Back to main page

 

mEEC – A Novel Error Estimation Code with Multi-Dimensional Feature

 

                   

Error Estimation Code (EEC) can be used to estimate the number of errors in a packet transmitted over a wireless channel. Typically, such packets do not have a lot of errors, and knowing the numbers of errors will allow the wireless transmitter to use the most efficient method to recover the errors, such as transmitting just enough number of parity bits, instead of retransmitting the entire packet.

 

EEC typically works by taking samples from the packet, then calculating a feature of the samples and transmit the feature as the code. The receiver can locally calculate the feature based on the received data packet in the same manner, which will be different from the transmitted feature if there are errors, and can use the difference to estimate the number of errors in the packet. The actual EEC usually consists of multiple features calculated in the same manner.

 

The main innovation of mEEC is to introduce a novel multi-dimensional feature and a color assignment as the code, exploiting the fact that the error ratios in partial packets are typically small. That is, mEEC divides the sampled data bits into blocks, then groups multiple blocks into a super-block, and uses only one number, i.e., the color, to represent all features of the blocks. The advantage of grouping is that it introduces useful dependencies among the blocks and allows them to share the cost of covering low probability events.

 

The evaluation shows that mEEC achieves smaller estimation errors than the state of art on metrics such as the relative mean squared error, on average by more than 10%-20% depending on the packet sizes, sometimes as high as over 40%, at the same time having less bias.

 

This research was supported by my NSF CAREER grant: CAREER: Addressing Fundamental Challenges for Wireless Coverage Service in the TV White Space. 1149344.

 

Publication:

Z. Zhang and P. Kumar, “mEEC: A novel error estimation code with multi-dimensional feature,” in Proc. of IEEE Infocom, Atlanta, GA, May 2017. 9 pages. Acceptance rate:  20.93% (292/1395).

Code:

A Matlab implementation of mEEC can be downloaded here. Please feel free to email me for any questions related to mEEC.

 

Slides:

mEEC: A Novel Error Estimation Code with Multi-Dimensional Feature