Summation formulas and properties
|
where a1 + a2 + a3 + ...+ an finite |
¥
å
i = 1
|
ai = |
lim
n ® ¥ |
n
å
i = 1
|
ai |
= |
lim
n ® ¥
|
Pn |
|
Converges or diverges based on Pn.
Note: order matters except when
¥
å
i = 1
|
| ai | |
converges |
Linearity:
n
å
i = 1
|
cak + cbk |
= |
n
å
i = 1
|
cak + |
n
å cbk
i = 1 |
For example:
n
å
i = 1 |
Q ( f ( i )) |
= Q ( |
n
å f ( i ) )
i = 1 |
Sum Series:
|
1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = Q ( n2 ) ( arithmetic series ) |
|
1 + x + ... + xn = ( xn+1 - 1 ) / (x - 1) ( geometric series ) |
if | x | < 1
¥
å
i = 1
|
xi = |
lim
n ® ¥ |
n
å
i = 1
|
xi |
= |
lim
n ® ¥ |
( xn+1 - 1 ) / (x - 1) = |
1/(1 - x) |
|
1 + 1/2 + ... + 1/n = ln n + O (1 ) (harmonic series ) |
The series can be integrated term by term when in convergence interval
Telescoping Series:
(a1 - a0 ) + (a2 - a1 ) + (a3 - a2 ) + ... + (an - an-1 ) = (an - a0)
n-1
å
i = 1 |
1 /( k ( k + 1)) |
= |
n-1
å (1/k - 1/(k+1) ) = 1/1 - 1/(n -1 +1) = 1-1/n
i = 1 |
Products:
When n = 0 : Õ ai = 1, by definition
lg |
n
Õ ai
i = 1 |
= |
n
å lg ai
i = 1 |
|
|