
Fast Context Switches:Compiler and Architectural Support forPreemptive SchedulingJe�rey S. Snyder, David B. Whalley, and Theodore P. BakerDepartment of Computer ScienceFlorida State University,Tallahassee, FL 32306, U.S.A.AbstractThis paper addresses the possibility of reducing the overhead due to preemptivecontext switching in real-time systems that use preemptive scheduling. The methodintroduced in this paper attempts to avoid saving and restoring registers by performingcontext switches at points in the program where only a small subset of the registersare live. When context switches occur frequently, which is the case in some real-time systems, performing context switches at fast context switch points is found tosigni�cantly reduce the total number of memory references. A new technique, knownas register remapping, is introduced which increases the number of these fast contextswitch points without degrading the e�ciency of the code.1 INTRODUCTIONThis paper addresses the possibility of reducing the overhead due to context switching inreal-time applications. Context switching cost is a limiting factor in the frequency of cyclictasks that can be supported with preemptive scheduling techniques. In the evolution ofmicroprocessors, the number of clock cycles required for a full context switch has tended toincrease. Thus, reducing context switch overhead appears important if full advantage is tobe taken of high performance microprocessors in real-time applications.Processes running in a real-time environment place more constraints on time. Processdeadlines must be met, especially in the case of hard real-time systems. Systems failing tomeet these time constraints can result in a fatal failure [Lev90]. The possibility of reduc-ing the overhead of a context switch is especially appealing with those systems which are1



considered hard real-time. Such systems characteristically include processes with periodicexecution requirements, which can require very frequent preemptive context switches. Re-ducing the length of time it takes to perform a context switch makes more processor timeavailable for useful work. This can potentially enable a system to handle a higher work loadwithout missing hard deadlines.Di�erent methods can be used to reduce the amount of overhead in a context switch.One can inspect the algorithms that perform the context switch. Modi�cations to thesealgorithms result in a more e�cient context switch. From a more abstract point of view onecan examine the state of a process at any given time. The question then arises of whether ornot it is actually necessary to save the entire state when control is taken away from a taskand given to another. Likewise, if it is not necessary to save an entire state when preemptinga process, then it would not be necessary to restore the entire state when the process resumescontrol of the CPU.2 REDUCTION OF OVERHEADWhen tracing the execution of a process or task, one can examine the state of the registersat each instruction. If the register is in use, then it is considered to be live, whereas if it isnot in use then it is considered to be dead. A group of instructions that can be potentiallyexecuted contiguously with the same live register is called a live range. If no user-allocableregisters were live at the point of a desired context switch, then the cost of the context switchcould be reduced to saving and restoring the state of the program counter, stack pointer, etc.This situation introduces the concept of a fast context switch as opposed to a slow contextswitch where all the registers are saved and restored. By performing data
ow analysis of afunction in a program one can determine the instructions in which a group of the registersare dead.1 This introduces the concept of a fast context switch point.With an emphasis being placed on the number of potential fast context switch points ina program, one wonders what kind of optimizations can be performed that would providea greater number of instructions with zero live registers. One investigated optimization1The word group refers to a subset of the user-allocable registers that is determined based on the callingconvention. The calling convention used for the experiments in this paper is described later in Section 4.2



that provided more fast context switch points is called register remapping. It reduces thetotal number of live registers for each instruction in a given live range without the additionof extra instructions or memory references within the program. The register remappingoptimization is performed on a live range that has been allocated to a scratch register.2 Thescratch register can be remapped to a non-scratch register if no other interfering live rangeis allocated to the non-scratch register. The concept of remapping registers will be describedin more detail in Section 4.Another issue that needs to be investigated is the e�ect on cache performance fromchanging the points in a program where context switches occur. A processor's speed de-pends greatly upon its cache performance [Mog91] [Aga88], and the cost of reduced cacheperformance could outweigh the bene�ts from performing fast context switches.More analysis of cache performance can be done with respect to the context switchinterval. A context switch interval is the length of time between desired context switches. Ina periodic hard real-time system, the context switch interval cannot be longer than the periodof the highest-frequency process; in some systems, this could be as short as 1 millisecond.In other systems, the context switch interval may be determined by the time-slicing policy;in this case a shorter context switch interval translates into better real-time response.The potential bene�t of fast context switching is likely to depend on the context switchinterval. Clearly, the longer the interval between context switches, the less signi�cant is thecost of context switching and the bene�t from improvements in context switch speed. Morefrequent context switching obviously has a direct cost in the execution time of the contextswitches. It can also reduce cache performance by breaking up the locality of references.3 RELATED WORK3.1 Analysis of Cache PerformanceRecent research done by Mogul and Borg described the e�ects of context switches on cacheperformance [Mog91]. This paper provided good indications on how context switches gen-erally a�ect cache performance. Mogul and Borg conducted their experiment by running a2A scratch register is a register whose value cannot be guaranteed to be retained across a function call.A non-scratch register is one whose value is retained across a function call.3



set of programs concurrently on a UNIX system, and these executions generated instructionand data address traces which were fed directly into a cache simulator. Mogul and Borglimited their cache analysis to just those short intervals of time after a context switch sincethis is when a context switch has its greatest impact on the cache.The results of their study show that as processor speeds grow faster than memory speeds,the cost of cache misses and context switches is going to get worse. The main reason forthis is that achieving a high rate of cache hits is the only way a fast processor will be ableto maintain its peak performance. The act of performing a context switch is likely to causea burst of cache misses because it changes the locality of reference for the system. One wayof o�setting this decrease in performance was to use a larger cache.Agarwal et al. [Aga88] also investigated the overall e�ects of context switches on cacheperformance. Their results showed that large caches su�ered considerable performance losswhen forced to purge their contents after each context switch, whereas small caches did notsu�er as much. On the other hand, larger caches demonstrated an increase in performancewhen they were not required to purge their contents. This was due to the fact that a process'scache lines remained valid over many context switches.3.2 Threaded Register WindowsTwo papers [Qua91][Mil90] discuss the concept of \threaded register windows." Threadedregister windows is a register hardware organization that targets RISC architectures andthe exploitation of their large register sets. According to Quammen and Miller the twotypes of register hardware organizations, single register set and register windows, each havetheir own advantages and disadvantages depending on the type of program executing. Asingle register set will have an advantage if the program accesses global data frequently,whereas register windows will have an advantage if the program contains many procedurecalls. Quammen and Miller feel that the advantages gained from using either a single registerset or register windows can be combined by using their hardware approach which allows forthe dynamic con�guration of the register hardware organization. Both of the papers indicatethat architectures with a large number of registers experience a great deal of overhead insaving and restoring the registers. 4



The concept of threaded register windows attempts to reduce this context switch over-head. With this hardware organization concurrent processes share a register bank in whichregister windows are dynamically allocated and deallocated to meet the needs of the pro-cesses. When a context switch occurs, only the state of the processor status word (PSW),which contains only pointers into the register bank, needs to be saved.3.3 Lightweight ProcessesIn a multitasking environment the size of a process's state is reduced by using lightweightprocesses. Lightweight processes, also known as either lightweight threads or lightweighttasks, execute in the environment of a heavyweight process. This allows for the lightweightprocesses to share address space and the resources allocated to the heavyweight process.A context switch between two lightweight processes in the same address space reduces theamount of state that is necessary to be saved and restored [Nut92][And91][Mil90]. Saving andrestoring registers is still required and becomes the dominating cost of the context switch.4 IMPLEMENTATIONThe experiments in this paper on fast context switching and cache performance analysis wereconducted using a version of VPO (Very Portable Optimizer) [Dav91a] which was retargetedto the Motorola 68020/68881 architecture. VPO is a back-end optimizer and performsits optimizations on register transfers or register transfer lists (RTLs) which represent legalinstructions for a target machine. Each register transfer represents a change in the machine'sstate, and instructions which cause more than one state change are represented by lists ofregister transfers. An environment called EASE (Environment for Architecture Study andExperimentation), which is designed to measure code produced by VPO, was used to gatherfrequency and cache performance measurements [Dav91a].To determine if reducing the overhead of context switches was feasible, a histogram wasgenerated from the execution of a set of programs to indicate the number of instructions thatare executed between fast context switch points. One can see that the delay is usually shortfrom the histogram in Table 1. Note that even though the average number of instructions5



was small, there still existed a few programs that had execution sequences which did notencounter fast context switch points for long periods of time.Table 1: Histogramn Instructions Executed Before Reaching FCSP0 � n � 100 101 � n � 1000 1001 � n � 9998 n � 9999Occurrences 99.862% 0.046% 0.090% 0.001%4.1 Hardware Supported ModelThe hardware proposed for the model investigated in this paper has a single bit �eld in eachinstruction indicating whether or not the instruction is a fast context switch point. Whenan interrupt signal is received by the CPU, a 
ag is set that tells the CPU to look for afast context switch point. When the 
ag is set, the CPU continues to execute instructions,counting clock cycles. If an instruction is found with the bit set that represents a fast contextswitch point, then a fast context switch occurs. If more than a predetermined number ofclock cycles elapse without a fast context switch point being found, then the CPU willperform a slow context switch. One of the advantages to using this model is that there is noadded overhead. Another advantage is that the compiler can be used to locate the pointsin a program where no registers with a group are live. It should also be noted that onedisadvantage is that one bit has to be sacri�ced in each instruction.The hardware model was incorporated into EASE by modifying the cache simulator. Anextra parameter was passed to the cache simulator which indicated whether or not the giveninstruction was a fast context switch point. A context switch window (CSW), which wasde�ned as 100 instructions, centers around the boundary between context switch intervals(CSI). The cache simulator began looking for a fast context switch point at the beginning ofthe window. If one could not be found before reaching the end of the window, then a slowcontext switch was performed. 6



4.2 Calling ConventionsA calling convention is essentially a mechanism which preserves the values of registers acrossfunction calls. VPO uses a hybrid calling convention [Dav91b] which partitions the registersinto two groups. A caller-save register, which is a scratch register, will be saved and restoredby the caller if it is live across a call, and a callee-save register, which is a non-scratch register,will be saved and restored by the callee if it is used in the function. Without interproceduralanalysis, a compiler cannot determine if a non-scratch register that is not used within afunction is live. Therefore, a fast context switch point can be more precisely de�ned asan instruction in which no scratch registers are live. The 68020/68881 uses a total of 22user-allocable registers which consists of 6 address registers, 8 data registers, and 8 
oatingpoint registers. Measurements were collected from a set of programs to determine the moste�ective combination of scratch and non-scratch registers. These combinations are shown inTable 2. Table 2: User-Allocable Register PartitionsScratch Non-Scratchaddress 3 3data 5 3
oating-point 4 44.3 Register RemappingWhen modifying RTLs in order to produce more fast context switch points, it is importantto ensure that run-time performance of the program does not degrade. Schemes whichintroduced additional instructions or memory references were initially attempted and resultedin a loss of performance since the bene�t from additional fast context switch points wasoutweighed by the introduced overhead [Sny92]. An optimization that increases the totalnumber of fast context switch points without performance degradation is called registerremapping. This optimization is performed after all other optimizations have been invoked.First, an interference graph of the live ranges that have been allocated to scratch registersis built. Each live range of a scratch register is examined to determine if it interferes with7



non-scratch registers that have been used elsewhere in the function. If it does not interferewith one, then all references to the scratch register within the live range are replaced with thenon-scratch register and the interference graph is updated. Using a non-scratch register thathad not been used elsewhere in the function would result in the added overhead of savingand restoring this register at the beginning and end of the function, respectively. Live rangesof scratch registers were also prioritorized for remapping. This priority was based on theestimated length of time that the range could execute, which was calculated by the numberof instructions in the live range and its loop nesting level. In other words, live ranges in adeeply nested structure with a large number of instructions were given the highest priorityfor remapping.4.4 Gathering MeasurementsContext switch measurements were gathered for three di�erent types of systems: systemsperforming slow context switches, systems performing fast and slow context switches onunoptimized programs, and systems performing fast and slow context switches on optimizedprograms.3 The length of the context switch intervals were varied to be 0.5k, 1k, 2k, 4k,8k, and 16k instructions. Instruction, data, and uni�ed cache measurements were obtainedusing each of these intervals along with the following di�erent cache sizes: 1k, 4k, and 16k.For these experiments, when a context switch occurs, the entire cache is invalidated. Table3 contains a list of the test programs used. The headings for the tables depicting the resultsshown in the following sections are de�ned in Table 4.5 RESULTS5.1 Memory References Avoided by Using Fast Context SwitchesEach of the test programs displayed di�erent characteristics when executed. These charac-teristics ranged from programs performing no fast context switches to programs performingonly fast context switches. Also, some of the programs bene�ted from the remapping of liveranges, whereas others did not.3An unoptimized program is one without register remapping, and an optimized program is one withregister remapping. 8



Table 3: Test ProgramsProgram Descriptionarraymerge Merges arrayscal Calendar programcpp C preprocessordes DES encryption algorithmdhrystone Dhrystone benchmarkdi� Di�erential �le comparator�t Fast fourier transformationpolly Calculates total redundancy of sample dimensional vectorsqueens Array processing programquicksort Sort algorithmsieve Sieve benchmarksed Stream line editortbl Format tables for nro� or tro�yacc Parser generatorTable 4: Table Heading DescriptionsALR Average number of live registers per instructionCMRS% Percentage of context switch memory references savedCSI Context switch intervalFCS Number of fast context switchesFCS% Percentage of fast context switches performedSCS Number of slow context switchesTMRS% Percentage of program's total memory references savedZLR% Percentage of instructions that had zero live registersBy looking at the averages of the test programs shown in Table 5, one can see a higher fre-quency of fast context switches than slow context switches. Table 5 illustrates improvementsfrom fast context switching with the �rst row for each context switch interval representingthe values from the unoptimized programs and the second row representing the values fromthe optimized programs. The remapping provides somewhat better performance at run-timethan the unoptimized test programs by increasing the percentage of fast context switches;these increases ranged from 0.6% to 2.8%. Remapping also increased the percentage of fastcontext switch points from 28.5% to 32.8% and reduced the average number of live registers9



per instruction from 2.2 to 2.0. It was also discovered that a small set of instruction typesaccounted for a large percentage of the fast context switch points [Sny92]. Most of theseinstructions occur near transfers of control. This indicates that a bit need not be sacri�cedfrom all types of instructions to indicate fast context switch points. The percentage of mem-ory references saved during a context switch ranged from 32.6% to 34.9%. It should be notedthat since a fast context switch only avoids the saving and restoring of scratch registers, themaximum percentage of memory references that could be saved during a context switch forthis experiment is 54.5%. The impact of reductions in context switch cost on total memoryreferences depends on the frequency of context switches. In our experiments, the total num-ber of memory references saved ranged from 0.1% for the longest context switch interval to5.7% for the shortest context switch interval. The maximum percentage of total memoryreferences that could be saved ranged from 0.3% for the longest context switch interval to8.2% for the shortest context switch interval. Even though the register remapping did notsubstantially increase the number of fast context switches, a reduction of the context switchwindow could possibly lead to more of a relative improvement.Table 5: Overall Fast Context SwitchesALR ZLR%No Remapping 2.2 28.5Remapping 2.0 32.8CSI FCS% CMRS% TMRS%0.5k 61.0 33.2 5.463.6 34.6 5.71k 61.4 33.4 2.964.1 34.9 3.22k 60.9 33.2 1.563.7 34.7 1.64k 61.0 33.3 0.763.5 34.6 0.88k 61.9 33.7 0.462.6 34.1 0.416k 59.8 32.6 0.160.4 32.9 0.110



5.2 Cache PerformanceThe results from the cache performance analysis proved to be very interesting even though therelative changes were small when comparing the three di�erent versions of the test programs.The following sections contain the summaries of results for the di�erent sized instruction,data, and uni�ed caches. The table that corresponds to each summary is comprised ofcolumns for the context switch intervals (CSI), the cache hit ratios for the programs thatonly performed slow context switches, the cache hit ratios for the unoptimized programsthat performed both fast and slow context switches, the relative changes in cache hit ratioswith unoptimized fast context switching, the cache hit ratios for the optimized programsthat performed both fast and slow context switches, and the relative changes in cache hitratios with optimized fast context switching. The cache hit ratios for both the unoptimizedprograms and optimized programs are compared with the cache hit ratios of the versionsperforming slow context switches. A positive relative change in value indicates that thecache hit ratio was higher for the version performing both fast and slow context switches,and a negative value indicates that the cache hit ratio was lower.5.2.1 Instruction Cache ComparisonsThe results from all six context switch intervals and all three instruction cache sizes, whichcan be found in Table 6, indicate that performing fast context switches causes an improve-ment in instruction cache performance. In all six of the context switch intervals, the opti-mized test programs had a higher cache hit ratio than did the unoptimized test programs.The fact that the programs performing fast context switches had better instruction cacheperformances was probably due to many of the fast context switches taking place at thepoint of instructions that were transfers of control (i.e. calls, jumps, etc). These locationsare an ideal place to perform a context switch since transfers of control also cause a changein locality of instruction references. 11



Table 6: Instruction Cache PerformanceOptimized OptimizedSCS FCS FCS FCS FCSCache Hit Cache Hit Net Cache Hit NetCSI Ratio Ratio Change Ratio Change1k Cache0.5k 0.956110 0.957796 0.001686 0.958984 0.0028741k 0.967148 0.968075 0.000927 0.969358 0.0022102k 0.973827 0.974329 0.000502 0.975668 0.0018414k 0.977795 0.978002 0.000207 0.979362 0.0015678k 0.980276 0.980370 0.000094 0.981738 0.00146216k 0.981685 0.981712 0.000027 0.983081 0.0013964k Cache0.5k 0.961653 0.963805 0.002152 0.964303 0.0026501k 0.975784 0.976984 0.001200 0.977396 0.0016122k 0.984603 0.985307 0.000704 0.985644 0.0010414k 0.990083 0.990419 0.000336 0.990685 0.0006028k 0.993550 0.993715 0.000165 0.993939 0.00038916k 0.995542 0.995597 0.000055 0.995794 0.00025216k Cache0.5k 0.962221 0.964392 0.002171 0.964729 0.0025081k 0.976561 0.977783 0.001222 0.978020 0.0014592k 0.985677 0.986404 0.000727 0.986561 0.0008844k 0.991455 0.991800 0.000345 0.991895 0.0004408k 0.995135 0.995312 0.000177 0.995371 0.00023616k 0.997262 0.997322 0.000060 0.997358 0.000096
12



5.2.2 Data Cache ComparisonsThe results from the data cache measurements are found in Table 7. Even though the fastcontext switches did not improve the cache performance in most cases, the decrease in thecache hit ratios were less than 0.6%. When arguments are passed through parameters tofunctions, they are placed on the run-time stack. If a fast context switch occurred at thepoint of a call, then loading the parameters into registers in the called function will resultin cache misses since the cache gets purged every time a context switch occurs.Table 7: Data Cache PerformanceOptimized OptimizedSCS FCS FCS FCS FCSCache Hit Cache Hit Net Cache Hit NetCSI Ratio Ratio Change Ratio Change1k Cache0.5k 0.762766 0.761444 -0.001322 0.760834 -0.0019321k 0.788300 0.787688 -0.000612 0.786712 -0.0015882k 0.815638 0.815067 -0.000571 0.813916 -0.0017224k 0.828853 0.828951 0.000098 0.827706 -0.0011478k 0.835334 0.835312 -0.000022 0.834023 -0.00131116k 0.838354 0.838439 0.000085 0.837128 -0.0012264k Cache0.5k 0.780115 0.778165 -0.001950 0.778672 -0.0014431k 0.810616 0.808465 -0.002151 0.808882 -0.0017342k 0.843570 0.840586 -0.002984 0.840979 -0.0025914k 0.861037 0.858417 -0.002620 0.858807 -0.0022308k 0.870489 0.867866 -0.002623 0.868272 -0.00221716k 0.876499 0.874058 -0.002441 0.874479 -0.00202016k Cache0.5k 0.783723 0.780215 -0.003508 0.780689 -0.0030341k 0.815244 0.810946 -0.004298 0.811326 -0.0039182k 0.849083 0.843510 -0.005573 0.843867 -0.0052164k 0.867353 0.861834 -0.005519 0.862189 -0.0051648k 0.877612 0.871805 -0.005807 0.872178 -0.00543416k 0.888799 0.883006 -0.005793 0.883394 -0.00540513



5.2.3 Uni�ed Cache ComparisonsThe results from the uni�ed cache measurements are found in Table 8. There was a mixtureof improvements and degradations in cache performance for fast context switching. This wasexpected since a uni�ed cache combines both the instruction and data references.Table 8: Uni�ed Cache PerformanceOptimized OptimizedSCS FCS FCS FCS FCSCache Hit Cache Hit Net Cache Hit NetCSI Ratio Ratio Change Ratio Change1k Cache0.5k 0.865689 0.873280 0.007591 0.873687 0.0079981k 0.881030 0.888062 0.007032 0.888357 0.0073272k 0.890950 0.897470 0.006520 0.897708 0.0067584k 0.896919 0.903242 0.006323 0.903454 0.0065358k 0.901296 0.907537 0.006241 0.907723 0.00642716k 0.904053 0.910030 0.005977 0.910221 0.0061684k Cache0.5k 0.895700 0.896315 0.000615 0.895844 0.0001441k 0.918697 0.918285 -0.000412 0.917794 -0.0009032k 0.934503 0.933007 -0.001496 0.932476 -0.0020274k 0.944995 0.942592 -0.002403 0.942027 -0.0029688k 0.953688 0.950548 -0.003140 0.949950 -0.00373816k 0.959206 0.955477 -0.003729 0.954870 -0.00433616k Cache0.5k 0.899024 0.901364 0.002340 0.901281 0.0022571k 0.922908 0.925131 0.002223 0.924976 0.0020682k 0.939550 0.941549 0.001999 0.941285 0.0017354k 0.950843 0.952600 0.001757 0.952247 0.0014048k 0.960261 0.961720 0.001459 0.961308 0.00104716k 0.966341 0.967459 0.001118 0.967036 0.0006956 FUTURE WORK6.1 Other ArchitecturesThe results obtained related directly to the Motorola 68020/68881 processor. This processoris an example of a CISC architecture and only has a total of 22 user-allocable registers. Most14



new RISC architectures have a larger number of registers.4 For example, the MIPS R3000has a total of 69 registers, the IBM RS/6000 has a total of 100 registers, and the SPARChas a total of 174 registers, and these large number of registers constitute a larger registerstate to be saved and restored for each context switch. It would be very informative to �ndout the bene�ts of performing fast context switches on these types of architectures since alarger percentage of memory references could be saved.By applying the same proportion of scratch registers used in the experiment for theseRISC architectures, the percentages of the total number of memory references saved canbe extrapolated from Table 5. These results are shown in Table 9. The �rst row in eachinterval represents the estimated percentage of memory references saved for the unoptimizedtest programs and the second row represents the estimated results for the optimized testprograms. Deriving the values for the R3000 and RS6000 processors was straightforwardsince these processors use a single register set. For the R3000 and RS6000 the followingassumptions were made. The percentage of fast context switches remained the same for eachcontext switch interval and the percentage of scratch registers remained the same at 54.5%.The number of memory references within each program was also assumed not to change,although they would likely decrease due to the additional registers. The SPARC processor,on the other hand, was handled in a di�erent manner since it uses multiple register sets. Theestimated results for the SPARC were based on the following assumptions. The SPARC hasa total of 167 user-allocable registers and 128 of these are used for the overlapping registerwindows. If there are 8 windows, then there are 24 registers per window. The �rst 8 registersin a window overlap with the previous window, and the last 8 overlap with the followingwindow. This means that the �rst 16 registers in a window are non-scratch since their valueswill be retained across function calls, and the last 8 are scratch since their values cannotbe guaranteed upon return from the called function. The other registers are comprised of 7global registers and 32 
oating-point registers. On average, 3 register windows are saved andrestored for each context switch. Therefore, a total of 95 registers are saved and restoredwith each slow context switch. Of the 56 registers used in the register windows only the last4For this experiment, we did not have access to a RISC machine with a single register set for which EASEcould obtain measurements. 15



Table 9: Extrapolated Percentage of Memory References SavedTMRS% TMRS% TMRS%CSI MIPS R3000 IBM RS6000 SPARC0.5k 12.4 15.4 8.513.0 16.2 8.91k 7.5 10.0 5.48.3 10.9 5.92k 4.2 5.8 3.24.5 6.2 3.44k 2.1 2.9 1.62.4 3.3 1.88k 1.2 1.7 0.91.2 1.7 0.916k 0.3 0.4 0.20.3 0.4 0.28 are considered scratch. For the rest of the 39 registers only 54.5% are considered scratch.The percentage of fast context switches also remained the same for the SPARC processor.One can conclude that fast context switching is more e�ective as the number of registers tosave and restore increases.The frequency of fast context switch points on the RISC architectures will probablydi�er from the 68020/68881. First, in addition to having more registers, there are fewertypes of registers (no address registers). This would probably result in having a larger ratioof scratch to non-scratch registers for the most e�ective combination [Dav91b]. Also, mostRISC machines pass a limited number of arguments to functions through scratch registers.Fast context switches may have to be rede�ned to include saving and restoring some of theseregisters.7 CONCLUSIONWhile performing a context switch, the CPU cannot be used for the executing processes inthe system. This overhead is unwanted, but necessary, in a real-time environment that usespreemptive scheduling. By using threads most of the context switch overhead is reduced toonly the saving and restoring of the register states. This will help to reduce some of the16



overhead in a context switch, but with recently introduced architectures using considerablymore registers, the total amount of time to save and restore process states will still impactthe overall performance.7.1 Performing Fast Context SwitchesThe results from the research indicated that the potential for performing fast context switchesdoes exist. The run-time analysis exhibited a high percentage of fast context switches thatranged from 59.8% to 64.1% for the di�erent context switch intervals. With the currentregister partitioning, this means that a system performing fast context switches could reducethe total overhead by avoiding anywhere from 32.6% to 34.9% of the memory references thatare used to save and restore registers due to context switches. With respect to the totalnumber of memory references from a program, the amount of memory references saved isrelatively small, but in hard real-time systems meeting time constraints is critical, and a moree�cient context switch provides a better opportunity for processes to meet their deadlines.Systems with more registers than the 68020/68881 could potentially reduce the total numberof memory references by an even larger percentage.7.2 Context Switch IntervalThe context switch interval a�ected both the number of memory references avoided andthe cache performance. The e�ects on the percentage of fast context switches were minor.By reducing the context switch interval from 16k to 0.5k, the overall percentage of fastcontext switches increased by at most 2.8%. For fast context switching to make a signi�cantreduction in the total number of memory references, the context switch interval had to berelatively short. Without a short context switch interval the bene�ts of performing fastcontext switches were barely noticeable.7.3 Remapping RegistersThe optimization of remapping registers was implemented to never introduce additionalinstructions or memory references that would degrade the performance of the code generatedfor a program. The overall results indicated a slight improvement for the test programs that17



used remapping over the test programs that did not use remapping. Although not havinga large impact on the reduction of overhead, this optimization proved to be useful. Theremapping of registers may have been more e�ective if the contexts switch window weresmaller.7.4 Relative Cache PerformanceThe results from the cache measurements indicated that the overall changes were negligible.In all cases the net change was less than one percent. There was no clear distinction onwhether or not the test programs performing fast context switches had better cache per-formances over the test programs performing only slow context switches. In the instructioncache, the programs that performed fast context switches had better cache performances, butin the data cache the test programs that performed slow context switches had better cacheperformances. The uni�ed cache had some results which favored the fast context switchingand other results that favored slow context switching. Of course, the cache analysis was forthe purpose of comparing the relative changes between these three di�erent types of envi-ronments. These changes do not indicate that one method of performing context switchesprovides superior cache performance over the other methods.References[Aga88] Anant Agarwal, John Hennessy, and Mark Horowitz, \Cache Performance ofOperating System and Multiprogramming Workloads", ACM Transactionson Computer Systems, November 1988, 6(4):393{431.[And91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D.Lazowska, \The Interaction of Architecture and Operating System Design",Proceedings of the 4th International Conference on Architectural Support forProgramming Languages and Operating Systems, April 1991, 108{120.[Dav91a] Jack W. Davidson and David B. Whalley, \A Design Environment for Ad-dressing Architecture and Compiler Interactions", Microprocessors and Mi-crosystems, November 1991, 15(9):459{472.[Dav91b] Jack W. Davidson and David B. Whalley,` `Methods for Saving and Restor-ing Register Values across Function Calls", Software{Practice & Experience,February 1991, 21(2):149{165.[Gro90] Randy D. Groves and Richard Oehler, \RISC System/6000 Power Architec-ture", Microprocessors and Microsystems, July/August 1990, 14(6):357{366.18



[Lev90] Shem-Tov Levi and Ashok K. Agrawala, Real-Time Systems Design,McGraw{Hill, 1990.[Mil90] D. Richard Miller and Donna J. Quammen, \Exploiting Large Register Sets",Microprocessors and Microsystems, July/August 1990, 14(6):333{340.[Mog91] Je�rey C. Mogul and Anita Borg, \The E�ect of Context Switches on CachePerformance", Proceedings of the 4th International Conference on Architec-tural Support for Programming Languages and Operating Systems, April 1991,75{84.[Nut92] Gary J. Nutt, Centralized and Distributed Operating Systems, Prentice{Hall,Inc., 1992.[Qua91] Donna J. Quammen and D. Richard Miller, \Flexible Register Managementfor Sequential Programs", The 18th Annual International Symposium onComputer Architecture, May 1991, 19(3):320{329.[Sny92] Je�rey S. Snyder, \Fast Context Switches", Masters Thesis, Florida StateUniversity, 1992.[Spa90] \SPARC: Architecture to Implementations", Microprocessors and Microsys-tems, July/August 1990, 14(6):417{420.

19


