Efficient Proeressive Minimum
k-Core Searc

Authors: Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang and
Xuemin Lin

COPS725 Database Systems Team: Deepak Kukkapalli [vk23p]
Karthik Reddy Vemireddy [kv23Db]
Mugeet Mohsin Shaik [m23ch]

What is a K-Core?

A k-core Is a subgraph where each node has at least k connections to other
nodes In the same subgraph. We are trying to find the smallest k-core
subgraph (minimum k-core) that includes certain important nodes (called
query vertices).

Graph G=(V,E) where:

e Vis the set of vertices (nodes).

e Eis the set of edges (connections)
between the vertices.

e n=|V|]is the number of vertices in the
graph.

e m = |E| is the number of edges in the
graph.

Example: where k =3

Problem and Motivation

e Finding this smallest k-core is very difficult because it's an NP-hard problem,
meaning there's no easy, fast way to always find the perfect solution.

e The search space is huge, making it impractical to find the exact minimum k-
core by brute force. Existing methods mostly focus on greedy approaches,
which may not find the best possible solution.

Motivation [Why focus on the smallest k-core?]:
Social Networks: If a company wants to recommend a product to a group of
users, a smaller, more relevant group (instead of a huge one) makes more sense.
Biological Networks: When studying proteins that interact, scientists reported
small, closely related groups share the same function.
Neural Networks: In brain research, activating a small k-core of neurons can be
more efficient than targeting a large group.

EXISTING SOLUTIONS FOR MINIMUM K-CORE SEARCH

Global Search (Shrink Strategy)
1.Initialization: Compute the maximal k-core of the graph.
2.Pruning: lteratively remove non-query vertices while ensuring the remaining subgraph
retains the k-core property.
3.Goal: Minimize subgraph size while retaining the query vertex.
Local Search (Expansion Strategy)
1.Initialization: Start with the query vertex g as subgraph P.
2.Expansion: Maintain a candidate set C (neighbors of P not yet added). Iteratively add the
highest-scoring vertex u from C using S-Greedy: Score(u) = p*(u) — p~(u)
e p*(u): Fixes low-degree nodes in P (neighbors of u with degree < k).
e p~(u): Additional nodes required to ensure u has = k neighbors.
o Stop when P becomes a valid k-core.

3.Time Complexity: O(s(dmax + log n)), where s = output size, dmax = max degree.

LIMITATIONS OF EXISTING APPROACHES

1.Not optimal: The greedy approach does not guarantee that the final subgraph is
the smallest possible k-core.

2.Quality gap: Empirical studies show that the subgraphs produced are still much
larger than the true minimum k-core.

Need for a New Approach:

Since existing methods lack control over result quality and do not guarantee an
optimal or near optimal subgraph, so we’d need an algorithm that balances both
quality and efficiency.

PROGRESSIVE SEARCH ALGORITHM (PSA)

PSA (Progressive Search Algorithm) is a method used to find an approximate
minimum k-core in a graph. It does this by combining Lower Bound Search and

Upper Bound Search to efficiently explore and refine a set of nodes.

e The algorithm starts at a given query node v.

e |t checks if v belongs to the minimal k-core. If not, the process
stops.

vi V2
e Otherwise, the algorithm begins constructing a search tree,

where each node represents a possible choice of expanding
the subgraph.

LOWER BOUND SEARCH

e This approach expands the most promising nodes first, ensuring

that the subgraph remains strongly connected.

";!'__.In
e At each step, the algorithm selects a node with a high degree @'fo'?ﬁtk
3 3 i
G

2

Lower Bound Driven
(Best-First Search)

(many connections) and grows outward.

e If a new node has a stronger connection than the previously

chosen one, it is prioritized to build a solid foundation.

Think of it like forming a close-knit friend group in a social nhetwork — first,
you pick the people who have the most connections to the existing members.

UPPER BOUND SEARCH

e This approach tests deeper paths quickly, attempting
to find a complete solution earlier.

e |f a path leads to a valid k-core, the algorithm
updates its best-known result.

e |f a path appears weak (hot forming a strong k-core),
it iIs discarded early, avoiding unnecessary
exploration.

Upper Bound Driven
¢ (Depth-First Search)

This is like testing a small but tight group of friends to see if they form a
strong enough core before looking at wider connections.

COMBINING LOWER AND UPPER BOUNDS (PSA ALGORITHM)

e The PSA algorithm runs both Lower Bound Search and
Upper Bound Search together.

e |If a newly discovered subgraph is better than the current
best solution, the algorithm updates its selection.

e The process continues until the best possible k-core is
found while ensuring the approximation ratio is met.

Imagine trying to find the best-connected social circle —one approach expands
steadily, while another checks deeper paths to find a good fit quickly. Together, they
ensure an optimal.

KEY RESULTS

PSA vs. State-of-the-Art: Superior
Effectiveness
e Result Size:
o PSA produces 2-10x smaller
k-cores than S-Greedy.
o Example: Yeast dataset: 52
nodes (PSA) vs. 200+ (S-
Greedy).

e Engagement & Structure:

o 49% engagement (vs. =43%
for others) with lower
diameter (3.39 vs. 5-14).

e Takeaway: PSA ensures minimal,
actionable communities with
higher relevance.

Metrics Hiameterdegreeidensity CClavg. siszngage
k-Core 8.12 |24.45| 0.001 |0.32(23196.29(35%
k-Truss 4.61 6.92 | 0.63 [0.33{13020.85| 43%
k-Ecc 7.62 [25.18] 0.02 [0.33[22561.75| 36%
k-Clique 5.18 | 15.49| 0.38 [0.63[15775.21] 42%
Graph Clusteringl 13.87 | 859 ; 0.11 (0.32|81232.53| 30%
Min k-Core 3.39 [10.09| 0.37 0.57] 52.02 | 49%

On Gowalla Dataset

KEY RESULTS

Real-World Precision: Case Study on
Yeast
e Biological Networks:
o PSA’s 7-node subgraph: All proteins

share functionality with the query. T YORDI6C
o S-Greedy’s 254-node result: Only Lﬁ"‘? YKIHCZ~ *PHW“
12.6% functional relevance. S5 YORXRC 1.:[ﬁf‘iﬁ'ﬂ“
orRiioc VIRBAW VORBIW
(a) S-Greedy (b) PSA

 Implications:
o Enables precise protein-function
prediction.
o Reduces verification costs in
recommendation systems.

KEY RESULTS

Unmatched Efficiency &

Scalability
e Speed:
o 2-Bx faster than baselines.
o Processes billion-edge
graphs (e.g., Web base) in
1.5 hours.

k-core size

e Technical Breakthroughs:

o Tight bounds: lower and
upper bounds reduce search
space which ensures
minimal k-cores.

0= S-Greedy™ L-Greedy

1{]3

10!

lﬂ“
-l

PSA

For Wiki dataset

32

CONCLUSION

e PSA Delivers:
o Quality: Near-optimal k-cores with provable guarantees.

o Speed: 2-5x faster than competitors.

o Versatility: Effective for hubs, non-hubs, and multi-query scenarios.

e Real-World Value: Enables actionable insights in social networks,
bioinformatics, and recommendation systems.

