Avoiding Unconditional Jumps by Code Replication

Frank Mueller and David B. Whalley

Department of Computer Science, B-173
Florida State University

Tallahassee, Florida 32306-4019
e-mail: whalley@cs. fsu.edu

Abstract

This study evaluates a global optimization technique
that avoids unconditional jumps by replicating code.
When implemented in the back-end of an optimizing
compiler, this technique can be generalized to work on
almost all instances of unconditional jumps, including
those generated from conditional statements and un-
structured loops. The replication method is based on
the idea of finding a replacement for each unconditional
jump which minimizes the growth in code size. This is
achieved by choosing the shortest sequence of instruc-
tions as a replacement. Measurements taken from a
variety of programs showed that not only the number
of executed instructions decreased, but also that the
total cache work was reduced (except for small caches)
despite increases in code size. Pipelined and super-
scalar machines may also benefit from an increase in
the average basic block size.

1 Introduction

Unconditional jumps occur often in programs. Depend-
ing on the environment, execution frequencies between
4% and 10% have been reported [Pe77, C182]. Common
programming constructs such as loops and conditional
statements are translated to machine code using un-
conditional jumps, thus resulting in relatively compact
code. Code size, however, has become less important
since the introduction of caches. For instance, inlining
[Da88] and loop unrolling [He90] can obtain improve-
ments while increasing the code size.

This study describes a method of replacing uncondi-
tional jumps uniformly by replicating a sequence of in-

structions from the jump destination. To perform this
task, an algorithm is proposed which is based on the
idea of following the shortest path within the control
flow when searching for a replication sequence. The
effect of code replication is shown by capturing mea-
surements from the execution of a number of programs.

The document is structured as follows. Section 2
gives an overview of research on related topics. Section
3 illustrates the advantages of using code replication for
optimizing various programming constructs. Section
4 provides an informal description of the algorithms
used to implement code replication. Section 5 discusses
the results of the implementation by comparing the
measurements of numerous programs with and without
code replication. Section 6 gives an overview of future
work and Section 7 summarizes the results.

2 Related Work

Several optimizations that attempt to improve code by
replicating instructions have been implemented. Loop
unrolling [He90] replicates the body within a loop. This
reduces the number of compare and branch instructions
that are executed. Also, more effective scheduling may
be achieved for pipelined and multiple issue machines
since some of the basic blocks comprising the loop con-
tain more instructions after unrolling.

Inlining, an optimization method studied by David-
son and Holler [Da88], results in replicated code when
a routine is inlined from more than one call site. Hwu
and Chang [Hw89] used inlining techniques based on
profiling data to limit the number of call site expan-
sions and thereby avoid excessive growth. In general, a
call to a non-recursive routine can be replaced by the
actual code of the routine body. The procedure call
can be viewed as an unconditional jump to the begin-
ning of the body, and any return from the procedure
can be viewed as an unconditional jump back to the
instruction following the call.

Golumbic and Rainish [Go90] used the method of

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 322



i=1;
while (i++<n)
x[i-1] = x[i];
without replication with replication
move 1 into data reg. I (variable 1) dr1]=1; d[ol=1;
move addr. of x[] into addr. reg. 0 al0]=al[6]+x.; dalf1]=2;
L15 NZ=d4[0]?7L[m];
copy data reg. 1 into data reg. 0 d[0]=d[1]; PC=NZ>=0,L16;
mer. index into x[1 al0]l=al0]+1; al0]=al[6]+x.+1;
incr. data reg. 1 (variable i) d[1]=d[1]+1; L000
compare data reg. 0 with variable n NZ=d4[0]?L[xn]; Blal[0]]1=B[al[0]+1];
exit loop if greater/equal PC=NZ>=0,L16; al0]=al[0]+1;
move x[1] into x[i-1] Blal[0]]l=B[a[0]+1]; d[0]=4[1];
Jump unconditionally to L15 PC=L15; dl1]=d[1]+1;
Lie ... NZ=d4[0]?7L[m];
PC=NZ<0,L000;
Li6 ce

Table 1: Exit Condition in the Middle of a Loop (RTLs for 68020)

replicating parts of basic blocks for instruction schedul-
ing to exploit potential parallelism for a super-scalar
processor. In their approach, it suffices to copy the
number of instructions needed to avoid a pipeline stall
from the block following a conditional statement. They
expand natural loops similarly by replicating instruc-
tions from the top of the loop, negating the branch
condition, and inserting another unconditional jump.
Their goal was to increase the number of instructions
that can be issued simultaneously.

3 Motivation

All replication techniques employed in the front-end
of a compiler lack generality in reducing the number of
unconditional jumps. Instances of unconditional jumps
cannot always be detected due to interaction with other
optimizations and a lack of information about the tar-
get architecture. Consequently, front-end methods for
code replication cannot eliminate occurrences of uncon-
ditional jumps which are introduced by the optimiza-
tion phase of a compiler.

The optimization evaluated in this study, code repli-
cation, was accomplished by modifying the back-end
of the optimizing compiler VPO (Very Portable Op-
timizer) [Be88]. The algorithms to perform the opti-
mization, except for a few small functions, are machine-
independent. In general, RTLs! are searched for uncon-
ditional jumps. By determining the jump destination
and using control flow information, a subset of the basic
blocks in the function can be replicated, replacing the
unconditional jump. Such an optimization can be ap-
plied to almost all occurrences of unconditional jumps.
The following sections give examples of instances where

'Register Transfer Lists (RTLs) represent the effects
of instructions of a target machine.

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992

code replication can be applied to applications written

i C.

3.1 Loops

For while-loops, the front-end VPCC (Very Portable C
Compiler) [Da89] generates intermediate code with an
unconditional jump at the end of the loop. This un-
conditional transfer can be replaced by the instructions
testing the termination condition of the loop with the
termination condition reversed.

The intermediate code produced by the front-end for
for-loops with an unknown number of iterations in-
cludes an unconditional transfer of control preceding
the loop to the instructions comprising the termina-
tion condition, a portion of code placed at the end of
the loop. This unconditional jump can also be replaced
by the code which tests for the inverse termination con-
dition. Thus, the code checking the termination con-
dition would appear before the loop and at the end of
the loop.

Often, the replication of the termination condition
of while and for loops is performed by optimizing com-
pilers. But when the exit condition is placed in the
middle of a loop, most compilers do not attempt a re-
placement for the unconditional jump. An example for
such a situation is given in Table 1. Code replication
is used to replace the unconditional jump by the RTLs
between label L15 and the conditional branch. The
conditional branch is reversed and a new loop header
is introduced at label L0O00. Afterwards, other opti-
mizations such as common subexpression elimination
are applied. In this example, one unconditional jump
per loop 1iteration is saved. The method proposed in
this study handles these cases as well as unstructured
loops, which are typically not recognized as loops by
an optimizer.

323



else

if (i>5)

i=1/ n;
i=1 * n;
return(i);

without replication

with replication

compare 1 and 5
branch if less/equal
load 1 into data reg. 0
divide data reg. 0 by n
store data reg. 0 into i

Wz=Llal[6]+i.]75;
PC=NZ<=0,L22;
dl[o]=L[a[6]+i.];
dl[o]=d[0o]/L[a[6]+n.];
L[al6]+i.]=d4[0];

Jump unconditionally to L23 PC=L23; al[6]=UK;
L22 PC=RT;
load 1 into data reg. 0 d[o]l=L[a[6]+i.]; L22
multiply data reg. 0 by n dfo]=d[o]*L[al6]+n.]; dfo]=L[al[6]+i.];
store data reg. 0 into 1 L[a[6]+i.]=4[0]; d[o]l=da[o]l*L[a[6]+n.];
L23 L[al[6]+i.]=d4[0];
restore old frame pointer al[6]=UK; al[6]=UK;
return from subroutine PC=RT; PC=RT;

Wz=Llal[6]+i.]75;
PC=NZ<=0,L22;
dl[o]=L[a[6]+i.];
dl[o]=d[0o]/L[a[6]+n.];
L[al6]+i.]=d4[0];

Table 2: If~Then-Else Statement (RTLs for 68020)

3.2 Conditional Statements

For the if-then-else construct an unconditional jump is
generated at the end of the then-part to jump over the
else-part. This unconditional jump can also be elim-
inated by code replication. There are two execution
paths possible which are joined at the end of the if-
then-else construct. The two execution paths can be
separated completely or their joining can be at least
deferred by replicating the code after the if-then-else
construct, so that the unconditional jump 1s replaced
by the copied instructions. Table 2 shows an example of
replicating code where the two execution paths return
from the function separately.? The method of code
replication used for conditional statements can also be
applied to break and goto statements, and conditional
expressions in the C language (expr?expr:expr).

3.3 Sources for other Optimizations

Code replication also creates new opportunities for
global optimizations by modifying the control flow of
a function. The following paragraphs describe new op-
portunities for constant folding, instruction selection,
common subexpression elimination, and code motion.

3.3.1 Constant Folding of Comparisons and
Conditional Branches

After applying code replication, sources for constant
folding may be introduced which did not exist before.
For example, conditional branches, dependent on the
comparison of two constants, may be introduced by

?Notice that nested if-then-else statements can
cause code to be replicated very often, thus resulting in
an disproportional growth in code size relative to the
original code size.

changing the control flow during code replication. De-
pending on the result of the constant comparison, such
a conditional branch can either be eliminated or re-
placed by an unconditional jump. In the later case,
dead code elimination may remove instructions follow-
ing the unconditional jump which can no longer be
reached.

3.3.2 Elimination of Instructions

In conjunction with code replication, common subex-
pression elimination can often combine instructions
when an initial value is assigned to a register, followed
by an unconditional jump. If the replication sequence
uses the register, the use is replaced by the initial value
so that the assignment to the register becomes redun-
dant if there are no further uses or sets of the register.
Similarly, instruction selection may combine instruc-
tions when the head of a loop is moved. For example,
the second RTL in the replicated code of Table 1 is a
simplification of the first and fifth RTLs in the code
before replication.

3.3.3 Relocating the Preheader of Loops

After code replication the execution of some instruc-
tions may be avoided for an execution path. For in-
stance, code motion is performed after an initial pass
of code replication. This may result in a new location
of the preheaders of loops. Thus, if a loop is not ex-
ecuted because the conditional branch preceding the
loop is taken, the instructions in the preheader (fol-
lowing that branch) would not be executed. This may
result in considerable savings when loops are nested.
An example is the RTL preceding label L0O00 in the
replicated code of Table 1 which is the loop preheader.

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 324



Without Replication

With Partial Replication

G\a

With Loop Replication

Figure 1: Interference with Natural Loops

4 JUMPS: An Algorithm for
Code Replication

The task of code replication 1s to find a sequence of
basic blocks to replace an unconditional jump. In or-
der to avoid algorithms with a high degree of complex-
ity, 1t was decided to make the initial assumption that
only the shortest path between two basic blocks is ex-
amined. This constraint is motivated by the goal of
limiting the size of code introduced by the replication
process. The shortest path is determined with respect
to the number of RTLs. Finding the shortest path in
the control-flow graph with n blocks is accomplished
by using Warshall’s algorithm for calculating the tran-
sitive closure of a graph [Wa62] which has a complexity
of O(n?®). First, all legal transitions between any two
distinct basic blocks are collected in a matrix. This
initial pass creates a copy of the control flow graph
but it excludes self-reflexive transitions and, optionally,
other edges whose control flow is excluded explicitly.
For example, the replication of indirect jumps has not
yvet been implemented at this point. Then, the non-
reflexive transitive closure is calculated for all nodes
with respect to the shortest path. The transitivity re-
lation between two nodes 1s only recorded if it is the
shortest connection found so far in terms of the num-
ber of RTLs in the traversed blocks [F162]. In the end,
the matrix can be used to look up the shortest path
between two arbitrary basic blocks in the table with-
out having to recalculate it after each replication. The
algorithm JUMPS is divided into the following steps:

1. Initially, the matrix used to find the shortest se-

quence of basic blocks to replace an unconditional
jump 1s set up.

. In the second step, the basic blocks within a func-

tion are traversed sequentially and unconditional
jumps are replaced as follows. Either a sequence
of blocks that ends with a return from the routine
is replicated (favoring returns), or a sequence of
blocks 1s chosen linking the current block contain-
ing the unconditional jump with the block posi-
tionally following the unconditional jump (favor-
ing loops). In the latter case, the last block to
be replicated will fall through to the next block.
At this point, heuristics can be used to make the
choice between these two options.

. If a collected block (i.e. a block chosen for replica-

tion in the previous step) was detected to be the
header of a natural loop and the block collected
previously was not inside the same loop, then all
blocks inside this loop are included in the replica-
tion sequence in their positional order. The exam-
ple in Figure 1 has an unconditional jump from
block 2 to block 4 before replication. Without
replicating block 6, the original loop would have
two entry points and would be unstructured.

. Once a sequence of basic blocks is replicated, the

control flow 1s adjusted accordingly. A conditional
branch is reversed in the replicated path if the
path does not follow the fall-through transition.
New labels are introduced, and the destinations of
conditional branches are modified. In addition, all

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 325



Initial Control Flow

After Replication

Adjusted Control Flow

Figure 2: Partial Overlapping of Natural Loops

unconditional jumps that are found in the repli-
cated code can be eliminated since the sequence
of replicated blocks had to follow the control flow
with fall-through transitions.

5. The adjustment of the control flow is extended,
once again to preserve the structure of loops.
When a replication is initiated from a block inside
a loop, a portion of the loop can be copied without
introducing unnatural loops. In addition, the con-
trol flow of all blocks in the loop which were not
copied but branch conditionally to a block which
was copied, is changed to the copied block. If
a block occurs twice in the replication sequence,
forward branches (positionally down) are favored
over branches back to a previous block. These
modifications are needed to avoid the introduc-
tion of natural loops which partially overlap and
would complicate standard loop optimizations. An
example is given in Figure 2. There is an uncondi-
tional transfer from block 3 to block 1 in the initial
control flow. By changing the target of the condi-
tional branch in block 2 after replication, the intro-
duction of partially overlapping loops is avoided in
the adjusted control flow.

6. Even with replication of entire natural loops, it is
still possible for this algorithm to introduce new
loops which are unstructured. Therefore, the con-
trol flow graph is checked to determine if it is
still reducible. The replicated code is removed
if it introduced a non-reducible flow graph. In
this case, replication may be attempted using the
longer block sequence (see step 2). Reducibility
has to be preserved to ensure that the same opti-
mizations can be applied to loops as without repli-

cation.

The algorithm JUMPS is applied to a function for
each unconditional jump until no more unconditional
jumps can be replaced. As a result of the replication
process, blocks which cannot be reached by the control
flow anymore can sometimes occur. Therefore, dead
code elimination is invoked to delete these blocks.

5 Measurements

Static and dynamic frequency measurements and in-
struction cache performance measurements were taken
from a number of well-known benchmarks, UNIX util-
ities, and one application (see Table 3). The code was
generated for the Motorola 68020/68881 processor and

Class Name Description

banner banner generator

cal calendar generator

compact file compression

deroff remove nroff constructs
Utilities grep pattern search

od octal dump

sort sort or merge files

we word count

bubblesort | sort numbers
matrix multiplication
1teration

matmult
Benchmarks | sieve

queens 8-queens problem
quicksort | sort numbers (iterative)
User code mincost VLSI circuit partitioning

Table 3: Test Set of C Programs

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 326



static dynamic
SIMPLE LOOPS JUMPS | SIMPLE LOOPS JUMPS
Sun average 3.74% 2.40% 0.03% 3.28% 1.89% 0.10%
SPARC std. deviation 1.78% 1.99% 0.12% 2.71% 2.56% 0.30%
Motorola | average 5.08% 3.42% 0.04% 4.14% 2.47% 0.13%
68020 std. deviation 2.49% 2.83% 0.15% 3.48% 3.36% 0.43%

Table 4: Percent of Instructions that are Unconditional Jumps

the Sun SPARC processor, a RISC architecture. For
the SPARC processor, delay slots after transfers of con-
trol were filled. The standard code optimization tech-
niques such as branch chaining, instruction selection,
register coloring, common subexpression elimination,
constant folding, code motion, strength reduction, and
constant folding at conditional branches were applied
on the measured code. Library routines could not be
measured since the source code was not available to be
compiled by VPO.

The measurements were collected by using EASE
(Environment for Architectural Study and Experimen-
tation) [Da90-2] which is designed to measure the code
produced by the optimizer VPO. When generating
code, additional instructions are inserted to capture
measurements during the execution of a program.

Each program was tested with three different sets of
optimizations:

e SIMPLE: Only the standard optimizations were
performed.

e LOOPS: Unconditional jumps preceding a loop or
at the end of the loop are replaced by the ter-
mination condition of the loop and the replicated
condition is reversed. Depending on the original
layout of the loop, either one unconditional jump
is removed at the entry point, or one unconditional
jump is saved per loop iteration. This optimiza-
tion is often implemented in conventional optimiz-
ers.

e JUMPS: This is the algorithm discussed previ-
ously. It is a generalized approach which attempts
to replace any occurrences of unconditional jumps
by replicating code.

5.1 Integration into an Optimizing
Compiler

The code replication algorithms (JUMPS and LOOPS)
are integrated into the optimizing back-end of the VPO
compiler in the following manner. After performing
initial branch optimizations such as branch chaining,
code replication is performed to reduce the remaining
number of unconditional jumps. When JUMPS is used
for code replication, the compile-time overhead for the

replication process itself is minimal, but the following
optimization stages process more RTLs. The impact of
LOOPS on the compile time 1s minimal.

Figure 3 summarizes the order in which the differ-
ent optimization phases are invoked. Code replication
is performed at an early stage so that the later op-
timizations can take advantage of the simplified con-
trol flow. In order to replace all unconditional jumps
generated by constant folding at conditional branches
or introduced by remote preheaders, code replication
is reinvoked repeatedly. The final invocation of code
replication replaces those unconditional jumps which
remained in the code because replication would have
resulted in a non-reducible flow graph.

branch chaining;
dead code elimination;
reorder basic blocks to minimize jumps;
code replication (either JUMPS or LOOPS);
dead code elimination;
instruction selection;
register assignment;
if (change)
instruction selection;
do {
register allocation by register coloring;
instruction selection;
common subexpression elimination;
dead variable elimination;
code motion;
strength reduction;
recurrences;
instruction selection;
branch chaining;
constant folding at conditional branches;
code replication (either JUMPS or LOOPS);
dead code elimination;
} while (change);
filling of delay slots for RISCs;

Figure 3: Order of Optimizations

5.2 Static and Dynamic Behavior

Table 4 shows the number of unconditional jumps rel-
ative to the total number of instructions for the static
and dynamic measurements. The number of uncondi-
tional jumps is reduced by 40-42% dynamically when
LOOPS was applied, and with code replication prac-

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 327



tically no unconditional jumps are left. Thus, code
replication results in a reduction of instructions exe-
cuted by at least the number of unconditional jumps
which could be avoided dynamically.

The few unconditional jumps left after code repli-
cation are due to indirect jumps, infinite loops, and
interactions with other optimization phases (such as
code motion) that may introduce unconditional jumps.
Paths containing indirect jumps are excluded from
replication in the current implementation. Infinite
loops do not provide any opportunity to replace the
unconditional branch. And interactions with other op-
timization phases are treated conservatively to avoid
the potential of replication ad infinitum.

Table 5 illustrates the static and dynamic behavior of
the programs. The columns SIMPLE indicate the total
number of instructions and the other columns represent
the change in the number of instructions relative to the
SIMPLE version of each program. The static change
is proportional to the growth of the code size. When
LOOPS is applied, the number of instructions increases
by only 2.6-4.0%. With generalized code replication, on
the other hand, an average of about 53% more instruc-
tions are generated. The decrease in the number of
instructions executed for LOOPS is less than half the
decrease for JUMPS.

For the SPARC about 1.5 more instructions are
found between branches after code replication was ap-
plied and 50% of the executed no-op instructions were
eliminated. Thus, the opportunities for instruction
scheduling may improve if code replication is applied
for a pipelined machine. Also, in a multiple-issue pro-
cessor more potential parallelism may be found [Ri72].

5.3 Impact on Instruction Caching

The cache performance was tested for cache sizes of
1Kb, 2Kb, 4Kb, and 8Kb. For each different cache size
a direct-mapped cache with 16 bytes per line was sim-
ulated. Both the miss ratio and the fetch cost were
measured in the experiment. The estimation of the
fetch cost is based on the assumption that misses are
ten times as expensive as hits. Thus, fetch cost is cal-
culated as follows:

fetch cost = cache hits * cache access time +

cache misses * miss penalty

where the cache access time is 1 time unit and the
miss penalty 1s 10 units of time. Context-switches were
simulated by invalidating the entire cache every 10,000
units of time. The estimates for the cache access time,
the miss penalty, and the context-switching interval
were adopted from Smith’s cache studies [Sm82]. No-
tice that the overall fetch cost can decrease while the

miss ratio increases for the same program. This can be
explained by the reduced number of instructions exe-
cuted after replication and illustrates the short-comings
of the miss ratio as a measurement when the code in a
program changes. (This observation was first made by
7],

Table 6 shows the change of the miss ratio and fetch
cost for varying sizes of direct-mapped caches. Each set
of measurements with the same configuration is related
to the corresponding values of the SIMPLE version.
For example, for a 1Kb cache with context switches on
the SPARC, the difference between the miss ratio of
LOOPS and the miss ratio of the SIMPLE version was
-0.05%, a slight decrease of misses.

The impact of context switching was minimal, and
the miss ratio only increased slightly with context
switching on.

For small caches, code replication (JUMPS) may be
outperformed by loop replication (LOOPS). A program
may initially fit in the cache, but after code replication
is applied, it might not fit anymore. Therefore, capac-
ity misses can be introduced. For example, for a 1Kb
cache about 1% additional misses were caused by in-
struction fetches. But for larger caches the miss ratio
changes only slightly.

Code replication places instructions together which
are likely to be executed in a sequence but increases the
distance between conditional branch instructions and
their branch destinations. Nevertheless, the program’s
spatial locality can be improved by replicating code.
Overall, code replication reduces the total number of
instructions executed such that the average fetch cost
is actually reduced except for small caches.

6 Future Work

The algorithm for code replication could be extended to
copy indirect jumps and, for some architectures, their
jump tables. If the table has to be replicated, the tar-
get addresses within the jump table should be revised.
In either case, the jump destinations do not need to
be copied. Thus, an indirect jump could terminate
a replication sequence and provide yet another alter-
native besides replication paths favoring returns and
favoring loops (see step 2 of algorithm JUMPS).

Furthermore, the increase in code size could be re-
duced by limiting the maximum length of a replication
sequence to a specified number of RTLs. The improve-
ments in the dynamic behavior of programs may drop
slightly for this case while the performance of small
caches should benefit.

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 328



Sun SPARC
program static instructions dynamic instructions executed
SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS
cal 338 +3.25% +21.89% 37,237 —2.95% -3.15%
quicksort 321 +5.61% +50.16% 836,404 —2.86% —14.21%
we 209 +0.96%  +58.37% 540,158 —0.00% —1.96%
grep 968 +4.24%  +79.34% | 1,930,791 —0.04% —3.57%
sort 1,966 +4.63% +89.17% | 1,181,960 —0.71% —10.49%
od 1,352 +4.59%  +95.19% | 2,336,014 —8.84% —10.22%
mincost 1,068 +6.84%  +30.99% 335,750 —0.59% —3.91%
bubblesort 175 +7.43% +5.14% | 29,071,668 —0.06% —0.07%
matmult 218 +4.59% +3.67% | 14,403,714 —0.08% —0.28%
banner 169 +7.69% +66.27% 2,565 —1.68% —10.25%
sieve 93 +3.23% +3.23% | 2,184,965 —13.73% -13.73%
compact 1,491 +1.07%  +75.18% | 13,409,945 —1.94% —4.86%
queens 114 +0.00% +7.89% 263,518 —0.00% —0.03%
deroff 7,987 +1.50% +204.98% 448581 —0.01% —3.13%
average 1,176 +3.97%  +56.53% | 4,784,519 —-2.39% —5.71%
Motorola 68020
program static instructions dynamic instructions executed
SIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPS
cal 323 +3.72%  4+24.77% 36,290 —-3.09% —-3.17%
quicksort 245 +3.67%  +37.96% 536,566 —0.39% —3.96%
we 173 +0.58%  +56.65% 421,038 —0.00% —5.32%
grep 775 +3.35%  +80.90% | 1,309,586 —0.03% —3.44%
sort 1,558 +3.98% +63.67% 902,075 —1.49% —12.43%
od 1,198 +2.92%  +85.73% | 1,980,808 —9.45% —10.30%
mincost 906 +3.20%  +35.98% 302,062 -1.10% —5.13%
bubblesort 137 +3.65% +2.92% | 20,340,231 —18.92% —18.92%
matmult 146 +3.42% +3.42% | 4,891,507 —0.21% —-0.21%
banner 177 +3.95%  +55.93% 2473 —1.42% -13.34%
sieve 70 +1.43% +1.43% | 1,759,088 —8.53% —8.53%
compact 1,143 40.70% +73.93% | 10,602,159 —1.54% —5.26%
queens 94 +0.00% +12.77% 189,518  —0.00% —0.05%
deroff 5730 +1.06% +155.17% 360,061  —0.03% —7.05%
average 905 +2.55%  +49.37% | 3,116,675 —-3.30% —6.94%
Table 5: Number of Static and Dynamic Instructions
cache size 1Kb 2Kb 4KB 8Kb
processor|context sw. || LOOPS JUMPS |LOOPS JUMPS |LOOPS JUMPS|LOOPS JUMPS
Cache Miss Ratio
Sun on —0.05% +1.07%|—-0.22% —0.07%|+0.03% +0.25%|+0.01% +0.11%
SPARC off —0.03% +1.07%|—-0.22% —0.08%|+0.03% +0.21%|+0.01% +0.07%
Motorola on +0.08% +1.26%|+0.04% +0.75%|+0.01% +40.09%|+0.01% +0.07%
68020 off +0.08% +1.256%|+0.03% +0.70%|+0.01% +40.05%|+0.01% +0.03%
Instruction Fetch Cost
Sun on —2.73% +3.44%|—-3.80% —5.24%|—-2.26% —2.94%|—-2.40% —3.98%
SPARC off —2.64% +3.68%|—-3.87T% —5.33%|—-2.24% —3.13%|—-2.4T% —4.30%
Motorola on —-3.07% +1.69%|—-3.26% —0.63%|—-3.58% —5.13%|-3.57% —5.30%
68020 off —-3.04% +1.86%|—3.28% —0.71%|—-3.61% —5.48%|—3.60% —5.66%

Table 6: Percent Change in Miss Ratio and Instruction Fetch Cost for Direct-Mapped Caches

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992

329



7 Conclusions

A new global optimization method called code replica-
tion was developed which can be applied to eliminate
almost all unconditional jumps in a program. The re-
sulting programs are executing 5.7-6.9% less instruc-
tions in average. The number of instructions between
branches is increased by 1.5 instructions on the average
on the SPARC, so that the opportunities for instruc-
tion scheduling for pipelined or multi-issue machines
are improved. The cache work decreases by about 4%
except for small caches. The static number of instruc-
tions increases by an average of 53%. The generalized
technique of code replication should be applied in the
back-end of highly optimizing compilers if the execu-
tion time but not the program size is the major concern.
The results of the test set also show that the repli-
cation of only the branch condition at natural loops,
commonly performed in optimizing compilers, results
in about 45% of the dynamic instruction savings which
can be achieved by generalized code replication.

References

[Be88] M. E. Benitez, J. W. Davidson A Portable
Global Optimizer and Linker, Proceedings of the
SIGPLAN ’88 Symposium on Programming Lan-
guage Design and Implementation, Atlanta, GA,
June 1988, pp. 329-338

[CI82] D. W. Clark, H. M. Levy, Measurement and
Analysis of Instruction Use in the VAX-11/780,
Proceedings of the 9th Annual Symposium on
Computer Architecture, April 1982, pp. 9-17

[Da88] J. W. Davidson, A. M. Holler, A Study of a C
Function Inliner, Software, Vol. 18, No. 8, August
1988, pp. 775-790

[Da89] J. W. Davidson, D. B. Whalley, Quick Com-
pilers Using Peephole Optimizations, Software —
Practice and Experience, Vol. 19, No. 1, January

1989, pp. 195-203

[Da90-2] J. W. Davidson, D. B. Whalley, Fase: An
Environment for Architecture Study and FEzper-
imentation, Proceedings of the SIGMETRICS
1990 Conference on Measurement and Modeling
of Computer Systems, May 1990, pp. 259-260

[F162] R. W. Floyd, Algorithm 97: Shoriest Path,
Communications of the ACM, Vol. 5, No. 6, June
1962, p. 345

[Go90] M. C. Golumbic, V. Rainish, Instruction
Scheduling beyond Basic Blocks, IBM Journal of
Research Development, Vol. 34, No. 1, January
1990, pp. 93-97

[He90] J. L. Hennessy, D. A. Patterson, Compuler
Architecture: A Quantitative Approach, Morgan
Kaufmann, 1990

[Hw89] W. W. Hwu, P. P. Chang, Inlining Function
Ezpansion for Compiling C Programs, Proceed-
ings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementa-

tion, Vol. 24, No. 5, June 1989, pp. 246-257

[Pe77] B. L. Peuto, L. J. Shustek, An Instruction Tim-
g Model of CPU Performance, Proceedings of
the 4th Annual Symposium on Computer Archi-
tecture, March 1977, pp. 165-178

[Ri72] E. M. Riseman, C. C. Foster, The Inhibition of
Potential Parallelism by Conditional Jumps, IEEE
Transactions on Computers, Vol. 21, No. 12, De-
cember 1972, pp. 1405-1411

[Sm82] A.J. Smith, Cache Memories, Computing Sur-
veys, Vol. 14, No. 3, September 1982, pp. 473-530

[Wa62] S. Warshall, A Theorem on Boolean Matrices,
Journal of the ACM, No. 9, 1962, pp. 11-12

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 330



