Florida State University

 \times \times \times \times

TRANSFORMERS FOR RECSYS

- Pramesh Regmi pr23n
- Pratima Sapkota **ps23bc**
- Sudheer Bommichetty sb23m

Florida State University | fsu.edu

<<<<

 $\times \times \times \times$

3n 3bc sb23m

.

PAPER 1

Deep Multifaceted Transformers for Multi-objective Ranking in Large-Scale E-commerce Recommender Systems Transformers4Rec: Bridging the Gap Between NLP and Sequential/Session-Based Recommendation

••••

Florida State University | fsu.edu

 \times \times \times \times

PAPER 2

Paper 2

MOTIVATION

Why Transformer for Recommender Systems

- Current advancements in NLP is due to the ability of Transformer to understand long sequential relevance using attention.
- Natural language modeling is similar in a way to recommendation system modeling because of the sequential nature of both application.

Florida State University | fsu.edu

$\mathsf{NLP} \longrightarrow \mathsf{RECSYS}$

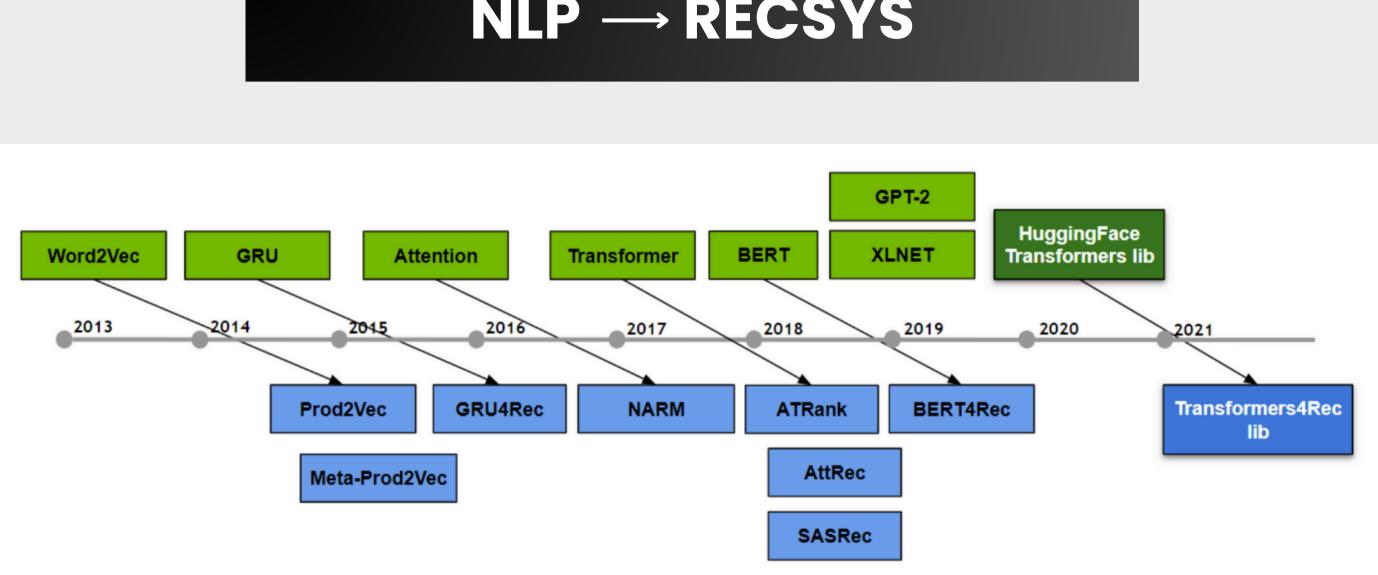


fig. The advancements in NLP have always been extended to RecSys within a few years of its inception.

 \times \times \times \times

Paper 1

INTRODUCTION

Key Role of Recommender Systems

• Enable personalized recommendations, primarily used for product suggestion (e-commerce) and content suggestions (social media)

Paper's (and Our) Focus

- Study the ranking stage in e-commerce, crucial for determining what the user sees at the top
- Capture diverse user interests from behavior sequences over multiple time scales for robust modelling

Florida State University | fsu.edu

CHALLENGES

• • • • • • • • • • •

Simultaneous Multi-objective Optimization:

How to Optimize CTR (likelihood of a click) and CVR (likelihood of a purchase after a click)

Joint Modeling of Diverse User Behaviors:

How to Integrate behaviors like clicks, adding items to the cart, and purchases into a unified framework

Reduction of Bias:

How to address selection bias (e.g., items at the top are more likely to be clicked) using novel techniques.

.

Florida State University | fsu.edu

HYPOTHESIS

MULTI-OBJECTIVE LEARNING HYPOTHESIS

• Modeling and jointly optimizing multiple objectives (e.g., CTR and CVR) using shared representations can improve the overall performance.

MULTIFACETED INTEREST HYPOTHESIS

• Users' diverse behaviors (e.g., clicks, adds-to-cart, and orders) reflect distinct aspects of preferences and should be modeled independently.

 \times \times \times \times

THEORETICAL FRAMEWORK

Input Representation

• Categorical Features

- Represent user-item interactions, such as product ID, category, and brand.
- Each item in a user's behavior sequence is represented by embeddings for its associated attributes.

Dense features •

- Includes user profile (e.g., purchase power, preferences), item profile (e.g., CTR, CVR), and user-item interaction features.
- Normalized to ensure compatibility with neural network models.

 \times \times \times \times

 \times \times \times \times

Deep Multifaceted Transformers (DMT)

sequences effectively.

• Multi-gate Mixture-of-Experts (MMoE)

and conflicts between CTR and CVR.

Bias Deep Neural Network (BDNN)

in training data.

Florida State University | fsu.edu

• Leverage multiple transformers to model user behavior

• Enable the system to manage complex relationships

• Use additional features to model and mitigate biases

Deep Multifaceted Transformers (DMT) Layer

• Architecture

- Uses three distinct Transformers for each behavior type (clicks, adds-tocart, orders).
- These Transformers generate interest vectors for each behavior type.

Self-Attention Mechanism

- Learns relationships between items in a sequence by attending to all items simultaneously.
- Encodes dependencies between items to capture the evolution of user preferences.

• Positional Encoding

• Adds sequence information to embeddings.

 \times \times \times \times

Multi-Gate Mixture-of-Experts (MMoE) Layer

• Purpose

• Model task-specific relationships and conflicts between CTR and CVR.

• Architecture

- It uses N expert networks (MLPs) with ReLu, to model shared input and get the outputs of each expert.
- For each task k, it exploits a gating network NNGk to learn the weights of each expert, and get the weighted sum of expert outputs.

• Theoretical Benefit:

• Allows tasks to share useful features while maintaining task-specific specialization.

 \times \times \times \times

Bias Deep Neural Network (Bias DNN)

• Purpose

• Correct biases inherent in implicit feedback data.

• Modeled Bias Types

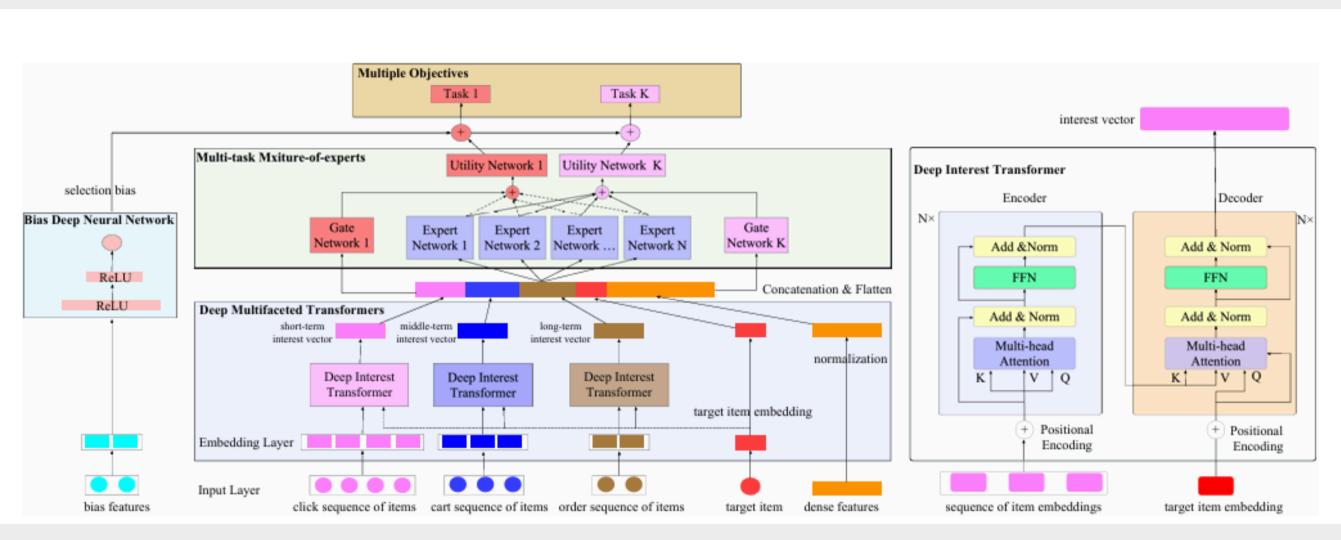
- **Position Bias**: Items in higher-ranked positions are more likely to be clicked.
- Neighboring Bias: Interaction probabilities are influenced by surrounding items.

• Implementation:

- Bias features are embedded and processed through MLPs to estimate bias correction.
- Position bias is modeled by using "Position_index" and "Position_page", derived from item's rank within the recommendation list and its page position.
- Neighboring bias is corrected using item category and its six nearest neighbors which are embedded into low-dimensional vectors and processed through MLPs.

 \times \times \times \times

OVERALL ARCHITECTURE



Deep Multifaceted Transformers (bottom), is consisted of multiple Deep Interest Transformers (right), to extract users' multifaceted interests from their diverse behavior sequences, exploits Multi-gate Mixture-of-Experts (MMoE) (top) to simultaneously optimize multiple objectives, and uses a Bias Deep Neural Network (left) to reduce the bias in training data.

 \times \times \times \times

SELF-ATTENTION MECHANISM

- Q, K, V: Query, Key, and Value matrices.
- d_k = Dimensionality of keys.

Attenti

02

01

MULTI-GATE MIXTURE OF EXPERTS

For task *k*: w^k_i=Task-specific gating weight For expert *i*, e_i(x)= Output of *i*

 $f^k(x) =$

03 BIAS-CORRECTION Bias-adjusted utility score for task

 $u_k = c$

$$on(Q,K,V) = softmax\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

$$\sum_{i=1}^N w_i^k e_i(x)$$

$$\sigma(u_k^{MMoE}+y_b)$$

Training Details

- Loss Function
 - Both objective (CTR and CVR) use cross-entropy loss.
 - Total loss is a weighted sum of individual task losses
- Bias Correction
 - During training, utility scores from the MMoE layer are adjusted with bias terms estimated by the Bias DNN.

Prediction Details

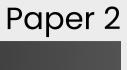
- For each task k, a sigmoid activation is applied to the task-specific utility score to compute probabilities.
- Final ranking scores are computed as a weighted sum of task-specific scores

 \times \times \times \times

Significantly outperforms state-of-the-art baselines (DIN, DIEN, GBDT) on JD.com's dataset, achieving substantial improvements in both click and order prediction metrics.

Metric	Baseline (GBDT)	DIEN	DMT (Without Bias)	DMT (With Bias)	
CTR Improvement	0%	+14.3%	+18.2%	+18.8%	
CVR Improvement	0%	+14.6%	+16.9%	+19.2%	
GMV Improvement	0%	+11.9%	+16.2%	+17.9%	

Florida State University | fsu.edu



HUGGINGFACE

PREPROCESS

Integrated with NVTabular for large-scale, GPU-accelerated feature engineering.

TRAIN

Provides modular, configurable pipeline for training with ranking-based metrics.

EVALUATE

Supports session-based recommendation-specific evaluation metrics (like NDCG@20, Recall@20) and incremental evaluation for production-like scenarios.

Florida State University | fsu.edu

CONCRETE VALIDATION

Dataset	Metric	Best Transformer (Method)	Performance	Best Baseline	Baseline Performance	Improvement (%)
REES46 (eCommerce)	NDCG@20	XLNet (RTD)	0.2546	GRU4Rec (FT)	0.2231	+14.15
	HR@20	XLNet (RTD)	0.4886	VSTAN	0.4857	+0.60
YOOCHOOSE (eCommerce)	NDCG@20	XLNet (RTD)	0.3776	GRU4Rec (FT)	0.3442	+9.75
	HR@20	BERT (MLM)	0.6349	GRU4Rec (FT)	0.5891	+7.78
G1 (News)	NDCG@20	ELECTRA (RTD)	0.3588	GRU	0.3549	+1.10
	HR@20	XLNet (PLM)	0.6634	GRU	0.6632	+0.03
ADRESSA (News)	NDCG@20	XLNet (MLM)	0.3822	GRU	0.3799	+0.61
	HR@20	XLNet (CLM)	0.7378	GRU	0.7413	-0.47

CONCLUSION

••••

- Transformers architectures have higher performance for recommendation systems for e-commerce than any other baselines.
- Modeling diverse behaviors distinctly provides a strong modeling however, needs a module to confirm to the task specific conflicts.
- Modeling RecSys by incorporating biases strengthens the recommendation performance.
- With integration with every auto-diff library and availability of transformers specifically for RecSys, the future seems transforming.

 $\bullet \bullet \bullet$

Florida State University | fsu.edu

FUTURE DIRECTIONS

IMPLEMENTATION

An example trial can be done with the pre-existing transformers library and available datasets.

VALIDATION

The results of the primary paper can be verified by simply training a transformer using HuggingFace's transformer library and testing against existing metrics.

 \times \times \times \times

Florida State University

THANK YOU

fsu.edu

