Fast Context Switches:

Compiler and Architectural Support for
Preemptive Scheduling

Jeffrey S. Snyder, David B. Whalley, and Theodore P. Baker

Department of Computer Science
Florida State University,
Tallahassee, FL 32306, U.S.A.

Abstract

This paper addresses the possibility of reducing the overhead due to preemptive
context switching in real-time systems that use preemptive scheduling. The method
introduced in this paper attempts to avoid saving and restoring registers by performing
context switches at points in the program where only a small subset of the registers
are live. When context switches occur frequently, which is the case in some real-
time systems, performing context switches at fast context switch points is found to
significantly reduce the total number of memory references. A new technique, known
as register remapping, is introduced which increases the number of these fast context
switch points without degrading the efficiency of the code.

1 INTRODUCTION

This paper addresses the possibility of reducing the overhead due to context switching in
real-time applications. Context switching cost is a limiting factor in the frequency of cyclic
tasks that can be supported with preemptive scheduling techniques. In the evolution of
microprocessors, the number of clock cycles required for a full context switch has tended to
increase. Thus, reducing context switch overhead appears important if full advantage is to
be taken of high performance microprocessors in real-time applications.

Processes running in a real-time environment place more constraints on time. Process
deadlines must be met, especially in the case of hard real-time systems. Systems failing to
meet these time constraints can result in a fatal failure [Lev90]. The possibility of reduc-

ing the overhead of a context switch is especially appealing with those systems which are

considered hard real-time. Such systems characteristically include processes with periodic
execution requirements, which can require very frequent preemptive context switches. Re-
ducing the length of time it takes to perform a context switch makes more processor time
available for useful work. This can potentially enable a system to handle a higher work load
without missing hard deadlines.

Different methods can be used to reduce the amount of overhead in a context switch.
One can inspect the algorithms that perform the context switch. Modifications to these
algorithms result in a more efficient context switch. From a more abstract point of view one
can examine the state of a process at any given time. The question then arises of whether or
not it is actually necessary to save the entire state when control is taken away from a task
and given to another. Likewise, if it is not necessary to save an entire state when preempting

a process, then it would not be necessary to restore the entire state when the process resumes

control of the CPU.

2 REDUCTION OF OVERHEAD

When tracing the execution of a process or task, one can examine the state of the registers
at each instruction. If the register is in use, then it is considered to be live, whereas if it is
not in use then it is considered to be dead. A group of instructions that can be potentially
executed contiguously with the same live register is called a live range. If no user-allocable
registers were live at the point of a desired context switch, then the cost of the context switch
could be reduced to saving and restoring the state of the program counter, stack pointer, etc.
This situation introduces the concept of a fast context switch as opposed to a slow context
switch where all the registers are saved and restored. By performing dataflow analysis of a
function in a program one can determine the instructions in which a group of the registers
are dead.! This introduces the concept of a fast context switch point.

With an emphasis being placed on the number of potential fast context switch points in
a program, one wonders what kind of optimizations can be performed that would provide

a greater number of instructions with zero live registers. One investigated optimization

! The word group refers to a subset of the user-allocable registers that is determined based on the calling
convention. The calling convention used for the experiments in this paper is described later in Section 4.

that provided more fast context switch points is called register remapping. It reduces the
total number of live registers for each instruction in a given live range without the addition
of extra instructions or memory references within the program. The register remapping
optimization is performed on a live range that has been allocated to a scratch register.? The
scratch register can be remapped to a non-scratch register if no other interfering live range
is allocated to the non-scratch register. The concept of remapping registers will be described
in more detail in Section 4.

Another issue that needs to be investigated is the effect on cache performance from
changing the points in a program where context switches occur. A processor’s speed de-
pends greatly upon its cache performance [Mog91] [Aga88], and the cost of reduced cache
performance could outweigh the benefits from performing fast context switches.

More analysis of cache performance can be done with respect to the context switch
interval. A context switch interval is the length of time between desired context switches. In
a periodic hard real-time system, the context switch interval cannot be longer than the period
of the highest-frequency process; in some systems, this could be as short as 1 millisecond.
In other systems, the context switch interval may be determined by the time-slicing policy;
in this case a shorter context switch interval translates into better real-time response.

The potential benefit of fast context switching is likely to depend on the context switch
interval. Clearly, the longer the interval between context switches, the less significant is the
cost of context switching and the benefit from improvements in context switch speed. More
frequent context switching obviously has a direct cost in the execution time of the context

switches. It can also reduce cache performance by breaking up the locality of references.

3 RELATED WORK
3.1 Analysis of Cache Performance

Recent research done by Mogul and Borg described the effects of context switches on cache
performance [Mog91]|. This paper provided good indications on how context switches gen-

erally affect cache performance. Mogul and Borg conducted their experiment by running a

2A scratch register is a register whose value cannot be guaranteed to be retained across a function call.
A non-scratch register is one whose value is retained across a function call.

set of programs concurrently on a UNIX system, and these executions generated instruction
and data address traces which were fed directly into a cache simulator. Mogul and Borg
limited their cache analysis to just those short intervals of time after a context switch since
this is when a context switch has its greatest impact on the cache.

The results of their study show that as processor speeds grow faster than memory speeds,
the cost of cache misses and context switches is going to get worse. The main reason for
this is that achieving a high rate of cache hits is the only way a fast processor will be able
to maintain its peak performance. The act of performing a context switch is likely to cause
a burst of cache misses because it changes the locality of reference for the system. One way
of offsetting this decrease in performance was to use a larger cache.

Agarwal et al. [Aga88] also investigated the overall effects of context switches on cache
performance. Their results showed that large caches suffered considerable performance loss
when forced to purge their contents after each context switch, whereas small caches did not
suffer as much. On the other hand, larger caches demonstrated an increase in performance
when they were not required to purge their contents. This was due to the fact that a process’s

cache lines remained valid over many context switches.

3.2 Threaded Register Windows

Two papers [Qua91][Mil90] discuss the concept of “threaded register windows.” Threaded
register windows is a register hardware organization that targets RISC architectures and
the exploitation of their large register sets. According to Quammen and Miller the two
types of register hardware organizations, single register set and register windows, each have
their own advantages and disadvantages depending on the type of program executing. A
single register set will have an advantage if the program accesses global data frequently,
whereas register windows will have an advantage if the program contains many procedure
calls. Quammen and Miller feel that the advantages gained from using either a single register
set or register windows can be combined by using their hardware approach which allows for
the dynamic configuration of the register hardware organization. Both of the papers indicate
that architectures with a large number of registers experience a great deal of overhead in

saving and restoring the registers.

The concept of threaded register windows attempts to reduce this context switch over-
head. With this hardware organization concurrent processes share a register bank in which
register windows are dynamically allocated and deallocated to meet the needs of the pro-
cesses. When a context switch occurs, only the state of the processor status word (PSW),

which contains only pointers into the register bank, needs to be saved.

3.3 Lightweight Processes

In a multitasking environment the size of a process’s state is reduced by using lightweight
processes. Lightweight processes, also known as either lightweight threads or lightweight
tasks, execute in the environment of a heavyweight process. This allows for the lightweight
processes to share address space and the resources allocated to the heavyweight process.
A context switch between two lightweight processes in the same address space reduces the
amount of state that is necessary to be saved and restored [Nut92][And91|[Mil90]. Saving and

restoring registers is still required and becomes the dominating cost of the context switch.

4 IMPLEMENTATION

The experiments in this paper on fast context switching and cache performance analysis were
conducted using a version of VPO (Very Portable Optimizer) [Dav9la] which was retargeted
to the Motorola 68020/68881 architecture. VPO is a back-end optimizer and performs
its optimizations on register transfers or register transfer lists (RTLs) which represent legal
instructions for a target machine. Fach register transfer represents a change in the machine’s
state, and instructions which cause more than one state change are represented by lists of
register transfers. An environment called EASE (Environment for Architecture Study and
Experimentation), which is designed to measure code produced by VPO, was used to gather
frequency and cache performance measurements [Dav9lal.

To determine if reducing the overhead of context switches was feasible, a histogram was
generated from the execution of a set of programs to indicate the number of instructions that
are executed between fast context switch points. One can see that the delay is usually short

from the histogram in Table 1. Note that even though the average number of instructions

was small, there still existed a few programs that had execution sequences which did not

encounter fast context switch points for long periods of time.

Table 1: Histogram

n Instructions Executed Before Reaching FCSP
0<n<100|101 <n <1000 |1001 <n <9998 | n > 9999
Occurrences 99.862% 0.046% 0.090% 0.001%

4.1 Hardware Supported Model

The hardware proposed for the model investigated in this paper has a single bit field in each
instruction indicating whether or not the instruction is a fast context switch point. When
an interrupt signal is received by the CPU, a flag is set that tells the CPU to look for a
fast context switch point. When the flag is set, the CPU continues to execute instructions,
counting clock cycles. If an instruction is found with the bit set that represents a fast context
switch point, then a fast context switch occurs. If more than a predetermined number of
clock cycles elapse without a fast context switch point being found, then the CPU will
perform a slow context switch. One of the advantages to using this model is that there is no
added overhead. Another advantage is that the compiler can be used to locate the points
in a program where no registers with a group are live. It should also be noted that one
disadvantage is that one bit has to be sacrificed in each instruction.

The hardware model was incorporated into EASE by modifying the cache simulator. An
extra parameter was passed to the cache simulator which indicated whether or not the given
instruction was a fast context switch point. A context switch window (CSW), which was
defined as 100 instructions, centers around the boundary between context switch intervals
(CSI). The cache simulator began looking for a fast context switch point at the beginning of
the window. If one could not be found before reaching the end of the window, then a slow

context switch was performed.

4.2 Calling Conventions

A calling convention is essentially a mechanism which preserves the values of registers across
function calls. VPO uses a hybrid calling convention [Dav91b] which partitions the registers
into two groups. A caller-save register, which is a scratch register, will be saved and restored
by the caller if it is live across a call, and a callee-save register, which is a non-scratch register,
will be saved and restored by the callee if it is used in the function. Without interprocedural
analysis, a compiler cannot determine if a non-scratch register that is not used within a
function is live. Therefore, a fast context switch point can be more precisely defined as
an instruction in which no scratch registers are live. The 68020/68881 uses a total of 22
user-allocable registers which consists of 6 address registers, 8 data registers, and 8 floating
point registers. Measurements were collected from a set of programs to determine the most
effective combination of scratch and non-scratch registers. These combinations are shown in

Table 2.

Table 2: User-Allocable Register Partitions

Scratch | Non-Scratch
address 3 3
data 5 3
floating-point 4 4

4.3 Register Remapping

When modifying RTLs in order to produce more fast context switch points, it is important
to ensure that run-time performance of the program does not degrade. Schemes which
introduced additional instructions or memory references were initially attempted and resulted
in a loss of performance since the benefit from additional fast context switch points was
outweighed by the introduced overhead [Sny92]. An optimization that increases the total
number of fast context switch points without performance degradation is called register
remapping. This optimization is performed after all other optimizations have been invoked.
First, an interference graph of the live ranges that have been allocated to scratch registers

is built. Each live range of a scratch register is examined to determine if it interferes with

non-scratch registers that have been used elsewhere in the function. If it does not interfere
with one, then all references to the scratch register within the live range are replaced with the
non-scratch register and the interference graph is updated. Using a non-scratch register that
had not been used elsewhere in the function would result in the added overhead of saving
and restoring this register at the beginning and end of the function, respectively. Live ranges
of scratch registers were also prioritorized for remapping. This priority was based on the
estimated length of time that the range could execute, which was calculated by the number
of instructions in the live range and its loop nesting level. In other words, live ranges in a
deeply nested structure with a large number of instructions were given the highest priority

for remapping.

4.4 Gathering Measurements

Context switch measurements were gathered for three different types of systems: systems
performing slow context switches, systems performing fast and slow context switches on
unoptimized programs, and systems performing fast and slow context switches on optimized
programs.®> The length of the context switch intervals were varied to be 0.5k, 1k, 2k, 4k,
8k, and 16k instructions. Instruction, data, and unified cache measurements were obtained
using each of these intervals along with the following different cache sizes: 1k, 4k, and 16k.
For these experiments, when a context switch occurs, the entire cache is invalidated. Table
3 contains a list of the test programs used. The headings for the tables depicting the results

shown in the following sections are defined in Table 4.

5 RESULTS
5.1 Memory References Avoided by Using Fast Context Switches

Each of the test programs displayed different characteristics when executed. These charac-
teristics ranged from programs performing no fast context switches to programs performing
only fast context switches. Also, some of the programs benefited from the remapping of live

ranges, whereas others did not.

3An unoptimized program is one without register remapping, and an optimized program is one with
register remapping.

Table 3: Test Programs

‘ Program ‘ Description
arraymerge | Merges arrays
cal Calendar program
cpp C preprocessor
des DES encryption algorithm
dhrystone | Dhrystone benchmark
diff Differential file comparator
fit Fast fourier transformation
polly Calculates total redundancy of sample dimensional vectors
queens Array processing program
quicksort Sort algorithm
sieve Sieve benchmark
sed Stream line editor
tbl Format tables for nroff or troff
yacc Parser generator

Table 4: Table Heading Descriptions

ALR Average number of live registers per instruction

CMRS% | Percentage of context switch memory references saved
CSI Context switch interval
FCS Number of fast context switches
FCS% | Percentage of fast context switches performed

SCS Number of slow context switches

TMRS% | Percentage of program’s total memory references saved

ZLR% | Percentage of instructions that had zero live registers

By looking at the averages of the test programs shown in Table 5, one can see a higher fre-
quency of fast context switches than slow context switches. Table 5 illustrates improvements
from fast context switching with the first row for each context switch interval representing
the values from the unoptimized programs and the second row representing the values from
the optimized programs. The remapping provides somewhat better performance at run-time
than the unoptimized test programs by increasing the percentage of fast context switches;
these increases ranged from 0.6% to 2.8%. Remapping also increased the percentage of fast

context switch points from 28.5% to 32.8% and reduced the average number of live registers

per instruction from 2.2 to 2.0. It was also discovered that a small set of instruction types
accounted for a large percentage of the fast context switch points [Sny92]. Most of these
instructions occur near transfers of control. This indicates that a bit need not be sacrificed
from all types of instructions to indicate fast context switch points. The percentage of mem-
ory references saved during a context switch ranged from 32.6% to 34.9%. It should be noted
that since a fast context switch only avoids the saving and restoring of scratch registers, the
maximum percentage of memory references that could be saved during a context switch for
this experiment is 54.5%. The impact of reductions in context switch cost on total memory
references depends on the frequency of context switches. In our experiments, the total num-
ber of memory references saved ranged from 0.1% for the longest context switch interval to
5.7% for the shortest context switch interval. The maximum percentage of total memory
references that could be saved ranged from 0.3% for the longest context switch interval to
8.2% for the shortest context switch interval. Even though the register remapping did not
substantially increase the number of fast context switches, a reduction of the context switch

window could possibly lead to more of a relative improvement.

Table 5: Overall Fast Context Switches

ALR ZLR%

No Remapping 2.2 28.5
Remapping 2.0 32.8

CSI | FCS% | CMRS% | TMRS%
0.5k 61.0 33.2 5.4
63.6 34.6 5.7
1k 61.4 33.4 2.9
64.1 34.9 3.2
2k 60.9 33.2 1.5
63.7 34.7 1.6
4k 61.0 33.3 0.7
63.5 34.6 0.8
8k 61.9 33.7 0.4
62.6 34.1 0.4
16k 59.8 32.6 0.1
60.4 32.9 0.1

10

5.2 Cache Performance

The results from the cache performance analysis proved to be very interesting even though the
relative changes were small when comparing the three different versions of the test programs.
The following sections contain the summaries of results for the different sized instruction,
data, and unified caches. The table that corresponds to each summary is comprised of
columns for the context switch intervals (CSI), the cache hit ratios for the programs that
only performed slow context switches, the cache hit ratios for the unoptimized programs
that performed both fast and slow context switches, the relative changes in cache hit ratios
with unoptimized fast context switching, the cache hit ratios for the optimized programs
that performed both fast and slow context switches, and the relative changes in cache hit
ratios with optimized fast context switching. The cache hit ratios for both the unoptimized
programs and optimized programs are compared with the cache hit ratios of the versions
performing slow context switches. A positive relative change in value indicates that the
cache hit ratio was higher for the version performing both fast and slow context switches,

and a negative value indicates that the cache hit ratio was lower.

5.2.1 Instruction Cache Comparisons

The results from all six context switch intervals and all three instruction cache sizes, which
can be found in Table 6, indicate that performing fast context switches causes an improve-
ment in instruction cache performance. In all six of the context switch intervals, the opti-
mized test programs had a higher cache hit ratio than did the unoptimized test programs.
The fact that the programs performing fast context switches had better instruction cache
performances was probably due to many of the fast context switches taking place at the
point of instructions that were transfers of control (i.e. calls, jumps, etc). These locations
are an ideal place to perform a context switch since transfers of control also cause a change

in locality of instruction references.

11

Table 6: Instruction Cache Performance

Optimized | Optimized
SCS FCS FCS FCS FCS
Cache Hit | Cache Hit Net Cache Hit Net
CSI Ratio Ratio Change Ratio Change
1k Cache
0.5k | 0.956110 | 0.957796 | 0.001686 | 0.958984 0.002874
1k | 0.967148 | 0.968075 | 0.000927 | 0.969358 0.002210
2k | 0.973827 | 0.974329 | 0.000502 | 0.975668 0.001841
4k | 0.977795 | 0.978002 | 0.000207 | 0.979362 0.001567
8k | 0.980276 | 0.980370 | 0.000094 | 0.981738 0.001462
16k | 0.981685 | 0.981712 | 0.000027 | 0.983081 0.001396
4k Cache
0.5k | 0.961653 | 0.963805 | 0.002152 | 0.964303 0.002650
1k | 0.975784 | 0.976984 | 0.001200 | 0.977396 0.001612
2k | 0.984603 | 0.985307 | 0.000704 | 0.985644 0.001041
4k | 0.990083 | 0.990419 | 0.000336 | 0.990685 0.000602
8k | 0.993550 | 0.993715 | 0.000165 | 0.993939 0.000389
16k | 0.995542 | 0.995597 | 0.000055 | 0.995794 0.000252
16k Cache
0.5k | 0.962221 | 0.964392 | 0.002171 | 0.964729 0.002508
1k | 0.976561 | 0.977783 | 0.001222 | 0.978020 0.001459
2k | 0.985677 | 0.986404 | 0.000727 | 0.986561 0.000884
4k | 0.991455 | 0.991800 | 0.000345 | 0.991895 0.000440
8k | 0.995135 | 0.995312 | 0.000177 | 0.995371 0.000236
16k | 0.997262 | 0.997322 | 0.000060 | 0.997358 0.000096

12

5.2.2 Data Cache Comparisons

The results from the data cache measurements are found in Table 7. Even though the fast
context switches did not improve the cache performance in most cases, the decrease in the
cache hit ratios were less than 0.6%. When arguments are passed through parameters to
functions, they are placed on the run-time stack. If a fast context switch occurred at the
point of a call, then loading the parameters into registers in the called function will result

in cache misses since the cache gets purged every time a context switch occurs.

Table 7: Data Cache Performance

Optimized | Optimized
SCS FCS FCS FCS FCS
Cache Hit | Cache Hit Net Cache Hit Net
CSI Ratio Ratio Change Ratio Change

1k Cache

0.5k | 0.762766 | 0.761444 | -0.001322 | 0.760834 | -0.001932

1k | 0.788300 | 0.787688 | -0.000612 | 0.786712 | -0.001588

2k | 0.815638 | 0.815067 | -0.000571 | 0.813916 | -0.001722

4k | 0.828853 | 0.828951 | 0.000098 | 0.827706 | -0.001147

8k | 0.835334 | 0.835312 | -0.000022 | 0.834023 | -0.001311

16k | 0.838354 | 0.838439 | 0.000085 | 0.837128 | -0.001226
4k Cache

0.5k | 0.780115 | 0.778165 | -0.001950 | 0.778672 | -0.001443

1k | 0.810616 | 0.808465 | -0.002151 | 0.808882 | -0.001734

2k | 0.843570 | 0.840586 | -0.002984 | 0.840979 | -0.002591

4k | 0.861037 | 0.858417 | -0.002620 | 0.858807 | -0.002230

8k | 0.870489 | 0.867866 | -0.002623 | 0.868272 | -0.002217

16k | 0.876499 | 0.874058 | -0.002441 | 0.874479 | -0.002020
16k Cache

0.5k | 0.783723 | 0.780215 | -0.003508 | 0.780689 | -0.003034

1k | 0.815244 | 0.810946 | -0.004298 | 0.811326 | -0.003918

2k | 0.849083 | 0.843510 | -0.005573 | 0.843867 | -0.005216

4k | 0.867353 | 0.861834 | -0.005519 | 0.862189 | -0.005164

8k | 0.877612 | 0.871805 | -0.005807 | 0.872178 | -0.005434

16k | 0.888799 | 0.883006 | -0.005793 | 0.883394 | -0.005405

13

5.2.3 Unified Cache Comparisons

The results from the unified cache measurements are found in Table 8. There was a mixture
of improvements and degradations in cache performance for fast context switching. This was

expected since a unified cache combines both the instruction and data references.

Table 8: Unified Cache Performance

Optimized | Optimized
SCS FCS FCS FCS FCS
Cache Hit | Cache Hit Net Cache Hit Net
CSI Ratio Ratio Change Ratio Change
1k Cache
0.5k | 0.865689 | 0.873280 | 0.007591 | 0.873687 0.007998
1k | 0.881030 | 0.888062 | 0.007032 | 0.888357 0.007327
2k | 0.890950 | 0.897470 | 0.006520 | 0.897708 0.006758
4k | 0.896919 | 0.903242 | 0.006323 | 0.903454 0.006535
8k | 0.901296 | 0.907537 | 0.006241 | 0.907723 0.006427
16k | 0.904053 | 0.910030 | 0.005977 | 0.910221 0.006168
4k Cache
0.5k | 0.895700 | 0.896315 | 0.000615 | 0.895844 0.000144
1k | 0.918697 | 0.918285 | -0.000412 | 0.917794 | -0.000903
2k | 0.934503 | 0.933007 | -0.001496 | 0.932476 | -0.002027
4k | 0.944995 | 0.942592 | -0.002403 | 0.942027 | -0.002968
8k | 0.953688 | 0.950548 | -0.003140 | 0.949950 | -0.003738
16k | 0.959206 | 0.955477 | -0.003729 | 0.954870 | -0.004336
16k Cache
0.5k | 0.899024 | 0.901364 | 0.002340 | 0.901281 0.002257
1k | 0.922908 | 0.925131 | 0.002223 | 0.924976 0.002068
2k | 0.939550 | 0.941549 | 0.001999 | 0.941285 0.001735
4k | 0.950843 | 0.952600 | 0.001757 | 0.952247 0.001404
8k | 0.960261 | 0.961720 | 0.001459 | 0.961308 0.001047
16k | 0.966341 | 0.967459 | 0.001118 | 0.967036 0.000695

6 FUTURE WORK
6.1 Other Architectures

The results obtained related directly to the Motorola 68020/68881 processor. This processor

is an example of a CISC architecture and only has a total of 22 user-allocable registers. Most

14

new RISC architectures have a larger number of registers.* For example, the MIPS R3000
has a total of 69 registers, the IBM RS/6000 has a total of 100 registers, and the SPARC
has a total of 174 registers, and these large number of registers constitute a larger register
state to be saved and restored for each context switch. It would be very informative to find
out the benefits of performing fast context switches on these types of architectures since a
larger percentage of memory references could be saved.

By applying the same proportion of scratch registers used in the experiment for these
RISC architectures, the percentages of the total number of memory references saved can
be extrapolated from Table 5. These results are shown in Table 9. The first row in each
interval represents the estimated percentage of memory references saved for the unoptimized
test programs and the second row represents the estimated results for the optimized test
programs. Deriving the values for the R3000 and RS6000 processors was straightforward
since these processors use a single register set. For the R3000 and RS6000 the following
assumptions were made. The percentage of fast context switches remained the same for each
context switch interval and the percentage of scratch registers remained the same at 54.5%.
The number of memory references within each program was also assumed not to change,
although they would likely decrease due to the additional registers. The SPARC processor,
on the other hand, was handled in a different manner since it uses multiple register sets. The
estimated results for the SPARC were based on the following assumptions. The SPARC has
a total of 167 user-allocable registers and 128 of these are used for the overlapping register
windows. If there are 8 windows, then there are 24 registers per window. The first 8 registers
in a window overlap with the previous window, and the last 8 overlap with the following
window. This means that the first 16 registers in a window are non-scratch since their values
will be retained across function calls, and the last 8 are scratch since their values cannot
be guaranteed upon return from the called function. The other registers are comprised of 7
global registers and 32 floating-point registers. On average, 3 register windows are saved and
restored for each context switch. Therefore, a total of 95 registers are saved and restored

with each slow context switch. Of the 56 registers used in the register windows only the last

4For this experiment, we did not have access to a RISC machine with a single register set for which EASE
could obtain measurements.

15

Table 9: Extrapolated Percentage of Memory References Saved

TMRS% TMRS% TMRS%

CSI | MIPS R3000 | IBM RS6000 | SPARC
0.5k 12.4 15.4 8.5
13.0 16.2 8.9
1k 7.5 10.0 5.4
8.3 10.9 5.9
2k 4.2 5.8 3.2
4.5 6.2 3.4
4k 2.1 2.9 1.6
2.4 3.3 1.8
8k 1.2 1.7 0.9
1.2 1.7 0.9
16k 0.3 0.4 0.2
0.3 0.4 0.2

8 are considered scratch. For the rest of the 39 registers only 54.5% are considered scratch.
The percentage of fast context switches also remained the same for the SPARC processor.
One can conclude that fast context switching is more effective as the number of registers to
save and restore increases.

The frequency of fast context switch points on the RISC architectures will probably
differ from the 68020/68881. First, in addition to having more registers, there are fewer
types of registers (no address registers). This would probably result in having a larger ratio
of scratch to non-scratch registers for the most effective combination [Dav91b]|. Also, most
RISC machines pass a limited number of arguments to functions through scratch registers.
Fast context switches may have to be redefined to include saving and restoring some of these

registers.

7 CONCLUSION

While performing a context switch, the CPU cannot be used for the executing processes in
the system. This overhead is unwanted, but necessary, in a real-time environment that uses
preemptive scheduling. By using threads most of the context switch overhead is reduced to

only the saving and restoring of the register states. This will help to reduce some of the

16

overhead in a context switch, but with recently introduced architectures using considerably
more registers, the total amount of time to save and restore process states will still impact

the overall performance.

7.1 Performing Fast Context Switches

The results from the research indicated that the potential for performing fast context switches
does exist. The run-time analysis exhibited a high percentage of fast context switches that
ranged from 59.8% to 64.1% for the different context switch intervals. With the current
register partitioning, this means that a system performing fast context switches could reduce
the total overhead by avoiding anywhere from 32.6% to 34.9% of the memory references that
are used to save and restore registers due to context switches. With respect to the total
number of memory references from a program, the amount of memory references saved is
relatively small, but in hard real-time systems meeting time constraints is critical, and a more
efficient context switch provides a better opportunity for processes to meet their deadlines.
Systems with more registers than the 68020/68881 could potentially reduce the total number

of memory references by an even larger percentage.

7.2 Context Switch Interval

The context switch interval affected both the number of memory references avoided and
the cache performance. The effects on the percentage of fast context switches were minor.
By reducing the context switch interval from 16k to 0.5k, the overall percentage of fast
context switches increased by at most 2.8%. For fast context switching to make a significant
reduction in the total number of memory references, the context switch interval had to be
relatively short. Without a short context switch interval the benefits of performing fast

context switches were barely noticeable.

7.3 Remapping Registers

The optimization of remapping registers was implemented to never introduce additional
instructions or memory references that would degrade the performance of the code generated

for a program. The overall results indicated a slight improvement for the test programs that

17

used remapping over the test programs that did not use remapping. Although not having
a large impact on the reduction of overhead, this optimization proved to be useful. The
remapping of registers may have been more effective if the contexts switch window were

smaller.

7.4 Relative Cache Performance

The results from the cache measurements indicated that the overall changes were negligible.
In all cases the net change was less than one percent. There was no clear distinction on
whether or not the test programs performing fast context switches had better cache per-
formances over the test programs performing only slow context switches. In the instruction
cache, the programs that performed fast context switches had better cache performances, but
in the data cache the test programs that performed slow context switches had better cache
performances. The unified cache had some results which favored the fast context switching
and other results that favored slow context switching. Of course, the cache analysis was for
the purpose of comparing the relative changes between these three different types of envi-
ronments. These changes do not indicate that one method of performing context switches

provides superior cache performance over the other methods.

References

[Aga88| Anant Agarwal, John Hennessy, and Mark Horowitz, “Cache Performance of
Operating System and Multiprogramming Workloads”, ACM Transactions
on Computer Systems, November 1988, 6(4):393-431.

[And91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D.
Lazowska, “The Interaction of Architecture and Operating System Design”,
Proceedings of the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems, April 1991, 108-120.

[Dav9lal] Jack W. Davidson and David B. Whalley, “A Design Environment for Ad-
dressing Architecture and Compiler Interactions”, Microprocessors and Mi-
crosystems, November 1991, 15(9):459-472.

[Dav91b] Jack W. Davidson and David B. Whalley,* ‘Methods for Saving and Restor-
ing Register Values across Function Calls”, Software—Practice & Ezperience,

February 1991, 21(2):149-165.

[Gro90] Randy D. Groves and Richard Oehler, “RISC System /6000 Power Architec-
ture”, Microprocessors and Microsystems, July/August 1990, 14(6):357-366.

18

[Lev90]
[Mil90]

[Mog91]

[Nut92]

[Qua9l]

[Sny92]

[Spa90]

Shem-Tov Levi and Ashok K. Agrawala, Real-Time Systems Design,
McGraw—Hill, 1990.

D. Richard Miller and Donna J. Quammen, “Exploiting Large Register Sets”,
Microprocessors and Microsystems, July /August 1990, 14(6):333-340.

Jeftrey C. Mogul and Anita Borg, “The Effect of Context Switches on Cache
Performance”, Proceedings of the 4th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, April 1991,

75-84.

Gary J. Nutt, Centralized and Distributed Operating Systems, Prentice-Hall,
Inc., 1992.

Donna J. Quammen and D. Richard Miller, “Flexible Register Management
for Sequential Programs”, The 18th Annual International Symposium on

Computer Architecture, May 1991, 19(3):320-329.

Jeffrey S. Snyder, “Fast Context Switches”, Masters Thesis, Florida State
University, 1992.

“SPARC: Architecture to Implementations”, Microprocessors and Microsys-
tems, July /August 1990, 14(6):417-420.

19

