FSU DEPARTMENT OF COMPUTER SCIENCE

-

by Overlapping Program Portions

by
Richard Bowman
Emily Ratliff
David Whalley

Computer Science Department

Florida State Umersity

~

Decreasing Process Memory Requireme

N1

FSU DEPARTMENT OF COMPUTER SCIENCE

-

Motivation for Decreasing
Process Memory Requirements

« May allov embedded systems to meet
their strict limitations on program size.

 Ma Improve nemory hierarci
performance.

— reduce cache misses
— reduce page faults

« May help offset increases in code size
due to code increasing compiler
transformations.

e Automatic w@erlapping supports the
software engineering principle of using
descriptyve variable names.

FSU DEPARTMENT OF COMPUTER SCIENCE

/Areas for Overlapping Program Port@m

Oxffffffff run-time D 1
program stack

heap

2 C: uninitialized date

|
i 3
5 initialized data D
program code
4
segment D

1. overlap run-time stack data
2. overlap uninitialized static data

3. overlap uninitialized static data
and initialized static data

4. overlap instructions
5. overlap uninitialized static data

\ and instructions J

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Overlapping Data

e Used a graph coloring approach to detect
conflicting Ive ranges.

e |[SSUES

— Detecting indirectly referenced
live ranges.

— Detecting lve ranges of static
data used In more than one
function.

— Assigning memory locations to
live ranges.

FSU DEPARTMENT OF COMPUTER SCIENCE

a Indirectly Referenced ke Ranges \

e Indirectly referenced variables are
treated as having a singledirange.

 Interference graph nodes not directly
connected can beverlapped in memory

control flawv graph interference graph
1 (a—(b)
afi] [2| clil[6
3 dfi] | 7 e Q
b[i] | 4 8
afild[i] | 5 9

live range = possible predecessarpossible successors
live ange of a[] = [1,2,3,4,5} [2,3,4,5,6,7,8,9] = [2,3,4,5]
live range of b[] =[1,2,3,4h [2,3,4,5,6,7,8,9] = [2,3,4]
live ange of c[] =[1,2,3,4,5,6,7,8] [6,7,8,9] = [6,7,8]
\ live ange of d[] =[1,2,3,4,5,6,7,8] [5,6,7,8,9] = [5’6’7’8]J

6

FSU DEPARTMENT OF COMPUTER SCIENCE

Addresses are Dereferenced

Source Code: Emi n()

int a[100][100];
int i, j;
for (i=0; i<100; i++)
for (j=0; j<100; j++)
a[i][j]=0;

Machine Instructions: . r[12] =r[14] +a; 1

1
2. r[5]=0;

3. r[6] =H[40000];

4. r[6]=r[6]+LJ 40000];

A

L16|5. r[1]=r[5]+r[12];, 2
6. r[2]=r[1] +400;

L19|7. Mr[1]]=0; 3
8. r[1] =r[1] +4;
9. I1Cr[1]?r[2],;
10. PC=I C<0->L19;

11.r[5] =r[5] +400; 4
12.1 C=r[5] ?r[6] ;
13.PC=I C<0- >L16;

14. PC=RT; 5

a Determining Where Indirectly Takem

FSU DEPARTMENT OF COMPUTER SCIENCE

a Detecting Lve Ranges across Functio\ns

e Calculate lve ranges without
ropagting information into called
unctions.

initial live range of x =[1,2,4,5,6} [3,5,6,7] = [5,6]
* Include blocks within the functions that
are called within the e range.
updated ke range of x = [5,6]1[11,12,13] =[5,6,11,12,13]

main: a: 3 b: . C:
> [
1 | 4 | | 8 11
" |callb| | I
| -9 '
: o
2| 5 1+ 1| 9 12
| refx L
calal call c L !
_ S
Y -« Y ~——:——:———| Y Y
3 | 6 Co 10 13
| ref x !
o |callb] '
| ! | |
| S NI :
| 7 | |
| L _ _ _ _
L

FSU DEPARTMENT OF COMPUTER SCIENCE

/Assigning Variables to Memory Locatian

int x[10]; 0 4 8 12 16 20 24 28 32 36 40
inty[] ={0, 1}; 119 |[d [y g | main
intg =-1; X
short s; (b) Offset Assignment
printf("Data: ");
(a) C Code Segment
. Seg " dat a" I switch to the data segment
.global x I make _x known to the linker
_X: I assoc _x address at offset O
L19: I label of string at offset O
.ascii "Data: \0" I string value
.skip 1 I skip forward to offset 8 to align _s
.gl obal _s I make _s lown to the linker
_S: I assoc _s address at offset 8
.skip 2 I skip forward to offset 12
. gl obal _y I make _y known to the linker
_y: I assoc _y address at offset 12
.word 0 I _y[0] setto O
.word 1 I _y[1] setto 1l
.global g I make _g known to the linker
Q- I assoc _g address at offset 20
. wor d -1 I gsetto-1
.global _main I malke _main known to the linker
_main: I assoc _main address at offset 24
save ¥%sp, - 96, sp ! firstinst within _main
.. I rest of insts in relocatable portion
. seg “text" I switch to the code segment
I all insts not gerlapped with data

\ (c) SPARC Assembly Direstiés and Code J

FSU
6verlapping Instructions by Cross Jurﬁing

DEPARTMENT OF COMPUTER SCIENCE

 Performed on jumps and calls.
e The compiler examines sets and uses to

allow cross %umpmg of noncontiguous

sequences of instructions.

Before Cross Jumping

Call 1

After CrossJumping

Cal 1

r{9] =H [L166];
r[10]=HI [_l i neno];
r[8]=r[9] +LJQ L166] ;

r[9]=Mr[10] +Lg _Ii neno]];

r[10] =1;
CALL pfnote();

r[9] =H [L166] ;
r[{8]=r[9] +LQ L166];
CALL _new abel ();

Call 2

Call 2

CALL _pfnote();

Call 3

CALL pfnote();

Cal 3

r[9]=H[L318];
r[10]=HI [_I i neno];
r[8]=r[9] +LQ L318];

r[9]=Mr[10] +Lg _Ii neno]];

r[10] =1;

r[9] =H [L318];
r{8]=r[9] +L(L318];
CALL _new abel ();

function entry

CALL _pfnote();

function entry

_pfnote:
r[14] =SV[r[14] - 1120] ;

_new abel :
r[10]=HI [_I i neno];

r[9]=Mr[10] +Lg _Ii neno]];

r[10] =1;
_pfnote:
r[14] =SV[r[14] - 1120] ;

10

FSU DEPARTMENT OF COMPUTER SCIENCE

a Abstracting Relocatable Code Portiﬁs

e Can wverlap a relocatable code portion
with a subset of another.
Before Overlapping After Overlapping
jump table " jump table
.word L677 .word L677
L648 "t L648
. 928 . 928
PC=I C! =0- >L651; PC=I C! =0- >L651
L677
r[8] =224; 929 r[8] =224; 929
CALL _mO(); CALL _mO();
r[9]=H|[_yyval]; 930 r[9]=H|[_yyval]; 930
Mr[9]+L] _yyval]]=r[8]; Mr[9]+L] _yyval]]=r[8];
PC=L527; PC=L527;
L676 o L676
968 e 968
PC=L527; PC=L527;
L677
r[8] =224; 969
CALL _moO();
r[9]=H[_yyval]; 970
Mr[9]+L] _yyval]]=r[8];
PC=L527;

11

FSU DEPARTMENT OF COMPUTER SCIENCE

/¢ Overlapping Static Data and Instruct@n

* Nonconflicting relocatable code portions
and uninitialized static data can be
overlapped in the Initialized data

segment.
" - : address num| bytes
char string[432]; name range bytes| saved
main(argc, argv) _string | 000-431| 432 0
char *argv[]; L31 | 000-024 25 25
L74 | 025-038 14 14
inty, i, j; L43 | 039-048 10 10
int m; L55 | 049-056 8 8
L54 | 057-060 4 4
if(argc < 2) { L44 | 061-064 4 4
printf(...); L56 | 065-066 2 2
exit(0); block | address| num | bytes
} range range | bytes | saed
o : 1-3 | 068-103 36 36
m = rumber(argv[1]); 42-44 | 104-123| 20 | 20
- : 45-45 | 124-135] 12 12
cal(m.y.string,24); 46-50 | 136-199| 64 | 64
} 51-51 | 200-207 8 8
4-18 | 268-483| 216 164
number(str) (b) Mappingst r i ngwith Static Data
{char *str; and Relocatable Code Segments
}

\(a) Portion ofcal Program J

12

FSU DEPARTMENT OF COMPUTER SCIENCE

a Results after Inlining and Cloning\

» Code increasing transformations piae
additional werlapping opportunities.

Overlapping Owerlapping
Run-Time Instructions
Stack Data with

Program with Inlining Cloning

Bytes Pct Bytes Pct

Orig Less Orig Less
cal 232 | 3.45% 1868| 18.42%
cmp 192 | 0.00% 1576| -0.25%
csplit 728 | 0.00% 7988 1.85%
ctags 24544 0.36% | 10308 0.50%
dhrystone 200, 4.00% 2000 2.00%
grep 304 | 0.00% 4604 1.65%
join 96 0.00% 4280 0.93%
lex 7208 0.11% | 44900 3.79%
linpack 3312| 3.38% | 11464| 1.92%
mincost 192 4.17% 4500 3.64%
sdiff 5784 0.28% 7972 3.66%
tr 96 0.00% 1692 1.18%
tsp 2216 | 2.53% 4788 0.59%
whetstone 488 60.66% 4812 3.82%
yacc 1360| 0.59% | 32800 1.91%
aveaage 3130| 5.30% 9703 3.04%

14

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Future Work

e Obtain more accurate vie ranges of
arrays.

» Overlap fields within a structure.

« Measure effect on unified secondary
caches and paging.

15

FSU DEPARTMENT OF COMPUTER SCIENCE

~

Conclusions

e Overlapping uninitialized static data
with static data and instructions aw/
shown to be quite beneficial.

e Over 10% of the memory requirements
of a program was eliminated.

e Code increasing transformations piae
additional werlapping opportunities for
Instructions and run-time stack data.

« More accurate Ve range analysis of
arrays should result in Impved results.

16

