
Efficient Progressive Minimum
k-Core Search

Authors: Conggai Li , Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang and
Xuemin Lin

Team: Deepak Kukkapalli [vk23p]
Karthik Reddy Vemireddy [kv23b]

Muqeet Mohsin Shaik [m23ch]

COP5725 Database Systems

What is a K-Core?
A k-core is a subgraph where each node has at least k connections to other
nodes in the same subgraph. We are trying to find the smallest k-core
subgraph (minimum k-core) that includes certain important nodes (called
query vertices).

Example: where k =3

Graph G=(V,E) where:
V is the set of vertices (nodes).
E is the set of edges (connections)
between the vertices.
n = |V| is the number of vertices in the
graph.
m = |E| is the number of edges in the
graph.

Finding this smallest k-core is very difficult because it's an NP-hard problem,
meaning there's no easy, fast way to always find the perfect solution.

The search space is huge, making it impractical to find the exact minimum k-
core by brute force. Existing methods mostly focus on greedy approaches,
which may not find the best possible solution.

Motivation [Why focus on the smallest k-core?]:
Social Networks: If a company wants to recommend a product to a group of
users, a smaller, more relevant group (instead of a huge one) makes more sense.
Biological Networks: When studying proteins that interact, scientists reported
small, closely related groups share the same function.
Neural Networks: In brain research, activating a small k-core of neurons can be
more efficient than targeting a large group.

Problem and Motivation

EXISTING SOLUTIONS FOR MINIMUM K-CORE SEARCH

Global Search (Shrink Strategy)
Initialization: Compute the maximal k-core of the graph.1.
Pruning: Iteratively remove non-query vertices while ensuring the remaining subgraph
retains the k-core property.

2.

Goal: Minimize subgraph size while retaining the query vertex.3.
Local Search (Expansion Strategy)

Initialization: Start with the query vertex q as subgraph P.1.
Expansion: Maintain a candidate set C (neighbors of P not yet added). Iteratively add the
highest-scoring vertex u from C using S-Greedy: Score(u) = p⁺(u) − p⁻(u)

2.

p⁺(u): Fixes low-degree nodes in P (neighbors of u with degree < k).
p⁻(u): Additional nodes required to ensure u has ≥ k neighbors.

Stop when P becomes a valid k-core.
Time Complexity: O(s(dₘₐₓ + log n)), where s = output size, dₘₐₓ = max degree.3.

LIMITATIONS OF EXISTING APPROACHES

Not optimal: The greedy approach does not guarantee that the final subgraph is
the smallest possible k-core.

1.

Quality gap: Empirical studies show that the subgraphs produced are still much
larger than the true minimum k-core.

2.

Need for a New Approach:
 Since existing methods lack control over result quality and do not guarantee an
optimal or near optimal subgraph, so we’d need an algorithm that balances both
quality and efficiency.

v

PROGRESSIVE SEARCH ALGORITHM (PSA)

PSA (Progressive Search Algorithm) is a method used to find an approximate
minimum k-core in a graph. It does this by combining Lower Bound Search and
Upper Bound Search to efficiently explore and refine a set of nodes.

The algorithm starts at a given query node v.

It checks if v belongs to the minimal k-core. If not, the process
stops.

Otherwise, the algorithm begins constructing a search tree,
where each node represents a possible choice of expanding
the subgraph.

v1 v2

This approach expands the most promising nodes first, ensuring

that the subgraph remains strongly connected.

At each step, the algorithm selects a node with a high degree

(many connections) and grows outward.

If a new node has a stronger connection than the previously

chosen one, it is prioritized to build a solid foundation.

LOWER BOUND SEARCH

Think of it like forming a close-knit friend group in a social network—first,
you pick the people who have the most connections to the existing members.

This approach tests deeper paths quickly, attempting
to find a complete solution earlier.

If a path leads to a valid k-core, the algorithm
updates its best-known result.

If a path appears weak (not forming a strong k-core),
it is discarded early, avoiding unnecessary
exploration.

UPPER BOUND SEARCH

This is like testing a small but tight group of friends to see if they form a
strong enough core before looking at wider connections.

The PSA algorithm runs both Lower Bound Search and
Upper Bound Search together.

If a newly discovered subgraph is better than the current
best solution, the algorithm updates its selection.

The process continues until the best possible k-core is
found while ensuring the approximation ratio is met.

COMBINING LOWER AND UPPER BOUNDS (PSA ALGORITHM)

Imagine trying to find the best-connected social circle—one approach expands
steadily, while another checks deeper paths to find a good fit quickly. Together, they
ensure an optimal.

KEY RESULTS
PSA vs. State-of-the-Art: Superior

Effectiveness
Result Size:

PSA produces 2–10x smaller
k-cores than S-Greedy.
Example: Yeast dataset: 52
nodes (PSA) vs. 200+ (S-
Greedy).

Engagement & Structure:
49% engagement (vs. ≤43%
for others) with lower
diameter (3.39 vs. 5–14).

Takeaway: PSA ensures minimal,
actionable communities with
higher relevance.

On Gowalla Dataset

KEY RESULTS

 Real-World Precision: Case Study on
Yeast

Biological Networks:
PSA’s 7-node subgraph: All proteins
share functionality with the query.
S-Greedy’s 254-node result: Only
12.6% functional relevance.

Implications:
Enables precise protein-function
prediction.
Reduces verification costs in
recommendation systems.

KEY RESULTS
Unmatched Efficiency &

Scalability
Speed:

2–5x faster than baselines.
Processes billion-edge
graphs (e.g., Web base) in
1.5 hours.

Technical Breakthroughs:
Tight bounds: lower and
upper bounds reduce search
space which ensures
minimal k-cores.

For Wiki dataset
k-

co
re

 s
iz

e

CONCLUSION

PSA Delivers:
Quality: Near-optimal k-cores with provable guarantees.

Speed: 2–5x faster than competitors.

Versatility: Effective for hubs, non-hubs, and multi-query scenarios.

Real-World Value: Enables actionable insights in social networks,
bioinformatics, and recommendation systems.

