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Abstract can result in loose estimates and higheerall costs.
Thus, accurate WCET predictions are required to produce
safe and cost fefctive enbedded systemsAccurate
WCET predictions can only be obtained by a tool that stat-
ically analyzes an application to calculate the WCET
Such a tool is called @ming analyzerand the process of
performing this calculation is calleédining analysis

It is advantgeous to not only calculate the WCET of an
application, but to also performansformations toaduce
the WCET since an application with a lower WCET will
be less likely to violate its timing coratnts. In this
paper we describe an @inonment consisting of an inter
active compilation system and a timing analypérere a
user can inteactively tune the WCET of an application. =~ WCET constraints can impact power consumption as
After eat optimization phase is applied, the timing ana- Well. In order to conse® power, one can determine the
lyzer is automatically woked to calculate the WCET of WC number of cycles required for a task and lower the
the function being tunedThus, a user can easily gaig clock rate to still meet the timing constraint with less
the pogress of reducing the WCETn addition, the user ~ slack. Incontrast, conseative sumptions concerning
can apply a genetic algorithm to sehrfor an efective =~ WCET may result in a processor being deployed that has a
optimization sequence that bestluces the WCETUsing  higher clock rate and consumes more power.

the genetic algorithm, we show that the WCET for a num-  Automatically generating acceptable code for embed-
ber of applications can be reduced by 7% on agera  ded microprocessors with a compiler is often much more

compared to the default batoptimization sequence. difficult than generating code for general-purpose proces-
. sors. Besidesometimes having to meet ariety of con-
1. Introduction flicting constraints, embedded microprocessors are typi-

. L cally much less igular and hee mary specialized archi-
Generating acceptable code for applications on embedtgcy g features.Because of the typical largeoames

ded systems is challengingInlike most general-purpose 44y ced for a product wplving an embedded computer
applications, embedded applications oftevehid meet system, may embedded systems applications are stil

various stringept constraints, such as time, space, anq)eing deeloped in assembly language by hand in order to
power Constraints on time are commonly formulated as eet the imposed constraints and to deal with thie dif
worst-case(WC) cons_tralnts.' If these constrgmts are not culty of exploiting the features of the machink fact,
met, &en only occasionally in a hard real-time system, 4 of the authors of this papertrecently spent time in
then the system.may not be considered functiorihle industry and hee personally witnessed the eopment
Worst—c_ase. 1eec_ut|_on tlme(WC'ET).must be calculated to and maintenance of assembly code applicatidAew-
determine if a timing constraint will be met. eve, devdoping an application in assembly has mais-
Unfortunately mary embedded system wddopers adwantages that include highervdé®pment and mainte-
empirically estimate the WCET by testing the application nance costs and less portable code.
and measuring thexecution time. Testing alone is unsafe It would be desirable to selop embedded system
since the WC input dgta is often d|ff|cult_ to _dren '_I'h|s applications in a high ¥l language and still be able to
approach can result in an unsafe application sinceé WG the WCET of an applicationVe haveprovided this
timing constraints may not be met when an application 'Scapability by intgrating a WCET timing analyzer with an
deplojed. Moreknowledgeable deslopers will test, mea-  jnteractie mmpilation system called VIST(Vpo Inter

sure, and mak conservatie sssumptions in case thg tim- octive g/stem for Tuning Applications) [1, 2]. One fea-
ing measurements do not truly reflect the WCHMich ture of VIST is that it can automatically obtain



performance feedback information, which can be used byln contrast, we are using WCET information to select
both the application deloper and the compiler to mak compiler optimizations, as opposed to which instruction
phase ordering decisions. This information can include aset to select for code generation.

variety of measures, such aseeution time or code size.
In this paper we describe Wwowve nodified VISTA so it
can use WCET as one of its performance criteria.

A user interface was #leloped at Florida State Urar-
sity that allows users to select portions of source code and
obtain timing predictions.Unlike VISTA, this interfice

The remainder of the paper is structured as Widlo  did not allav the user to déct the generated code or pro-
First, we reiew related work on improving, displaying, vide feedback during the compilation process [11, 12, 13].
and estimating WCETSecond, we gie a lvief overview
of the timing analyzer that we used in thisriu Third,
we summarize the StarCore SC100 and e retargeted
our compiler and timing analyzer for this processor
Fourth, we describe VISA and hav we integrated the
timing analyzer with this franweork. Fifth, we shev the
benefits that were aclvied by performing searches using a
genetic algorithm to impree the WCET Finally, we ds-
cuss future plans for geloping compiler optimizations to
improve WCET and gie the conclusions of the paper.

Genetic algorithms ha long been used to search for
solutions in a space that is too large xtbhaustvely evalu-
ate. Geneticalgorithms hge been used to search for
effective gotimization sequences to imwe eed, space,
or a combination of both [14, 2]Genetic algorithms &
also been used in the context of timing analysis for empiri-
cally estimating the WCETwhere mutations on the input
resulted in different xecution times (objecte function)
[15, 16, 17]. Our approach, in contrast, relies on a genetic
algorithm to identify optimization phase sequences that
> Related Work result in reduced WCEWhich is an orthogonal problem.

There hae been a variety of different techniques used 3. TheTiming Analyzer

for timing analysis of optimized code@ the years [3, 4, In this section we briefly describe the timing analyzer
5, 6, 7]. However, we ae unavare of ary timing analyzer — yhat we hge reviously developed and that served as the
whose predictions are used by a compiler to select whichyiaing point for the timing analyzer in this studigure
optimizations should be applied. 1 depicts the aganization of the frameork that was used
While there has been much work orveleping com- by the authors in the past to nea®R/CET predictions.The
piler optimizations to reducexecution time and, to a VPO (MVery Portable Optimizer) compiler [18] was modi-
lesser extent, compiler optimizations to reduce space andied to produce the control floand constraint information
power consumption, there has been very little work where as a side &ct of the compilation of a source fil& static
compiler optimizations he teen deeloped to reduce cache simulator uses the controlflnformation to gie a
WC performance.Marlowe and Masticola outlined fhoa caching categorization for each instruction and data mem-
variety of standard compiler optimizations could poten- ory reference in the prograniThe timing analyzer uses
tially affect timing constraints of critical portions in a task. the control-flev and constraint information, caching cate-
However, no implementation was described [8flong and gorizations, and machine-dependent information (e.g.
Gerber deeloped a programming language with timing pipeline characteristics) to makhe timing predictions.
constructs and used a trace scheduling approach to

improve de in what would be deemed a critical section = T}Jnii%

of the program.However, no empirical results were gen Source Requests

since the implementation did not in@cé with a timing Files

analyzer to sew as a gide for the optimizations or to Cache Timing 1 User

evduate the impact on reducing WCET [9oth of these Configuratio e%%ngghgtlmm Analyzer | Interface
— nrormation

papers outlined strategies that attempt torenade out-
side of critical portions within an application thatvha
been designated by a user to contain timing constraimts.
contrast, most real-time systems use the WCET of entire
tasks to determine if a schedule can be nhete et. al. Figure 1: Overview of the Existing Process

used WCET information to choosevhhdo generate code to Obtain WCET Predictions

on a dual instruction set processor for the ARM and the o

Thumb [10]. ARM code is generated for a selected subset 1he timing analyzer calculates the WCET for each
of basic blocks that can impact the WCEThumb code is ~ function and loop in the progranit performs this analy-
generated for the remaining blocks to minimize code size SiS in @ bottom upashion, where the WCET for an inner
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Simulato
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loop (or called function) is calculated before determining transfer of control uses a delay slot.
the WCET for an outer loop (or calling functionhe There were seral modifications we made to support

WCET information for an inner loop (or called function) iming analysis of applications compiled for the SC100.
is used when it is encountered in an outeellpath. First, we modified the machine-dependent information
Besides addressing architectural features, such agsee Figure 1) to indicate Wwo instructions proceed
caching [19, 3, 20, 21, 22, 23] and pipelining [24, 3], the through the SC100 pipelineWe had to identify the
timing analyzer also automatically detects contrakflo instructions that require extra cycles in the pipelif@r
constraints. Ongype of constraint is the maximum itera- instance, if a memory addressing mode on the SC100 per
tions associated with each loop, including nonrectangularforms an arithmetic calculation, then one additional one
loop nests [25, 26, 27]. Another constraint type is when acycle is required. Second, we also updated the timing ana-
branch will be takn or fall through. The timing analyzer lyzer to treat all cache accesses as hits since instructions
uses these constraints to detect infeasible paths throughnd data on the SC100 can in general be accessed in a sin-
the code or ho often a gien path can bexaecuted [28, 4]. gle cycle from ROM and RAM, respeatly. Thus, the
static cache simulation step sho in Figure 1 is ne
4. Portingto the SC100 bypassed for the SC100. Third, we had to modify the tim-
ing analyzer to address the penalty for transfers of control.
In order to determine thefettiveness of improving the  When calculating the WCET of a path, we had to deter
WCET for applications on an embedded procesa®  mine if each conditional branch in the path was taken or
ported both the VPO compiler and the timing analyzer tofell through since untan branches are not assessed this
the StarCore SC100 processor [29]. In the past we hagenalty In addition, we had to determine the size of each
made WCET predictions for the Micro8RC I, which is  instruction and its alignment in memor$C100 instruc-
a general-purpose processor [30Jve were able to pro-  tions are grouped into fetch sets, which are foords

duce ‘ery tight WCET predictions with respect to a (eight bytes) in sizeTransferring control to an instruction
MicroSFARC | simulator that we had deoped. Unfortu-  in a nev fetch set that spans more than one fetch set

nately it is very difficult to produce ycle-accurate simula-  results in an additional cycle delay.
tions for a general-purpose processor due to coftplef

its memory hierarcghand its interaction with an operating
system that can causeeeution times to ary. Unlike the
MicroSFARC [, the SC100 has neither a memory hierar

chy (no caches or virtual memory system) nor an OS [29]'path through the graphHowever, if the taken branch

In addition, we were able to obtain a simulator for the penalty in the path 43 outweighs the cost ofxecuting
SC100 from StarCore [31]Mary embedded processor the instructions in block 2, then-13 would be the WCET

simulators, in contrast to general-purpose processor simu- o . .
lators, can ery closely estimate the actual number of path. Thissimple example illustrates the importance of

cycles required for an applicatianéecution. using a timing analyzer_to cglculate the ‘.’VCE.‘WF"V
measuring the »@cution time is not safe since it ieny

Some of the general features of the SC100 are as foldifficult to manually determine the WC paths and the input
lows. TheSC100 has no architectural support for floating- data that will cause thexecution of these paths.

point operations since it is a digital signal processor and

We have found that transfer of control penalties can
lead to nonintuitie WCET results. For instance, consider
the flov graph in Figure 2.A superficial inspection wuld
lead one to belie that the path 1L.2-3 is the WCET

was designed instead for fixed-point arithmetilt.has 16 bik 1 inste

data registers and 16 addresgjisters. Thesize of

instructions can ary from one word (te bytes) to fie 5
words (ten bytes) depending upon the type of instruction,
addressing modes used, and register numbers that are ref- L

erenced. TheSC100 has a simple @vdage pipeline, blk 3 insts

where most instructions carxeeute in a single stage. ]
There are no pipeline interlockslt is the compiles Figure 2: Example Control-Flow Graph
responsibility to insert noop instructions to delay a subse-
guent instruction that uses the result of a preceding
instruction when the result will not bevailable in the
pipeline. Tansfers of control (taén branches, uncondi-
tional jumps, calls, returns) result in a one to thrgelec
penalty depending on the addressing mode used and if

Measurements indicating the accyraaf the WCET
predictions produced by our timing analyzer will be
shovn later in the paperin general, we could produce
fairly accurate WCET predictions since some of the more
roblematic issues, which include memory hierarchies and
perating systems, are not present on this processor.



5. Integrating with VISTA In previous versions of VISN, the compiler obtained
dynamic measurements after applying each optimization

This section provides a briefverview of the VISTA phase by instrumenting the code, producing the assembly
framework used for tuning the WCET of applicationdé/e code, linking and xecuting the program, and getting per
also describe the modifications that were required to inte-formance measures from theeeution [2]. Since we used
grate our timing analyzer with VI&Tso that the current  representatie input data to obtain this dynamic measure,
WCET can be presented to the user and can be used by thge were in effect obtainingverage @se execution time
compiler when tuning an application. (ACET) information.

The flov of information is depicted in Figure 3, which Figure 4 shows a snapshot of the viewer when tuning
includes the VPO compilea viewer, and the timing ana-  an application for the SC100. The right side of the win-
lyzer described in Section 3The programmer initially  dow displays the state of the current function as a control
indicates a source file to be compiled and then specifiegiow graph with RTLs representing instructionShe user
requests through the vier, which include the order and  also has the option to display the instructions in assembly
scope of the optimization phases to be appliédter The left side shows the history of thefeient optimiza-
applying each optimization phase, the compiler sendstion phases that kia been performed in the sessioNote
information about the current instructions, contromflo  that not only is the number of transformations associated
and constraint information to the timing analyzer and thewith each optimization phase depictedjt balso the
timing analyzer sends its WCET predictions back to theimprovements in WCET and code size arewho Thusa

compiler The user is presented with the state of the yser can easily gauge the progress that has been made at
requested performance criteria, which for thession of tuning the current function.

VISTA includes the WCET and the code size. . . ) . o
Besides applying predefined compiler optimization

S o Instruction, Control phases, an applicationvd#oper can also specify transfor
ource rFlle int Info/ . . . e - .
Compilet aﬁd_COHStfé'”f M Timing mations manually by inserting, modifying, and deleting
Assembly File timing predictions\ Analyzer, instructions. Uponrequest the system also answers
) queries, such as which registers ave bt a pecific point
Performance Infi Transformation Info. . . L k .
Requests in the program representatioithis information can assist
U Selections Saved the deeloper to mak safe and dective manual transfor
ser i . o . .
Display Viewer State mations. Theability to specify transformations manually
is useful for exploiting special-purpose hardware that cur
Figure 3: Overview of Tuning WCET in VISTA rently cannot be automatically exploited by the compiler.

Function main Trans Number 244 I rlel-4+rlal; I =~
State Total  [244 !
wransformations Numt WCET Code Size 3 | LIf

Inst Selection a7 84.52 a4, 44
Fegister Assignment 4 84.52 fd.81 r(0]=r[8]+1;
Comnon subexpr E11m 5 76.01 54.07 rlzl=r[ol;

Dead Variable Elim 7 73.90 51,11 IC=r[0]<4;
Register A11ocarion 19 67.74 51,11 FC=IC:0,L16;

Inst Selection (1123 112 63.85 47.03 \l/

4]

a[0]=L14;
r[0]=R[al0]]:
al1]=L12;
a[0]=g[0]-.71.5_w1;
Rlalo]-4]=al0];

ST=pin_down; L
a[0]=L14;
Setup Trans Sequen-| Specify Trans by Ha- ‘ RTLs i r[0]=R[al0]];
= = | = | opten | eat Il -
start writing in seqlixt || execute from file | R | | -
L Message: ‘ Mo Message ‘ | Help ‘ J

Figure 4: Main Window of VISTA Showing History of Optimization Phases



The user also has the ability toveese preiously
applied transformations, which supportsperimentation
when tuning an application. This is accomplished by writ-
ing the sequence of applied transformations to a file.
Afterwards, VISR reads in the intermediate code gener
ated by the front end and applies the list of transforma-

tions to generate the program representation that was pre

viously produced in the compilationThe sequence of
applied transformations is also written to a file when the

user chooses to complete the tuning of a function or termi-

nate the session. This file is automatically read when
VISTA is later irvoked so hese transformations can be
reapplied at a later time, enabling future updates.

There are some initial actions that are performed by
VISTA before a function can ke its WCET tuned.The
information to be sent to the timing analyzer from the
compiler includes the number of loop iteration¥he
compiler detects this information as a side effect of per
forming a number of optimizationsThus, VISTA was
modified to automatically perform a set of optimizations
when a function is being compiled for the first time that
allows the compiler to calculate this informatiohe
code-impreing transformations are then automatically
reversed. Ina =cond pass, the compiler performs the
compulsory phases, which includesgister assignment
(assigning pseudo registers to hardware registers¥iand
entry/exit (inserting instructions to manage the run-time
stack). Thecompiler emits the information and the timing
analyzer is imoked to obtain the baseline WCET for each
function. At this point VISTA can be used to tune the
WCET for each function within the application.

VISTA also allows a user to specify a set of distinct
optimization phases andveate compiler attempt to find
the best sequence for applying these phaségure 5
shaws the diferent options that VISA provides the user
to control the search. The user specifies ¢skeguence
length which is the total number of phases applied in each
sequence. Wperformed a set ofxperiments described in
the next section that use thBased sampling seein,
which applies a genetic algorithm in an attempt to find the
most efective equence within a limited amount of time
since in map cases the search space is too large to
exhaustvely evaluate [32]. The genetic algorithm treats
each optimization phase as a gene and each sequence
phases as a chromosom&.population is the set of solu-
tions (sequences) that are under considerafidre num-
ber of generations indicatesvinanary sets of populations
are to be wduated. Thepopulation size and the number
of generations limits the total number of sequeneekie
ated. VISR also allows the user to choose WCET and
code size weight factors, where the refatimprovement
of each is used to determine thexall fitness.

No. of Phases: 10 Search Option:
() Exhaustive Search
Sequence Length: (10 | ® [Biased Sampling Search
) Permutation Search
Weight Factors:
WCET 50 Code Size 30 Population Size: 20
I LB, ]
o 20 40 60 80 100
Number of Generations: [100
ok | cancel | ‘ help |=|l

Figure 5: Selecting Optionsto Search for Sequences

Performing these searches can be time consuming since
thousands of potential optimization sequences may need
to be @auated. ThusVYISTA provides a windw showing
the current status of the search. Figure 6 shows a snapshot
of the status of the search that was selected in Figure 5.
The percentage of sequences completed along with the
best sequence and itdesft on performance are displayed.
The user can terminate the search gt @oint and accept
the best sequence found so far.

Percent Complete:

Combinations Completed:

Walid: |1537 Invalid: |0 Total: | 1540/2000

Best Sequence: bmskicmnck. Seq. Num.: 542

Current Sequence: bmskecmnck Improvement |49.3
Relative Improvements:

Code Size: 48.6 WCET: 50.0

Stop
Figure 6: Window Showing the Search Status

Owerall: | 49.3

.

6. Experiments

This section describes the results of a setxpfes-
ments to illustrate the fefctiveness of improving the
WCET by using VISRs biased sampling search, which
uses a genetic algorithm to find efficient sequences of opti-
mization phases.Table 1 shows the benchmarks and
applications we used for ouxgeriments. Thesmclude a
Qflbset of theDSPstonefixed-point kernel benchmarks

and other DSP benchmarks or programs that we teed

1 The only DSPstone fixed-point kernel benchmarks we did not in-
clude were those that could not be automatically processed by our timing
analyzer In particular the number of iterations for loops in some bench-
marks could not be statically determined by our compilathile our
framework allows a user to interagtly supply this information, wexe
cluded such programs to facilitate automating the experiments.



Catgory Program Description

corvolution performsa convolution filter

comple_update performa sngle mac operation on complealues
dot_product computebe product of tw vectors

fir performsa finite impulse response filter

fir2dim performsa finite impulse response filter on a 2D image

iir_biquad_one_sectior)  performas infinite impulse response filter on one section
DSPstone| iir_biquad_N_sections perfornas infinite impulse response filter on multiple sections

Ims leastmean square adaps filter

matrix computesnatrix product of tw 10x10 matrices

matrix_1x3 computethe matrix product of 3x3 and 3x1 matrices

n_comple_updates performa mac operation on an array of complealues

n_real_updates perfornasmac operation on an array of data

real_update perfornmes dngle mac operation

fft 128 point comple FFT

summidall sumshe middle half and all elements of a 1000 integer vector
other summinmax sumthe minimum ar)c_i maximum of the correspondir_\g elements®@i®fO integer vectors

sumngpos sumshe neéive, positive, and all elements of a 1000 integer vector

sumoddeen ums the odd andven dements of a 1000 integer vector

sym testsf a 100x100 matrix is symmetric

Table 1: Benchmarks Used in the Experiments

in previous studiesMarny DSP benchmarks represemrk performed. VISA implicitly performs register assign-
nels of applications where most of the cycles ac@uch mentbefore the first code-impving phase in a sequence
kernels in DSP applications va been historically opti-  that requires it. After applying the last code-impring
mized in assembly code by hand to ensure high perfor phase in a sequence, we perform another compulsory
mance [33]. In contrast, all of the results in this section phasefix entry/&it, which inserts instructions at the entry
are from code that as automatically generated by VIST  and exit of the function to manage the \atton record on

the run-time stack.Finally, we dso perform additional

Note that theDSPstondixed-point kernel benchmarks ’ - )
code-impreing phases after the sequence, sudhstauc-

are small and do not & mnditional constructs, such as *~ .
i f statements. Thether benchmarks shown in Table 1 tion stieduling For the SC100 another compulsory phase

were selected since thalo have conditional constructs, is required to insert noops when pipeline constraints need

which means the WCET and ACET input data may not be!© b€ addressed.

the same. Our genetic algorithm searches were accomplished in
the following mannerWe st the sequence (chromosome)
length to be 1.25 times the number of phases that success-
fully applied one or more transformations by the batch
compiler for the function.We felt this was a reasonable

Tuning for ACET or WCET may result in similar code,
particularly when there areviepaths through a program.
However, tuning for WCET can be performedster since

the timing analyzer is used toaluate each sequence. - ) X
The analysis time required for our timing analyzer is pro- IMit and gves us a opportunity to successfully apply

portional to the number of unique paths at each loop and"ré Phases than what the batch compiler could accom-
function level in the program.In contrast, tuning for plish. Notethat this length is much less than the number

ACET typically takes much longer since the simulation ©f Phases attempted during the batch compilative. ®t

time of the SC100 simulator is proportional to the number the Population size (fixed number of sequences or chromo-
of instructions recuted. Vi found that the \rage time somes) to twenty and each of these initial sequences is
required to tune the WCET of each function in opesi- randomly initialized with candidate optimization phases.

ments vas about 25 minutes and this wouldsédaken We performed 200 generatiqns when searching for_the
several hours if we had used simulation. best sequence for each functione rt the sequences in

_ o the population by #itness valudased on the WCET pro-
Table 2 shavs each of the candidate code-impny duced by the timing analyzer and/or code si2¢.each
phases that we used in the experiments when tuning eac@eneration (time step) we remethe worst sequence and
function with the genetic algorithmin addition, register three others from theeer (poorer performing) half of the
assignmentvyhich is a compulsory phase that assigns population chosen at random. Each of the resdo
pseudo registers to hardware gigters, has to be gequences are replaced by randomly selecting a pair of the
remaining sequences from the upper half of the population



Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jump in a jump chain.

common subexpr elim Eliminates fully redundant calculations, which also includes constantyappapgation.

remove wnreachable code Remwes basic blocks that cannot be reached from the entry block of the function.

remove wseless blocks Reraes empty blocks from the control-fle graph.

dead assignment elim Rewes sssignments when the assigned value i@nased.

block reordering Remes a ump by reordering basic blocks when the target of the jump has only a single predecessor.
minimize loop jumps Remas a ump associated with a loop by duplicating a portion of the loop.

register allocation Replaces references to a variable within a spefiadige with a register.

loop transformations Performs loop-imariant code motion, recurrence elimination, loop strength reduction, and induetiiable

elimination on each loop ordered by loop nestinglleEachof these transformations can also bevidiially
selected by the user.

merge basic blocks Mergesdwonsecutie kasic blocksa andb whena is only followed byb andb is only preceded bg.
evduation order determination  Reorders RTLs in an attempt to use fewer registers.

strength reduction Replaces an expemsistruction with one or more cheaper ones.

reverse jumps Eliminates an unconditional jump byersing a conditional branch when it brancheerdhe jump.
instruction selection Combine instructions together and perform constant folding when the combined effgaltiissariestion.
remove wseless jumps Reraes jumps and branches whose target is the following block.

Table 2: Candidate Optimization Phasesin the Genetic Algorithm Experiments

and performing a crosger (mating) operation to create a input and output were accomplished by reading from and
pair of nav sequences. Therosswer operation combines  writing to global variables tovaid having to estimate the
the lowver half of one sequence with the upper half of the WCET of performing actual I/0.The WCET cyclesare
other sequence and viceersa to create ftw new the WCET predictions obtained from our timing analyzer
sequences. Fifteesequences are then changed (mutated)Theratios show that these predictions are reasonably close
by considering each optimization phase (gene) in theto the actual WCET The ratios for the best sequence
sequence. Mutatiomf each optimization phase in the from GAresults in Table 3 are similaout the code being
sequences occurs with a probability of 10% and 5% formeasured was the best sequence found by the genetic
the lower and upper halves of the population, resgabgti algorithm. TheWCET GA to WCET bataatio showvs the
When an optimization phase is mutated, it is randomly ratio of WCET gcles after applying the genetic algorithm
replaced with another phase. The four sequences subto the WCET cycles from the code produced by the batch
jected to cross@r and the best performing sequence are sequence of optimization phasade found that the\ar-
not mutated.Finally, if we find identical sequences in the age number of generations to find the best sequease w
same population, then we replace the redundant sequencéd out of the 200 generations attempted. Some applica-
with ones that are randomly generated. The characteristions, like fft, had significant impreements. Theapplica-
tics of this genetic algorithm search arery similar to tions with larger functions tend tovenore successfully
those used in past studies, [14, Xtept the objecte applied phases, which can often lead togdar
function nav is minimizing the WCET. improvements when searching for anfezftive qotimiza-
Table 3 shows the WCET prediction results for the tion sequence. While there were some aberrations due the
benchmarks in dble 1. The batch sequenceresults are  andomness of using a genetic algorithm, most of the
those that are obtained from the sequence of applie€nchmarks had impved WCETs. TheWCET gcles
phases when we use VRQEfault batch optimizer The decrgased by 6.6_% onezage. Thisillustrates the bengflt
batch compiler iterately applies optimization phases ©f USINg @ genetic algorithm to search fofeefive pi-
until there are no additional imprements. Thusthe  Mization sequences to IMp@WCET.
batch compll_er prades a much more aggressitaseline 2 There are still small someverestimations that we need to ad-
than a compiler that abys uses a fixed length of phases dress. Thigproblem is exacerbated due to not having access to the source
[2]. Theobserved cyclewere obtained from running the code of the SC100 simulator and the simulated pipeline behavior not al-

compiled programs through the SC100 simulatel ways exactly matching the behar described in the SC100 documenta-
tion.




Batch Sequence Best Sequence from GA| WCET GA
Catggory Program Obsered | WCET | . | Obsered | WCET| _ . || toWCET
Cycles Cycles ato Cycles Cycles alloll Batch Ratio
convolution 683 691 | 1.012 619 627 | 1.013 0.907
comple_update 152 158 | 1.039 149 155| 1.040 0.981
dot_product 121 132 | 1.091 110 119| 1.082 0.902
fir 1133 1140 | 1.006 1004 1012| 1.008 0.888
fir2dim 5809 6100 | 1.050 5430 5668| 1.044 0.929
iir_biquad_one_section 133 140 1.0853 130 137.054 0.979
DSPstone| iir_biquad_N_sections 1175 1194 | 1.016 1282 1297| 1.012 1.086
Ims 1599 1609 | 1.006 1259 1269| 1.008 0.789
matrix 39213 39668 | 1.012 35624 35976/ 1.010 0.907
matrix_1x3 274 291 | 1.062 260 274 1.054 0.942
n_comple_updates 2869 2875 | 1.002 2821 2826| 1.002 0.983
n_real_updates 1698 1705 | 1.004 1442 1449| 1.005 0.850
real_update 81 88 | 1.086 85 90 | 1.059 1.023
fft 78128 78645 1.007 61572 616341.001 0.784
summidall 19508 19515 | 1.000 18510 18516 1.000 0.949
other summinmax 24011 | 24017 | 1.000 22010 22016| 1.000 0.917
sumngpos 20010 20015 | 1.000 20010 20015| 1.000 1.000
sumoddeen 22021 23045| 1.046 22023 220451.001 0.957
sym 223366 | 228125 | 1.021] 218416 223076/ 1.021 0.978
aveage 23262 23639 | 1.027 21724 22011| 1.022 0.934
Table 3: WCET Prediction Results
optimizing for WCET || optimizing for space optimizing for both
Category Program effect efect efect effect effect déct | ag effect
on WCET | onsize|| onWCET onsize onWCHT on size on both
convolution 0.907 0.956 0.907 0.956 0.907 0.956 0.931
complex_update 0.981 0.964 1.272 0.982 0.981 0.982 0.982
dot_product 0.902 0.927 0.902 0.927 0.902 0.927 0.914
fir 0.888 0.948 1.149 0.916 0.889 0.948 0.918
fir2dim 0.929 0.976 0.930 0.906 0.930 0.906 0.918
iir_biquad_one_section  0.979 0.981 1.021 1.000 0.979 0.981 0.980
DSPstone| iir_biquad_N_sections 1.086 1.000 1.226 0.991 1.136 0.991 1.063
Ims 0.789 0.926 0.789 0.921 0.890 0.955 0.922
matrix 0.907 0.929 0.997 0.996 0.967 0.969 0.968
matrix_1x3 0.942 0.846 0.942 0.846 0.942 0.846 0.894
n_complex_updates 0.983 1.000 1.033 0.966 0.994 0.990 0.992
n_real_updates 0.850 0.949 0.850 0.949 0.850 0.949 0.899
real_update 1.023 1.014 1.023 1.014 0.898 0.942 0.920
fft 0.784 0.942 0.788 0.913 0.775 0.898 0.836
summidall 0.949 1.021 0.949 1.021 0.949 1.021 0.985
other summinmax 0.917 0.889 1.333 0.857 0.917 0.889 0.903
sumnegpos 1.000 1.000 1.000 1.022 1.000 1.000 1.000
sumoddeen 0.957 1.134 1.305 1.000 0.979 1.015 0.997
sym 0.978 0.961 0.999 0.931 1.000 0.971 0.985
aveage 0.934 0.967 1.022 0.953 0.941 0.954 0.948

Table 4: Effect on WCET and Code Size Using the Three Fitness Criteria

In addition to improving WCETwe tought it would for each &ctor pptimizing for both For each type of
be interesting to see the impement in code sizeTable search, we sho the effect both on WCET and on code
4 shows the results obtained for each benchmark by apply-size. Theresults that are supposed to imFceccording
ing the genetic algorithm when changing the fitness crite-the specified fitness criteria used are shown in bolf
ria. For each benchmark we performed threefedént For these results, the genetic algorithmasaable to typi-
searches, which are based on WCET onlgti(nizing for cally find a sequence for each benchmark that either
WCET), code size onlydptimizing for spacge and 50%  achieves the same result or obtains an imyeo result as
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7. Future Work

vary the characteristics of the genetic algorithm seatth.

would be interesting to see the effect on a search as ond0. References
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