
Avoiding Unconditional Jumps by Code ReplicationFrank Mueller and David B. WhalleyDepartment of Computer Science, B-173Florida State UniversityTallahassee, Florida 32306-4019e-mail: whalley@cs.fsu.eduAbstractThis study evaluates a global optimization techniquethat avoids unconditional jumps by replicating code.When implemented in the back-end of an optimizingcompiler, this technique can be generalized to work onalmost all instances of unconditional jumps, includingthose generated from conditional statements and un-structured loops. The replication method is based onthe idea of �nding a replacement for each unconditionaljump which minimizes the growth in code size. This isachieved by choosing the shortest sequence of instruc-tions as a replacement. Measurements taken from avariety of programs showed that not only the numberof executed instructions decreased, but also that thetotal cache work was reduced (except for small caches)despite increases in code size. Pipelined and super-scalar machines may also bene�t from an increase inthe average basic block size.1 IntroductionUnconditional jumps occur often in programs. Depend-ing on the environment, execution frequencies between4% and 10% have been reported [Pe77, Cl82]. Commonprogramming constructs such as loops and conditionalstatements are translated to machine code using un-conditional jumps, thus resulting in relatively compactcode. Code size, however, has become less importantsince the introduction of caches. For instance, inlining[Da88] and loop unrolling [He90] can obtain improve-ments while increasing the code size.This study describes a method of replacing uncondi-tional jumps uniformly by replicating a sequence of in-

structions from the jump destination. To perform thistask, an algorithm is proposed which is based on theidea of following the shortest path within the control
ow when searching for a replication sequence. Thee�ect of code replication is shown by capturing mea-surements from the execution of a number of programs.The document is structured as follows. Section 2gives an overview of research on related topics. Section3 illustrates the advantages of using code replication foroptimizing various programming constructs. Section4 provides an informal description of the algorithmsused to implement code replication. Section 5 discussesthe results of the implementation by comparing themeasurements of numerous programs with and withoutcode replication. Section 6 gives an overview of futurework and Section 7 summarizes the results.2 Related WorkSeveral optimizations that attempt to improve code byreplicating instructions have been implemented. Loopunrolling [He90] replicates the body within a loop. Thisreduces the number of compare and branch instructionsthat are executed. Also, more e�ective scheduling maybe achieved for pipelined and multiple issue machinessince some of the basic blocks comprising the loop con-tain more instructions after unrolling.Inlining, an optimization method studied by David-son and Holler [Da88], results in replicated code whena routine is inlined from more than one call site. Hwuand Chang [Hw89] used inlining techniques based onpro�ling data to limit the number of call site expan-sions and thereby avoid excessive growth. In general, acall to a non-recursive routine can be replaced by theactual code of the routine body. The procedure callcan be viewed as an unconditional jump to the begin-ning of the body, and any return from the procedurecan be viewed as an unconditional jump back to theinstruction following the call.Golumbic and Rainish [Go90] used the method ofIn ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 322

i = 1;while (i++<n)x[i-1] = x[i];without replication with replicationmove 1 into data reg. 1 (variable i) d[1]=1; d[0]=1;move addr. of x[] into addr. reg. 0 a[0]=a[6]+x.; d[1]=2;L15 NZ=d[0]?L[n];copy data reg. 1 into data reg. 0 d[0]=d[1]; PC=NZ>=0,L16;incr. index into x[] a[0]=a[0]+1; a[0]=a[6]+x.+1;incr. data reg. 1 (variable i) d[1]=d[1]+1; L000compare data reg. 0 with variable n NZ=d[0]?L[n]; B[a[0]]=B[a[0]+1];exit loop if greater/equal PC=NZ>=0,L16; a[0]=a[0]+1;move x[i] into x[i-1] B[a[0]]=B[a[0]+1]; d[0]=d[1];jump unconditionally to L15 PC=L15; d[1]=d[1]+1;L16 ... NZ=d[0]?L[n];PC=NZ<0,L000;L16 ...Table 1: Exit Condition in the Middle of a Loop (RTLs for 68020)replicating parts of basic blocks for instruction schedul-ing to exploit potential parallelism for a super-scalarprocessor. In their approach, it su�ces to copy thenumber of instructions needed to avoid a pipeline stallfrom the block following a conditional statement. Theyexpand natural loops similarly by replicating instruc-tions from the top of the loop, negating the branchcondition, and inserting another unconditional jump.Their goal was to increase the number of instructionsthat can be issued simultaneously.3 MotivationAll replication techniques employed in the front-endof a compiler lack generality in reducing the number ofunconditional jumps. Instances of unconditional jumpscannot always be detected due to interaction with otheroptimizations and a lack of information about the tar-get architecture. Consequently, front-end methods forcode replication cannot eliminate occurrences of uncon-ditional jumps which are introduced by the optimiza-tion phase of a compiler.The optimization evaluated in this study, code repli-cation, was accomplished by modifying the back-endof the optimizing compiler VPO (Very Portable Op-timizer) [Be88]. The algorithms to perform the opti-mization, except for a few small functions, are machine-independent. In general, RTLs1 are searched for uncon-ditional jumps. By determining the jump destinationand using control
ow information, a subset of the basicblocks in the function can be replicated, replacing theunconditional jump. Such an optimization can be ap-plied to almost all occurrences of unconditional jumps.The following sections give examples of instances where1Register Transfer Lists (RTLs) represent the e�ectsof instructions of a target machine.

code replication can be applied to applications writtenin C.3.1 LoopsFor while-loops, the front-end VPCC (Very Portable CCompiler) [Da89] generates intermediate code with anunconditional jump at the end of the loop. This un-conditional transfer can be replaced by the instructionstesting the termination condition of the loop with thetermination condition reversed.The intermediate code produced by the front-end forfor-loops with an unknown number of iterations in-cludes an unconditional transfer of control precedingthe loop to the instructions comprising the termina-tion condition, a portion of code placed at the end ofthe loop. This unconditional jump can also be replacedby the code which tests for the inverse termination con-dition. Thus, the code checking the termination con-dition would appear before the loop and at the end ofthe loop.Often, the replication of the termination conditionof while and for loops is performed by optimizing com-pilers. But when the exit condition is placed in themiddle of a loop, most compilers do not attempt a re-placement for the unconditional jump. An example forsuch a situation is given in Table 1. Code replicationis used to replace the unconditional jump by the RTLsbetween label L15 and the conditional branch. Theconditional branch is reversed and a new loop headeris introduced at label L000. Afterwards, other opti-mizations such as common subexpression eliminationare applied. In this example, one unconditional jumpper loop iteration is saved. The method proposed inthis study handles these cases as well as unstructuredloops, which are typically not recognized as loops byan optimizer.In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 323

if (i>5)i = i / n;elsei = i * n;return(i);without replication with replicationcompare i and 5 NZ=L[a[6]+i.]?5; NZ=L[a[6]+i.]?5;branch if less/equal PC=NZ<=0,L22; PC=NZ<=0,L22;load i into data reg. 0 d[0]=L[a[6]+i.]; d[0]=L[a[6]+i.];divide data reg. 0 by n d[0]=d[0]/L[a[6]+n.]; d[0]=d[0]/L[a[6]+n.];store data reg. 0 into i L[a[6]+i.]=d[0]; L[a[6]+i.]=d[0];jump unconditionally to L23 PC=L23; a[6]=UK;L22 PC=RT;load i into data reg. 0 d[0]=L[a[6]+i.]; L22multiply data reg. 0 by n d[0]=d[0]*L[a[6]+n.]; d[0]=L[a[6]+i.];store data reg. 0 into i L[a[6]+i.]=d[0]; d[0]=d[0]*L[a[6]+n.];L23 L[a[6]+i.]=d[0];restore old frame pointer a[6]=UK; a[6]=UK;return from subroutine PC=RT; PC=RT;Table 2: If{Then{Else Statement (RTLs for 68020)3.2 Conditional StatementsFor the if-then-else construct an unconditional jump isgenerated at the end of the then-part to jump over theelse-part. This unconditional jump can also be elim-inated by code replication. There are two executionpaths possible which are joined at the end of the if-then-else construct. The two execution paths can beseparated completely or their joining can be at leastdeferred by replicating the code after the if-then-elseconstruct, so that the unconditional jump is replacedby the copied instructions. Table 2 shows an example ofreplicating code where the two execution paths returnfrom the function separately.2 The method of codereplication used for conditional statements can also beapplied to break and goto statements, and conditionalexpressions in the C language (expr?expr:expr).3.3 Sources for other OptimizationsCode replication also creates new opportunities forglobal optimizations by modifying the control
ow ofa function. The following paragraphs describe new op-portunities for constant folding, instruction selection,common subexpression elimination, and code motion.3.3.1 Constant Folding of Comparisons andConditional BranchesAfter applying code replication, sources for constantfolding may be introduced which did not exist before.For example, conditional branches, dependent on thecomparison of two constants, may be introduced by2Notice that nested if-then-else statements cancause code to be replicated very often, thus resulting inan disproportional growth in code size relative to theoriginal code size.

changing the control
ow during code replication. De-pending on the result of the constant comparison, sucha conditional branch can either be eliminated or re-placed by an unconditional jump. In the later case,dead code elimination may remove instructions follow-ing the unconditional jump which can no longer bereached.3.3.2 Elimination of InstructionsIn conjunction with code replication, common subex-pression elimination can often combine instructionswhen an initial value is assigned to a register, followedby an unconditional jump. If the replication sequenceuses the register, the use is replaced by the initial valueso that the assignment to the register becomes redun-dant if there are no further uses or sets of the register.Similarly, instruction selection may combine instruc-tions when the head of a loop is moved. For example,the second RTL in the replicated code of Table 1 is asimpli�cation of the �rst and �fth RTLs in the codebefore replication.3.3.3 Relocating the Preheader of LoopsAfter code replication the execution of some instruc-tions may be avoided for an execution path. For in-stance, code motion is performed after an initial passof code replication. This may result in a new locationof the preheaders of loops. Thus, if a loop is not ex-ecuted because the conditional branch preceding theloop is taken, the instructions in the preheader (fol-lowing that branch) would not be executed. This mayresult in considerable savings when loops are nested.An example is the RTL preceding label L000 in thereplicated code of Table 1 which is the loop preheader.In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 324

���������������� AAAU12 3
%
$�-'

&����������
�� �������������������� ?AAAU? ??

AAU���? ?��������AAAU 77'5'4' 6 546'%
$�������������

��������������
������ AAAU���� ?

����??AAAUU
.....12 3456 7

������������AAAU���� 32 1
%
$�-'

&����������
�� ����������������?AAAU? ??

AAU���@@@R? ?���� 77'5'4' 6 54...Without Replication With Partial Replication With Loop ReplicationFigure 1: Interference with Natural Loops4 JUMPS: An Algorithm forCode ReplicationThe task of code replication is to �nd a sequence ofbasic blocks to replace an unconditional jump. In or-der to avoid algorithms with a high degree of complex-ity, it was decided to make the initial assumption thatonly the shortest path between two basic blocks is ex-amined. This constraint is motivated by the goal oflimiting the size of code introduced by the replicationprocess. The shortest path is determined with respectto the number of RTLs. Finding the shortest path inthe control-
ow graph with n blocks is accomplishedby using Warshall's algorithm for calculating the tran-sitive closure of a graph [Wa62] which has a complexityof O(n3). First, all legal transitions between any twodistinct basic blocks are collected in a matrix. Thisinitial pass creates a copy of the control
ow graphbut it excludes self-re
exive transitions and, optionally,other edges whose control
ow is excluded explicitly.For example, the replication of indirect jumps has notyet been implemented at this point. Then, the non-re
exive transitive closure is calculated for all nodeswith respect to the shortest path. The transitivity re-lation between two nodes is only recorded if it is theshortest connection found so far in terms of the num-ber of RTLs in the traversed blocks [Fl62]. In the end,the matrix can be used to look up the shortest pathbetween two arbitrary basic blocks in the table with-out having to recalculate it after each replication. Thealgorithm JUMPS is divided into the following steps:

1. Initially, the matrix used to �nd the shortest se-quence of basic blocks to replace an unconditionaljump is set up.2. In the second step, the basic blocks within a func-tion are traversed sequentially and unconditionaljumps are replaced as follows. Either a sequenceof blocks that ends with a return from the routineis replicated (favoring returns), or a sequence ofblocks is chosen linking the current block contain-ing the unconditional jump with the block posi-tionally following the unconditional jump (favor-ing loops). In the latter case, the last block tobe replicated will fall through to the next block.At this point, heuristics can be used to make thechoice between these two options.3. If a collected block (i.e. a block chosen for replica-tion in the previous step) was detected to be theheader of a natural loop and the block collectedpreviously was not inside the same loop, then allblocks inside this loop are included in the replica-tion sequence in their positional order. The exam-ple in Figure 1 has an unconditional jump fromblock 2 to block 4 before replication. Withoutreplicating block 6, the original loop would havetwo entry points and would be unstructured.4. Once a sequence of basic blocks is replicated, thecontrol
ow is adjusted accordingly. A conditionalbranch is reversed in the replicated path if thepath does not follow the fall-through transition.New labels are introduced, and the destinations ofconditional branches are modi�ed. In addition, allIn ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 325

'
&- %$� %$����������������

???
1234 %$�'&- %$���������������������?

????
1231'4

'
&- %$���-��������������
������
???
??41'32
1

...Initial Control Flow After Replication Adjusted Control FlowFigure 2: Partial Overlapping of Natural Loopsunconditional jumps that are found in the repli-cated code can be eliminated since the sequenceof replicated blocks had to follow the control
owwith fall-through transitions.5. The adjustment of the control
ow is extended,once again to preserve the structure of loops.When a replication is initiated from a block insidea loop, a portion of the loop can be copied withoutintroducing unnatural loops. In addition, the con-trol
ow of all blocks in the loop which were notcopied but branch conditionally to a block whichwas copied, is changed to the copied block. Ifa block occurs twice in the replication sequence,forward branches (positionally down) are favoredover branches back to a previous block. Thesemodi�cations are needed to avoid the introduc-tion of natural loops which partially overlap andwould complicate standard loop optimizations. Anexample is given in Figure 2. There is an uncondi-tional transfer from block 3 to block 1 in the initialcontrol
ow. By changing the target of the condi-tional branch in block 2 after replication, the intro-duction of partially overlapping loops is avoided inthe adjusted control
ow.6. Even with replication of entire natural loops, it isstill possible for this algorithm to introduce newloops which are unstructured. Therefore, the con-trol
ow graph is checked to determine if it isstill reducible. The replicated code is removedif it introduced a non-reducible
ow graph. Inthis case, replication may be attempted using thelonger block sequence (see step 2). Reducibilityhas to be preserved to ensure that the same opti-mizations can be applied to loops as without repli-

cation.The algorithm JUMPS is applied to a function foreach unconditional jump until no more unconditionaljumps can be replaced. As a result of the replicationprocess, blocks which cannot be reached by the control
ow anymore can sometimes occur. Therefore, deadcode elimination is invoked to delete these blocks.5 MeasurementsStatic and dynamic frequency measurements and in-struction cache performance measurements were takenfrom a number of well-known benchmarks, UNIX util-ities, and one application (see Table 3). The code wasgenerated for the Motorola 68020/68881 processor andClass Name Descriptionbanner banner generatorcal calendar generatorcompact �le compressiondero� remove nro� constructsUtilities grep pattern searchod octal dumpsort sort or merge �leswc word countbubblesort sort numbersmatmult matrix multiplicationBenchmarks sieve iterationqueens 8-queens problemquicksort sort numbers (iterative)User code mincost VLSI circuit partitioningTable 3: Test Set of C ProgramsIn ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 326

static dynamicSIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPSSun average 3.74% 2.40% 0.03% 3.28% 1.89% 0.10%SPARC std. deviation 1.78% 1.99% 0.12% 2.71% 2.56% 0.30%Motorola average 5.08% 3.42% 0.04% 4.14% 2.47% 0.13%68020 std. deviation 2.49% 2.83% 0.15% 3.48% 3.36% 0.43%Table 4: Percent of Instructions that are Unconditional Jumpsthe Sun SPARC processor, a RISC architecture. Forthe SPARC processor, delay slots after transfers of con-trol were �lled. The standard code optimization tech-niques such as branch chaining, instruction selection,register coloring, common subexpression elimination,constant folding, code motion, strength reduction, andconstant folding at conditional branches were appliedon the measured code. Library routines could not bemeasured since the source code was not available to becompiled by VPO.The measurements were collected by using EASE(Environment for Architectural Study and Experimen-tation) [Da90-2] which is designed to measure the codeproduced by the optimizer VPO. When generatingcode, additional instructions are inserted to capturemeasurements during the execution of a program.Each program was tested with three di�erent sets ofoptimizations:� SIMPLE: Only the standard optimizations wereperformed.� LOOPS: Unconditional jumps preceding a loop orat the end of the loop are replaced by the ter-mination condition of the loop and the replicatedcondition is reversed. Depending on the originallayout of the loop, either one unconditional jumpis removed at the entry point, or one unconditionaljump is saved per loop iteration. This optimiza-tion is often implemented in conventional optimiz-ers.� JUMPS: This is the algorithm discussed previ-ously. It is a generalized approach which attemptsto replace any occurrences of unconditional jumpsby replicating code.5.1 Integration into an OptimizingCompilerThe code replication algorithms (JUMPS and LOOPS)are integrated into the optimizing back-end of the VPOcompiler in the following manner. After performinginitial branch optimizations such as branch chaining,code replication is performed to reduce the remainingnumber of unconditional jumps. When JUMPS is usedfor code replication, the compile-time overhead for the

replication process itself is minimal, but the followingoptimization stages process more RTLs. The impact ofLOOPS on the compile time is minimal.Figure 3 summarizes the order in which the di�er-ent optimization phases are invoked. Code replicationis performed at an early stage so that the later op-timizations can take advantage of the simpli�ed con-trol
ow. In order to replace all unconditional jumpsgenerated by constant folding at conditional branchesor introduced by remote preheaders, code replicationis reinvoked repeatedly. The �nal invocation of codereplication replaces those unconditional jumps whichremained in the code because replication would haveresulted in a non-reducible
ow graph.branch chaining;dead code elimination;reorder basic blocks to minimize jumps;code replication (either JUMPS or LOOPS);dead code elimination;instruction selection;register assignment;if (change)instruction selection;do fregister allocation by register coloring;instruction selection;common subexpression elimination;dead variable elimination;code motion;strength reduction;recurrences;instruction selection;branch chaining;constant folding at conditional branches;code replication (either JUMPS or LOOPS);dead code elimination;g while (change);filling of delay slots for RISCs;Figure 3: Order of Optimizations5.2 Static and Dynamic BehaviorTable 4 shows the number of unconditional jumps rel-ative to the total number of instructions for the staticand dynamic measurements. The number of uncondi-tional jumps is reduced by 40-42% dynamically whenLOOPS was applied, and with code replication prac-In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 327

tically no unconditional jumps are left. Thus, codereplication results in a reduction of instructions exe-cuted by at least the number of unconditional jumpswhich could be avoided dynamically.The few unconditional jumps left after code repli-cation are due to indirect jumps, in�nite loops, andinteractions with other optimization phases (such ascode motion) that may introduce unconditional jumps.Paths containing indirect jumps are excluded fromreplication in the current implementation. In�niteloops do not provide any opportunity to replace theunconditional branch. And interactions with other op-timization phases are treated conservatively to avoidthe potential of replication ad in�nitum.Table 5 illustrates the static and dynamic behavior ofthe programs. The columns SIMPLE indicate the totalnumber of instructions and the other columns representthe change in the number of instructions relative to theSIMPLE version of each program. The static changeis proportional to the growth of the code size. WhenLOOPS is applied, the number of instructions increasesby only 2.6-4.0%. With generalized code replication, onthe other hand, an average of about 53% more instruc-tions are generated. The decrease in the number ofinstructions executed for LOOPS is less than half thedecrease for JUMPS.For the SPARC about 1.5 more instructions arefound between branches after code replication was ap-plied and 50% of the executed no-op instructions wereeliminated. Thus, the opportunities for instructionscheduling may improve if code replication is appliedfor a pipelined machine. Also, in a multiple-issue pro-cessor more potential parallelism may be found [Ri72].5.3 Impact on Instruction CachingThe cache performance was tested for cache sizes of1Kb, 2Kb, 4Kb, and 8Kb. For each di�erent cache sizea direct-mapped cache with 16 bytes per line was sim-ulated. Both the miss ratio and the fetch cost weremeasured in the experiment. The estimation of thefetch cost is based on the assumption that misses areten times as expensive as hits. Thus, fetch cost is cal-culated as follows:fetch cost = cache hits � cache access time +cache misses �miss penaltywhere the cache access time is 1 time unit and themiss penalty is 10 units of time. Context-switches weresimulated by invalidating the entire cache every 10,000units of time. The estimates for the cache access time,the miss penalty, and the context-switching intervalwere adopted from Smith's cache studies [Sm82]. No-tice that the overall fetch cost can decrease while the

miss ratio increases for the same program. This can beexplained by the reduced number of instructions exe-cuted after replication and illustrates the short-comingsof the miss ratio as a measurement when the code in aprogram changes. (This observation was �rst made by[?].)Table 6 shows the change of the miss ratio and fetchcost for varying sizes of direct-mapped caches. Each setof measurements with the same con�guration is relatedto the corresponding values of the SIMPLE version.For example, for a 1Kb cache with context switches onthe SPARC, the di�erence between the miss ratio ofLOOPS and the miss ratio of the SIMPLE version was-0.05%, a slight decrease of misses.The impact of context switching was minimal, andthe miss ratio only increased slightly with contextswitching on.For small caches, code replication (JUMPS) may beoutperformed by loop replication (LOOPS). A programmay initially �t in the cache, but after code replicationis applied, it might not �t anymore. Therefore, capac-ity misses can be introduced. For example, for a 1Kbcache about 1% additional misses were caused by in-struction fetches. But for larger caches the miss ratiochanges only slightly.Code replication places instructions together whichare likely to be executed in a sequence but increases thedistance between conditional branch instructions andtheir branch destinations. Nevertheless, the program'sspatial locality can be improved by replicating code.Overall, code replication reduces the total number ofinstructions executed such that the average fetch costis actually reduced except for small caches.6 Future WorkThe algorithm for code replication could be extended tocopy indirect jumps and, for some architectures, theirjump tables. If the table has to be replicated, the tar-get addresses within the jump table should be revised.In either case, the jump destinations do not need tobe copied. Thus, an indirect jump could terminatea replication sequence and provide yet another alter-native besides replication paths favoring returns andfavoring loops (see step 2 of algorithm JUMPS).Furthermore, the increase in code size could be re-duced by limiting the maximum length of a replicationsequence to a speci�ed number of RTLs. The improve-ments in the dynamic behavior of programs may dropslightly for this case while the performance of smallcaches should bene�t.In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 328

Sun SPARCprogram static instructions dynamic instructions executedSIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPScal 338 +3.25% +21.89% 37,237 �2.95% �3.15%quicksort 321 +5.61% +50.16% 836,404 �2.86% �14.21%wc 209 +0.96% +58.37% 540,158 �0.00% �1.96%grep 968 +4.24% +79.34% 1,930,791 �0.04% �3.57%sort 1,966 +4.63% +89.17% 1,181,960 �0.71% �10.49%od 1,352 +4.59% +95.19% 2,336,014 �8.84% �10.22%mincost 1,068 +6.84% +30.99% 335,750 �0.59% �3.91%bubblesort 175 +7.43% +5.14% 29,071,668 �0.05% �0.07%matmult 218 +4.59% +3.67% 14,403,714 �0.08% �0.28%banner 169 +7.69% +66.27% 2,565 �1.68% �10.25%sieve 93 +3.23% +3.23% 2,184,965 �13.73% �13.73%compact 1,491 +1.07% +75.18% 13,409,945 �1.94% �4.86%queens 114 +0.00% +7.89% 263,518 �0.00% �0.03%dero� 7,987 +1.50% +204.98% 448,581 �0.01% �3.13%average 1,176 +3.97% +56.53% 4,784,519 �2.39% �5.71%Motorola 68020program static instructions dynamic instructions executedSIMPLE LOOPS JUMPS SIMPLE LOOPS JUMPScal 323 +3.72% +24.77% 36,290 �3.09% �3.17%quicksort 245 +3.67% +37.96% 536,566 �0.39% �3.96%wc 173 +0.58% +56.65% 421,038 �0.00% �5.32%grep 775 +3.35% +80.90% 1,309,586 �0.03% �3.44%sort 1,558 +3.98% +63.67% 902,075 �1.49% �12.43%od 1,198 +2.92% +85.73% 1,980,808 �9.45% �10.30%mincost 906 +3.20% +35.98% 302,062 �1.10% �5.13%bubblesort 137 +3.65% +2.92% 20,340,231 �18.92% �18.92%matmult 146 +3.42% +3.42% 4,891,507 �0.21% �0.21%banner 177 +3.95% +55.93% 2,473 �1.42% �13.34%sieve 70 +1.43% +1.43% 1,759,088 �8.53% �8.53%compact 1,143 +0.70% +73.93% 10,602,159 �1.54% �5.26%queens 94 +0.00% +12.77% 189,518 �0.00% �0.05%dero� 5,730 +1.06% +155.17% 360,051 �0.03% �7.05%average 905 +2.55% +49.37% 3,116,675 �3.30% �6.94%Table 5: Number of Static and Dynamic Instructionscache size 1Kb 2Kb 4KB 8Kbprocessor context sw. LOOPS JUMPS LOOPS JUMPS LOOPS JUMPS LOOPS JUMPSCache Miss RatioSun on �0.05% +1.07% �0.22% �0.07% +0.03% +0.25% +0.01% +0.11%SPARC o� �0.03% +1.07% �0.22% �0.08% +0.03% +0.21% +0.01% +0.07%Motorola on +0.08% +1.26% +0.04% +0.75% +0.01% +0.09% +0.01% +0.07%68020 o� +0.08% +1.25% +0.03% +0.70% +0.01% +0.05% +0.01% +0.03%Instruction Fetch CostSun on �2.73% +3.44% �3.80% �5.24% �2.26% �2.94% �2.40% �3.98%SPARC o� �2.64% +3.68% �3.87% �5.33% �2.24% �3.13% �2.47% �4.30%Motorola on �3.07% +1.69% �3.26% �0.63% �3.58% �5.13% �3.57% �5.30%68020 o� �3.04% +1.86% �3.28% �0.71% �3.61% �5.48% �3.60% �5.66%Table 6: Percent Change in Miss Ratio and Instruction Fetch Cost for Direct-Mapped CachesIn ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 329

7 ConclusionsA new global optimization method called code replica-tion was developed which can be applied to eliminatealmost all unconditional jumps in a program. The re-sulting programs are executing 5.7-6.9% less instruc-tions in average. The number of instructions betweenbranches is increased by 1.5 instructions on the averageon the SPARC, so that the opportunities for instruc-tion scheduling for pipelined or multi-issue machinesare improved. The cache work decreases by about 4%except for small caches. The static number of instruc-tions increases by an average of 53%. The generalizedtechnique of code replication should be applied in theback-end of highly optimizing compilers if the execu-tion time but not the program size is the major concern.The results of the test set also show that the repli-cation of only the branch condition at natural loops,commonly performed in optimizing compilers, resultsin about 45% of the dynamic instruction savings whichcan be achieved by generalized code replication.References[Be88] M. E. Benitez, J. W. Davidson A PortableGlobal Optimizer and Linker, Proceedings of theSIGPLAN '88 Symposium on Programming Lan-guage Design and Implementation, Atlanta, GA,June 1988, pp. 329-338[Cl82] D. W. Clark, H. M. Levy, Measurement andAnalysis of Instruction Use in the VAX-11/780,Proceedings of the 9th Annual Symposium onComputer Architecture, April 1982, pp. 9-17[Da88] J. W. Davidson, A. M. Holler, A Study of a CFunction Inliner, Software, Vol. 18, No. 8, August1988, pp. 775-790[Da89] J. W. Davidson, D. B. Whalley, Quick Com-pilers Using Peephole Optimizations, Software {Practice and Experience, Vol. 19, No. 1, January1989, pp. 195-203[Da90-2] J. W. Davidson, D. B. Whalley, Ease: AnEnvironment for Architecture Study and Exper-imentation, Proceedings of the SIGMETRICS1990 Conference on Measurement and Modelingof Computer Systems, May 1990, pp. 259-260[Fl62] R. W. Floyd, Algorithm 97: Shortest Path,Communications of the ACM, Vol. 5, No. 6, June1962, p. 345[Go90] M. C. Golumbic, V. Rainish, InstructionScheduling beyond Basic Blocks, IBM Journal ofResearch Development, Vol. 34, No. 1, January1990, pp. 93-97

[He90] J. L. Hennessy, D. A. Patterson, ComputerArchitecture: A Quantitative Approach, MorganKaufmann, 1990[Hw89] W. W. Hwu, P. P. Chang, Inlining FunctionExpansion for Compiling C Programs, Proceed-ings of the ACM SIGPLAN 1989 Conference onProgramming Language Design and Implementa-tion, Vol. 24, No. 5, June 1989, pp. 246-257[Pe77] B. L. Peuto, L. J. Shustek, An Instruction Tim-ing Model of CPU Performance, Proceedings ofthe 4th Annual Symposium on Computer Archi-tecture, March 1977, pp. 165-178[Ri72] E. M. Riseman, C. C. Foster, The Inhibition ofPotential Parallelism by Conditional Jumps, IEEETransactions on Computers, Vol. 21, No. 12, De-cember 1972, pp. 1405-1411[Sm82] A. J. Smith, Cache Memories, Computing Sur-veys, Vol. 14, No. 3, September 1982, pp. 473-530[Wa62] S. Warshall, A Theorem on Boolean Matrices,Journal of the ACM, No. 9, 1962, pp. 11-12

In ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1992 330

