
E�cient On-the-y Analysis of ProgramBehavior and Static Cache Simulation ?Frank Mueller and David B. WhalleyDept. of Computer Science, Florida State University, Tallahassee, FL 32306-4019e-mail: whalley@cs.fsu.edu phone: (904) 644-3506Abstract. The main contributions of this paper are twofold. First, a general frameworkfor control-ow partitioning is presented for e�cient on-the-y analysis, i.e. for programbehavior analysis during execution using a small number of instrumentation points. Theformal model is further re�ned for certain analyses by transforming a program's callgraph into a function-instance graph. Performance evaluations show that the numberof measurement points can be reduced by one third using these methods.Second, the method of static cache simulation is introduced. Static cache simulationprovides the means to predict a large number of cache references prior to the executiontime of a program. The method is based on a variation of an iterative data-ow algo-rithm commonly used in optimizing compilers. It utilizes control-ow partitioning andfunction-instance graphs for predicting the caching behavior of each instruction. To ourknowledge, no prior work has been done on predicting caching behavior statically. Adetailed description is provided for instruction cache analysis, which is then discussedfor a variety of applications ranging from fast instruction cache performance evaluationto analytical bounding of execution time for real-time applications.1 IntroductionProgram analysis through pro�ling and tracing has long been used to evaluatenew hardware and software designs. The traditional approach relies on gener-ating a program trace during execution that is analyzed later by a tool. Theproblem of generating a minimal trace, which can later be expanded to a fullevent-ordered trace, can be regarded as solved [3]. A near-optimal (often evenoptimal) solution to the problem for a control-ow graph G can be found bydetermining a maximum spanning tree max(G) for the control-ow graph andinserting code on the edges of G�max(G).Recently, tracing and analyzing of programs has been combined using on-the-y analysis [5]. This analysis technique requires that events are analyzedas they occur but does not require the storage of trace data. The analysis isperformed during program execution and is specialized for a certain application(e.g. counting hits and misses for cache evaluation). The results of the analysisare available at program termination such that no post-execution analysis by anytool is required. If the application or the con�guration changes, the program hasto be executed again. In contrast, trace data can be analyzed by several toolsand for several con�gurations once the data is generated. But the generation oftrace data is typically slow and space consuming since the data is written to a�le and later read again by a tool.On-the-y analysis requires that the program be instrumented with codethat performs the analysis. Many applications, including cache simulation, re-quire that all events are simulated in the order in which they occur. In the past,each basic block was instrumented with code to support event-ordered analy-sis [11]. Inserting code based on the maximum spanning tree (or, to be more? Supported in part by the O�ce of Naval Research, contract # N00014-94-1-0006.In Proceedings of the Static Analysis Symposium, September 1994 1



precise, on its complement) does not cover all events and is therefore not appli-cable to on-the-y analysis. This paper provides the framework to reduce codeinstrumentation to a small number of places. This framework supports e�cienton-the-y analysis of programs with regard to path partitioning. The executionoverhead can be further reduced by analyzing instances of functions. The con-struction of a function-instance graph from a program's call graph is presentedin this paper.One application for program analysis is cache evaluation. Di�erent cachecon�gurations can be evaluated by determining the number of cache hits andmisses for a set of programs. Cache analysis can be performed on-the-y orby analyzing stored trace data, though faster results have been reported forthe former approach [12]. This paper introduces the method of static cachesimulation which predicts the caching behavior of a large number of referencesprior to execution time. The method employs a novel view of cache memories,which is, to our knowledge, unprecedented. The method is based on a variation ofan iterative data-ow algorithm commonly used in optimizing compilers. It canbe used to reduce the amount of instrumentation code inserted into a programfor on-the-y analysis. It can also be used to enable a program timing tool totake the e�ects of caching into account. A more comprehensive overview of staticcache simulation including further applications can be found elsewhere [8].2 Control-Flow and Call-Graph AnalysisIn this section, terms and methods are introduced to analyze the call graph of aprogram and the control-ow graphs of each function. The analysis is performedto �nd a small set of measurement points suitable for on-the-y analysis. Theanalysis provides a general framework to reduce the overhead of event-orderedpro�ling and tracing during program execution.The �rst part of this section provides a formal approach for determining asmall set of measurement points for on-the-y analysis. The focus is restrictedto the analysis of the control-ow graph of a single function. In the second part,the analysis is extended to the call graph of the entire program by transforminga call graph into a function-instance graph.2.1 Partitioning the Control-Flow Graph into Unique PathsThe control ow of each function is partitioned into unique paths (UPs) toprovide a small set of measurement points. The motivation for restructuring thecontrol ow into UPs is twofold.1. Each UP has a unique vertex or edge that provides the insertion point for in-strumentation code at a later stage. This code may perform arbitrary on-the-yanalysis, e.g. simple pro�ling or more complex cache performance analysis.2. Each UP is comprised of a range of instructions that are executed in sequence ifand only if the unique vertex or edge is executed. This range of instructions doesnot have to be contiguous in the address space. The range of instructions providesa scope for static analysis to determine the instrumentation code for dynamicon-the-y analysis, which preserves the order of events.The �rst aspect, the strategy of instrumenting edges (or vertices where pos-sible), is also fundamental to the aforementioned work on optimal pro�ling andtracing by Ball and Larus [3]. It is the second aspect that distinguishes this newapproach from their work. The option of performing static analysis on the controlIn Proceedings of the Static Analysis Symposium, September 1994 2



ow to determine and optimize the instrumentation code for order-dependenton-the-y analysis requires the de�nition of ranges for the analysis. Naively, onecould choose basic blocks to comprise these ranges. But it has been demonstratedfor pro�ling and tracing that fewer instrumentation points can be obtained bya more selective instrumentation technique. UPs provide such a framework sup-porting e�cient instrumentation for on-the-y analysis.The set of UPs is called a unique path partitioning (UPPA) and is de�nedas follows: Let G(V;E) be the control-ow graph (directed graph) of a functionwith a set of edges (transitions) E and a set of vertices (basic blocks) V .Let p be a path p = �0; �1; �1; :::; �n; �n with the ordered set of edges �p =f�1; :::; �ng � E and the ordered set of vertices �p = f�0; :::; �ng � V , i.e., asequence of distinct vertices connected by edges [6]. The edge �i may also bedenoted as �i�1 ! �i. Vertex �0 is called an head vertex and vertex �n a tailvertex, while all other �i are internal vertices. LetH be the set of all head verticesand T be the set of all tail vertices.De�nition1 (UPPA). A unique path partitioning, UPPA, for a control-owgraph G(V,E) is a set of paths p(�; �) with the following properties:1. all vertices are covered by paths: 8v2V 9p2UPPA v 2 �p.2. each edge is either on a path or it connects a tail vertex to a head vertex:8e=(v!w)2E 9p2UPPA e 2 �p � v 2 T ^ w 2 H3. each path has a feature f , an edge or a vertex, which is globally unique, i.e.f is in no other path:8p2UPPA ( 9e2E e 2 �p ^ 8q2UPPAnfpge 62 �q) _ ( 9v2V v 2 �p ^ 8q2UPPAnfpgv 62 �q)4. overlapping paths only share an initial or �nal subpath:8p;q2UPPA �p \ �q = � [ � where � and � denote the vertices of a commoninitial and �nal subpath, respectively. In other words, let �p = f�0; :::; �mgand �q = f!0; :::; !ng be the ordered sets of vertices for paths p and q. Then,� = � or � = f�0 = !0; :::; �i = !ig and � = � or � = f�k = !l; :::; �m = !ngfor i < k and i < l.5. proper path chaining:8p;q2UPPA 8v2�p;w2�q e = (v ! w) 2 E ^ e 62 �p [ �q ) v 2 T ^ w 2 H6. break at calls: Let C � V be the set of vertices (basic blocks) terminated bya call instruction. 8v2C;p2UPPA v 2 �p ) v 2 T7. break at loop boundaries: Let Li be the set of vertices in loop (cycle) i andlet L be the set of all Li.8e=(v!w)2E; p2UPPA; Li2L e 2 �p ) (v 2 Li , w 2 Li)The properties 6 and 7 are operational restrictions motivated by the applica-tion of the partitioning for on-the-y analysis of program behavior. The break atcalls allows the insertion of instrumentation code for separate compilation. Thus,the compiler is not required to perform interprocedural analysis. The break atIn Proceedings of the Static Analysis Symposium, September 1994 3



loop boundaries ensures that the frequency of events can be identi�ed. The fre-quency of events outside a loop di�ers from the frequency inside loops (unlessthe loop was iterated only once). Thus, a UP associated with an event shouldnot cross loop boundaries.Example 1. Paths 1 and 2 in Figure 1(a) have two unique transitions each. Theycomprise an if-then-else structure. Paths 3 and 4 are generated because the loopis entered after basic block 4. Path 3 only has one unique transition while path4 has two. Basic block 8 is outside the loop and therefore lies in a new path.
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De�nition3 (Ordering of UPPAs). For a control-ow graphG(V;E), a par-titioning UPPAa is smaller than a partitioning UPPAb if UPPAa containsfewer paths than UPPAb.The signi�cance of the ordering is related to the number of measurementpoints for on-the-y analysis. A smaller partitioning yields fewer measurementpoints, which improves the performance of on-the-y analysis. The followingalgorithm provides a method to �nd a small partitioning. The algorithm usesthe terminology of a loop header for a vertex with an incoming edges from outsidethe loop. A loop exit is a vertex with an outgoing edge leaving the loop. This isillustrated in Figure 2a.
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(b) fork after join (c) illegal overlapFig. 2. Sample GraphsAlgorithm 1 (Computation of a Small UPPA) .Input: Control-ow graph G(V,E).Output: A small partitioning UPPA.Algorithm: Let C be the set of vertices containing a call, let Li be the set ofvertices in loop i, and let L be the set of all Li as in De�nition 1. The algorithmthen determines the beginning of paths (heads) and the end of paths (tails), forexample at loop boundaries. In addition, a vertex is a tail if the path leading tothis vertex joins with other paths and forks at the current vertex (see Figure 2b).Once the heads and tails have been determined, a path comprises a sequence ofvertices and edges from a head to a tail in the control ow.BEGINFOR each v 2 V without any predecessor DOmark v as head; /* entry blocks to the function */FOR each v 2 V without any successor DOmark v as tail; /* return blocks from the function */FOR each v 2 C DOmark v as tail; /* calls */FOR each e = (v ! w) 2 E WITH v 62 Li AND w 2 Li DOmark w as head; /* loop headers */FOR each e = (v ! w) 2 E WITH v 2 Li AND w 62 Li DOmark v as tail; /* loop exits */FOR each v 2 V DOmark v as not done;In Proceedings of the Static Analysis Symposium, September 1994 5



WHILE change DOchange:= False;propagate heads and tails;FOR each v 2 V WITH v marked as head ANDnot marked as done AND not marked as tail DOchange:= True;mark v as done;FOR each e = (v! w) 2 E DOrecursive �nd fork after join(w, False);UPPA = �FOR each v 2 V with v marked as head DOrecursive �nd paths(v, fvg);END;PROCEDURE propagate heads and tails ISWHILE local change DOlocal change:= False;FOR each v 2 V DOIF v marked as head THENFOR each e = (w! v) 2 E DOIF w not marked as tail THENlocal change:= True;mark w as tail;IF v marked as tail THENFOR each e = (v! w) 2 E DOIF w not marked as head THENlocal change:= True;mark w as head;END propagate heads and tails;PROCEDURE recursive �nd fork after join(v, joined) ISIF v marked as tail THENreturn;IF v joins, i.e. v has more than once predecessor THENjoined:= True;IF joined AND v forks, i.e. v has more than once successor THENmark v as tail;return;FOR each e = (v! w) 2 E DOrecursive �nd fork after join(w, joined);END recursive �nd fork after join;PROCEDURE recursive �nd paths(v, p) ISIF v marked as tail THENUPPA = UPPA [ fpg;ELSE FOR each e = (v ! w) 2 E DOrecursive �nd paths(w, p [ fv ! w;wg);END recursive �nd paths;Example 2. Figure 1(b) illustrates two examples of the construction of a small UPPAusing Algorithm 1. For the �rst example (upper part of Figure 1(b)), vertices with-out predecessor (successor) are marked as head (tail). In addition, loop headersare heads and loop exits are tails. The second picture shows the same graph afterpropagate heads and tails has been applied. Block 1 is marked as a tail since block2 is a head. Conversely, block 7 is marked as a head since block 6 is a tail. The lastpicture depicts the graph after path partitioning through recursive find paths. Eachhead is connected to the next tail by one or more paths, depending on the number ofdi�erent ways to reach the tail. The resulting UPPA has 5 paths.In Proceedings of the Static Analysis Symposium, September 1994 6



The second example (lower part of Figure 1(b)) initially shows a graph whose ver-tices without predecessor (successor) are marked as heads (tails). The second pictureshows an additional tail found by recursive find fork after join since there is apossible traversal for the head block 1 to, for example, the tail block 6, which en-counters a join followed by a fork in block 4. The �nal graph depicts the e�ect ofpropagate heads and tails. Blocks 5 and 6 are a head since 4 was a tail. Block 2 is atail since block 5 is now a head. Thus, block 4 becomes a head. This causes block 3 tobe marked as a tail. Finally, recursive find paths partitions the graph resulting in aUPPA with 5 paths.Theorem4 (Correctness of Algorithm 1). Algorithm 1 constructs aUPPA for a control-ow graph G(V;E).Proof. Termination: It su�ces to show that the WHILE loops and the re-cursive routines terminate. Both WHILE loops terminate since one more ver-tex is marked as head or tail during each iteration. This process terminateseither when all vertices are marked as heads and tails or when none of theconditions for marking vertices are satis�ed any longer. The recursive routinerecursive find fork after join terminates for the following reasons. Initially,all loop headers are marked as heads. The propagation of heads and tails ensuresthat all predecessors of loop headers are marked as tails, in particular the ver-tices preceding a backedge in a loop. Since recursive find fork after jointerminates when a tail is encountered, it will stop at a tail vertex with anoutgoing backedge or at a tail vertex without any successor since it canonly traverse forward edges in the control-ow graph. This also applies forrecursive find paths.Output is a UPPA: It has to be shown that the properties of a UPPA asstated in De�nition 1 hold for Algorithm 1.1. All vertices are covered since recursive find paths includes all verticesbetween a head and a tail in some path. Due to propagate heads and tails,an outgoing edge of a tail vertex always leads to a head vertex, i.e. therecannot be any intermediate vertices between a tail and a head. Furthermore,at least the initial vertex (without predecessor) is a head and the �nal vertices(without successors) are tails.2. Consider any edges between a head and a tail. These edges are included insome path by recursive find paths, and these are all edges on paths. Theremaining edges are those connecting tails to heads and are not in any path.3. The following cases have to be distinguished for construction of paths byrecursive find paths: If there are no forks between a head h and the nexttail, then there will only be one path starting at h, and h is a unique vertexfor this path. If there are forks after a head h but no joins, then the tailvertex will be unique for each path starting in h. If there are forks after ahead h, followed by the �rst join at vertex v along some path starting in h,then the edge immediately preceding v on this path will be unique (since noother path has joined yet). Notice that there cannot be another fork after thejoin in v within the path since any forking vertex would have been markedas a tail by recursive find fork after join.4. Property 3 ensures that any two overlapping paths di�er in at least an edge.(Notice that a unique vertex implies a unique edge for non-trivial pathswith multiple vertices.) Assume there exist two paths p; q that overlap in asubpath fv; :::; wg (see Figure 2c) and v is preceded by distinct vertices aIn Proceedings of the Static Analysis Symposium, September 1994 7



and b in p and q, respectively. Also, w is succeeded by distinct vertices x andy in p and q, respectively. In other words, p and q overlap somewhere in themiddle of their paths. Then, two edges join in vertex v and two edges forkfrom vertex w, i.e. a join is followed by a fork. Thus, w should have beenmark as a tail by recursive find fork after join. Therefore, w shouldhave been the last vertex of paths p and q. Contradiction.5. All edges between a head and the next tail are covered by paths, as shownfor property 2. Thus, it su�ces to observe that edges connecting a tail t toa head h always connect all paths ending with vertex t to the paths startingwith vertex h. It is guaranteed by recursive find paths that a path startswith a head vertex and ends in a tail vertex.6. Each vertex v containing a call is initially marked as a tail vertex. Thus,vertex v must be the �nal vertex for any path containing v by constructionof the paths (recursive find paths).7. Each loop header vertex is initially marked as a head and each loop exitis marked as a tail. Thus, the vertices preceding a loop header are markedas a tail and the vertices succeeding a loop exit are marked as heads bypropagate heads and tails. Furthermore, the edges crossing loop bound-aries connect the paths ending in the tail vertex to the paths starting withthe head vertex. As already shown for property 2, edges between a tail anda head cannot be covered by any path. utIn terms of the ordering of UPPAs, the basic block partitioning UPPAb isthe partitioning with the largest number of measurement points. Algorithm 1constructs a partitioning that has an equal or smaller number of measurementpoints. We found that the algorithm produces a much smaller UPPA if possible.The algorithm may in fact produce a minimal UPPA (with the smallest possi-ble number of measurement points). We have not yet succeeded in proving theminimality due to the fact the a given graph may have more than one minimalUPPA.In summary, the control-ow graph can be transformed into a small UPPAby Algorithm 1. The small set of measurement points is given by a unique vertexor unique edge of each UP. This provides the framework for e�cient on-the-yanalysis with regard to the de�nition of UPPAs.Another short example for a small UPPA construction shall be given, whichis used to discuss the possibility of letting paths begin and end in edges as wellas vertices.Example 3. Consider the subgraph of Figure 2a that is inside the loop. A correspondingUPPAs can be constructed by Algorithm 1 resulting in the following partitioning:UPPAs = ffh; h! x; xg; fh; h! e1; e1g; fe2ggIn general, the method may still be further tuned with regard to the dynamicbehavior. Currently, a path has to begin and end in a vertex. Consider the notionof open paths that can start and end in a vertex or an edge. Then, another smallUPPA of the loop in Figure 2a would be:UPPAt = ffh; h! x; xg; fh; h! e1; e1; e1! yg; fh; h! e1; e1; e1! e2; e2ggConsider the number of measurement points executed during each loop iteration.For UPPAs, there are two measurement points for an iteration reaching b1, oneeach in paths 2 and 3. For UPPAt, there is only one measurement point on b1 inpath 30. The de�nition of UPPAs does not take dynamic properties into account.In Proceedings of the Static Analysis Symposium, September 1994 8



2.2 Call Graph Transformation into Function-Instance GraphThe small set of measurement points provides the location for inserting measure-ment code that records the order of events. While the actual measurement codedepends on the intended analysis of the program, the amount of the measure-ment code may be further reduced by distinguishing between di�erent call sitesof a function. For an event-ordered analysis, the �rst invocation of a functionmay trigger certain initialization events. The analysis of subsequent calls to thesame function are simpli�ed by the assumption that these initialization eventshave already occurred. Such an example will be illustrated later in the contextof instruction cache analysis.A programmay be composed of a number of functions. The possible sequenceof calls between these functions is depicted in a call graph [1]. Functions can befurther distinguished by function instances. An instance depends on the callsequence, i.e. on the immediate call site of its caller, the caller's call site, etc.The function instances of a call graph are de�ned below. The de�nition excludesrecursive calls that require special handling and are discussed later. Indirect callsare not handled since the callee cannot be statically determined.De�nition5 (Function Instances). Let G(V;EC) be a call graph where V isthe set of functions including an initial function \main" and EC is a set of pairs(e; c). The edge e = v ! w denotes a call to w within v (excluding recursiveand indirect calls). The vertex c is a vertex of the control-ow graph of v thatcontains a call site to w. Then, the set of function instances is de�ned recursively:1. The function (vertex) \main" has a single instance main0.2. Let (f ! g; c) 2 EC and fi be an instance of f . Then, gc;fi is an instance.3. These are all the function instances.The call graph of a program without recursion (i.e., a directed acyclic graph)can be transformed into a tree of function instances by a depth-�rst searchtraversal of the call graph. Function instances can then be uniquely identi�ed bytheir index, where fi denotes the ith occurrence of function f within the depth-�rst search. Backedges in the call graph corresponding to recursive calls can bedetected by marking vertices as visited during the depth-�rst traversal. If analready visited edge is encountered again, the last edge in the current traversalis due to recursion. The depth-�rst search will then backtrack and retain thisbackedge as a special edge in the function-instance graph (see algorithm in [8]).Example 4. In Figure 3, function f contains three calls: a call to g and two calls toh. Function g calls i and k. Function h calls k. Function i calls g, which is an indirectrecursive call. The corresponding function-instance graph contains two instances of h(for each call from f0) and three instances of k (for the calls from g0; h0; h1). Thebackedge i ! g due to indirect recursion is retained as a special edge in the function-instance graph.2.3 Performance EvaluationThis section evaluates the bene�ts of control-ow partitioning and function-instance graphs to reduce the number of measurement points. Table 1 summa-rizes the performance tests for user programs, benchmarks, and UNIX utilities.The numbers were produced by modifying the back-end of an optimizing com-piler VPO (Very Portable Optimizer) [4] to determine measurement points bypartitioning the control ow and by creating the function-instance graph.In Proceedings of the Static Analysis Symposium, September 1994 9
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0Fig. 3. Construction of Function-Instance GraphTable 1. Test Set of C ProgramsSize Instructions Measure Pts.Name Description [bytes] exec. static exec.cachesim Cache Simulator 8,460 2,995,817 73.38% 60.56%cb C Program Beauti�er 4,968 3,974,882 89.62% 65.61%compact Hu�man Code Compression 5,912 13,349,997 68.89% 56.56%copt Rule-Driven Peephole Optimizer 4,148 2,342,143 84.19% 74.88%dhrystone Integer Benchmark 1,916 19,050,093 81.61% 72.73%�t Fast Fourier Transform 1,968 4,094,244 78.43% 74.08%genreport Detailed Execution Report Generator 17,720 2,275,814 71.58% 81.31%mincost VLSI Circuit Partitioning 4,448 2,994,275 83.19% 76.27%sched Instruction Scheduler 8,272 1,091,755 73.16% 58.29%sdi� Side-by-side Di�erences between Files 7,288 2,138,501 72.13% 77.82%tsp Traveling Salesman 4,724 3,004,145 64.08% 58.67%whetstone Floating point benchmark 4,816 8,520,241 70.49% 68.25%average 6,220 5,485,992 75.90% 68.75%The size of the programs varied between about 2kB and 18kB (see column 3).The number of instructions executed for each program comprised a range of 1 to19 million using realistic input data for each program (see column 4) . Column 5indicates the percentage of measurement points required for our method versusthe number of measurement points inserted in conventional on-the-y analysis(i.e., one measurement point per basic block). Our method requires only 76%of the measurement points required for the traditional trace-driven analysis, i.e.about 24% fewer measurement points statically. The run-time savings (column6) are even higher, requiring only about 69% of the measurement points executedunder traditional trace-driven analyses. The additional dynamic savings are dueto reducing sequences of basic blocks inside loops to fewer UPs, sometimes justto a single UP. In other words, unique paths tend to be longer than basic blocks.For example, an iteration through the innermost loop may only require a singlemeasurement point in one path (with multiple basic blocks).3 Static Cache SimulationOne application for on-the-y program analysis is cache performance evaluation.This section introduces the method of static cache simulation, which staticallypredicts the caching behavior of a large number of instruction references 2. Themethod employs a novel view of cache memories that seems to be unprecedented.2 Data cache references could be predicted similarly but are not discussed here.In Proceedings of the Static Analysis Symposium, September 1994 10



3.1 Instruction CategorizationStatic cache simulation calculates the abstract cache states associated with UPs.The calculation is performed by repeated traversal of the function-instance graphand the UPPA of each function.De�nition6 (Potentially Cached). A program line l can potentially becached if there exists a sequence of transitions in the combined UPPAs andfunction-instance graph such that l is cached when it is reached in the UP.De�nition7 (Abstract Cache State). The abstract cache state of a pro-gram line l within a UP and a function instance is the set of program linesthat can potentially be cached prior to the execution of l within the UP and thefunction instance.The notion of an abstract cache state is a compromise between a feasible storagecomplexity of the static cache simulation and the alternative of an exhaustiveset of all cache states that may occur at execution time with an exponentialstorage complexity.Based on the abstract cache state, it becomes possible to statically predictthe caching behavior of each instruction of a program. Instructions may be cate-gorized as always-hit, always-miss, �rst-miss, or conict. The semantics for eachcategory is as follows. Always-hit (always-miss) instructions will always result ina cache hit (miss) during program execution. First-miss instructions will resultin a cache miss on the �rst reference to the instruction and in a cache hit forany consecutive references. Conict instructions may result in a cache hit or acache miss during program execution, i.e. their behavior cannot be predictedstatically through this simulation method. The di�erent categories are de�nedbelow after introducing the notion of a reaching state.De�nition8 (Reaching State). The reaching state of a UP within a functioninstance is the set of program lines that can be reached through control-owtransitions from the UP of the function instance.De�nition9 (Instruction Categorization). Let ik be an instruction withina UP and a function instance. Let l = i0::in�1 be the program line containingik and let ifirst be the �rst instruction of l within the UP. Let s be the abstractcache state for l within the UP. Let l map into cache line c, denoted by l ! c.Let t be the reaching state for the UP. Then, the instruction categorization isde�ned ascategory (ik)=8>>>>>>><>>>>>>>:always-miss if k = first ^ l 62 salways-hit if k 6= first _ (l 2 s ^ 8m!c;m6=lm 62 s)�rst-miss if k = first ^ l 2 s ^ 9m!c;m6=lm 2 s ^ 8m!c;m6=lm 2 s) m 62 t^ 80�x<n category(ix) 2 falways-hit, �rst-missgconict otherwiseAn always miss occurs when instruction ik is the �rst instruction encounteredin program line l and l is not in the abstract cache state s. An always hit occurseither if ik is not the �rst instruction in l or l is the only program line in sIn Proceedings of the Static Analysis Symposium, September 1994 11



mapping into c. A �rst miss occurs if the following conditions are met. First, ikis �rst in l and if l and at least one other program line m (which maps into c)are in s. Second, if one such line m is in s, then the line must not be reachableanymore from the current UP. Third, all other instructions in the program linehave to be either always hits or �rst misses. A conict occurs in all other cases.This categorization results in some interesting properties. If the size of theprogram does not exceed the size of the cache, hardly any instructions willbe categorized as conicts. Thus, the cache behavior can mostly be staticallypredicted.3 As the program becomes much larger than the cache, the number ofconicts increases to a certain point. This point depends on the ratio betweenprogram size and cache size. After this point, conicts start to decrease againwhile �rst misses increase.3.2 Calculation of Abstract Cache StatesAlgorithm 2 (Calculation of Abstract Cache States) .Input: Function-Instance Graph of the program and UPPA for each function.Output: Abstract Cache State for each UP.Algorithm: Let conf lines(UP) be the set of program lines (excluding the pro-gram lines of UP), which map into the same cache line as any program linewithin the UP.input state(main):= all invalid lines;WHILE any change DOFOR each instance of a UP in the program DOinput state(UP):= �;FOR each immediate predecessor P of UP DOinput state(UP):= input state(UP) [ output state(P);output state(UP):= [input state(UP) [ prog lines(UP)] n conf lines(UP)The iterative Algorithm 2 calculates the abstract cache states. In the algo-rithm, the abstract cache state of the program line of a UP that is referenced�rst is referred to as input state. Conversely, the abstract cache state afterthe program line of a UP that is referenced last is referred to as output state.The set of vertices (basic blocks) in a UP provides the scope of program lines totransform an input state into an output state.The algorithm is a variation of an iterative data-ow analysis algorithmcommonly used in optimizing compilers. Thus, the time overhead of the al-gorithm is comparable to that of data-ow analysis and the space overhead isO(pl � UPs � fi), where pl is the number of program lines, UPs is the num-ber of paths, and fi the number of function instances. The correctness of thealgorithm for data-ow analysis is discussed in [1]. The calculation can be per-formed for an arbitrary control-ow graph, even if it is irreducible. In addition,the order of processing basic blocks is irrelevant for the correctness of the al-gorithm. The reaching states can be calculated using the same base algorithmwith input state(main) = conf lines(UP) = �.3 The adaptations of the de�nition for di�erent applications (described in [8]) providestatic predictability of all instructions if the program �ts into cache, i.e. no instruc-tion will be categorized as a conict in this case. Since the adaptation depends onthe application it could not be incorporated in the original de�nition in this paper.In Proceedings of the Static Analysis Symposium, September 1994 12



Example 5. Figure 4 depicts the calculation of input and output states. The chosenUPPA is UPPAb, the basic block partitioning. Algorithm 2 operates on any UPPA, andthe categorization is not inuenced by the choice of a UPPA. The UPPAb simpli�esthe example but would result in more measurement overhead during on-the-y analysisthan a small UPPA constructed by Algorithm 1.
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input(1 )=[I I I I ]input(8a)=[ I I I 0 ]input(2 )=[ I I 4 5]input(3 )=[ I I 1 2 3 4 5]input(4 )=[ I 1 2 3 4 ]input(5 )=[ I 1 2 3 4 ]input(8b)=[ 1 2 3 4 ]input(6 )=[ I 1 2 3 4 5]input(7 )=[ 1 2 3 4 5]output(1 )=[ I I I 0 ]output(8a)=[ I I 4 5]output(2 )=[ I I 1 4 ]output(3 )=[ I 1 2 3 4 ]output(4 )=[ I 1 2 3 4 ]output(5 )=[ 1 2 3 4 ]output(8b)=[ 2 3 4 5]output(6 )=[ 1 2 3 4 5]output(7 )=[ 1 2 3 4 5]reach(1 )=[ 1 2 3 4 5]reach(8a)=[ 1 2 3 4 5]reach(2 )=[ 1 2 3 4 5]reach(3 )=[ 1 2 3 4 5]reach(4 )=[ 1 2 3 4 5]reach(5 )=[ 1 2 3 4 5]reach(8b)=[ 1 2 3 4 5]reach(6 )=[ 1 2 3 4 5]reach(7 )=[ ]Fig. 4. Instruction Categorization in Flow GraphIn the example, there are 4 cache lines and the line size is 16 bytes (4 instructions).Thus, program line 0 and 4 map into cache line 0, program line 1 and 5 map into cacheline 1, program line 2 maps into cache line 2, and program line 3 maps into cache line3. The immediate successor of a block with a call is the �rst block in that instanceof the called function. Block 8a corresponds to the �rst instance of foo() called fromblock 1 and block 8b corresponds to the second instance of foo() called from block 5.After determining the input states of all blocks, each instruction is categorizedbased on its abstract cache state (derived from the input state) and the reaching stateshown in the �gure. By inspecting the input states of each block, one can make someobservations that may not have been detected by a naive inspection of only physicallycontiguous sequences of references. For instance, the static simulation determined thatthe �rst instruction in block 7 will always be in cache (always hit) due to spatial localitysince program line 4 is in input(7) and no conicting program line is in input(7).It was also determined that the �rst instruction in basic block 8b will always be incache (always hit) due to temporal locality. The static simulation determined that thelast instruction in block 3 will not be in cache on its �rst reference, but will alwaysbe in cache on subsequent references (�rst miss). This is indicated by input(3), whichincludes program line 2 but also a conicting program line \invalid" for cache line3. Yet, the conicting program line cannot be reached. This is also true for the �rstinstructions of block 5 and 6 though a miss will only occur on the �rst reference of eitherone of the instructions. This is termed a group �rst miss. Finally, the �rst instructionin block 3 is classi�ed as a conict since it could either be a hit or a miss (due to theconditional call to foo). This is indicated by input(3), which includes program line 1and a conicting program line 5 that can still be reached.In Proceedings of the Static Analysis Symposium, September 1994 13



The current implementation of the static simulator imposes the restrictionthat only direct-mapped cache con�gurations are allowed. Recent results showthat direct-mapped caches have a faster access time for hits, which outweighsthe bene�t of a higher hit ratio in set-associative caches for large cache sizes [7].4 ApplicationsThe partitioning of the control-ow graph into unique paths and the construc-tion of a function-instance graph can be used for on-the-y analysis of programbehavior in general. This section focuses on combining these techniques withstatic cache simulation for di�erent applications. Our implementation modi�esthe back-end of an optimizing compiler to partition the control ow of func-tions. The static cache simulator uses the partitioning information to constructthe function-instance graph and to perform the instruction categorization.4.1 Fast Instruction Cache AnalysisInstruction cache analysis can be performed on-the-y in an e�cient mannersimulating much of the caching behavior statically. The simulation is performedfor the function-instance graph of the program and a small UPPA for each func-tion. Thus, a small set of measurement points can be determined. The programcan be instrumented with measurement code on a unique edge/vertex within allUPs. The measurement code consists of frequency counters for each UP and statetransitions similar to a deterministic �nite automaton to simulate \conict" in-structions whose caching behavior cannot be determined prior to execution time.This keeps the measurement overhead fairly low.During program execution, counters record the frequency of each instruction.At program termination, the total number of cache hits and misses is determinedby relating the frequency with the instructions of a UP and their categorization.First misses are initially counted as hits. Then, the set of �rst miss lines is cor-related with the corresponding frequency counters and if any counter is greaterthan zero, the total hit count is reduced by one while the miss count is incre-mented by one. For group �rst misses (see discussion of Figure 4), only one �rstmiss is counted as a miss.The implementation of the described method showed that the execution timeof the instrumented program takes about twice the time of the uninstrumentedprogram [9]. Other methods to perform on-the-y instruction cache analysisresult in an overhead of 6 to 16 at best [12].4.2 Analytical Bounding of Execution TimeIn real-time systems, the scheduling analysis of a task set is based on the as-sumption that the worst-case execution time (WET) be known. Timing toolshave been developed to statically analyze programs for a given target processorand predict their WET. Until now, the presence of cache memories was widelyregarded as a source of unpredictability which prevents a tight prediction of theWET. Consequently, caches are often disabled in hard real-time systems.Static cache simulation provides a method to predict the caching behaviorof a large percentage of instructions prior to program execution. By making theinstruction categorization available to a timing tool, the WET can be predictedmuch more tightly. Thus, real-time applications can �nally enable caches toachieve better performance without sacri�cing predictability.In Proceedings of the Static Analysis Symposium, September 1994 14
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