from any loop (as well as
from switch blocks).

I continue: When used in a loop, this statement causes the
current loop iteration to end, but the loop then moves on to
the next step.
I In a while or do-while loop, the rest of the loop body is

skipped, and execution moves on to the test condition.

I In a for loop, the rest of the loop body is skipped, and
execution moves on to the iterative statement.


