
FSU DEPARTMENT OF COMPUTER SCIENCE

1

Decreasing Process Memory Requirements

by Overlapping Program Portions

by

Richard Bowman

Emily Ratliff

David Whalley

Computer Science Department

Florida State University



FSU DEPARTMENT OF COMPUTER SCIENCE

2

Motivation for Decreasing
Process Memory Requirements

• May allow embedded systems to meet
their strict limitations on program size.

• May improve memory hierarchy
performance.

— reduce cache misses

— reduce page faults

• May help offset increases in code size
due to code increasing compiler
transformations.

• Automatic overlapping supports the
software engineering principle of using
descriptive variable names.



FSU DEPARTMENT OF COMPUTER SCIENCE

3

Areas for Overlapping Program Portions

program stack

run-time

segment

program code

initialized data

heap

uninitialized data

0x0

0xffffffff

1. overlap run-time stack data

2. overlap uninitialized static data

5. overlap uninitialized static data
and instructions

1

2

5

4

3

and initialized static data

4. overlap instructions

3. overlap uninitialized static data



FSU DEPARTMENT OF COMPUTER SCIENCE

5

Overlapping Data

• Used a graph coloring approach to detect
conflicting live ranges.

• Issues

— Detecting indirectly referenced
live ranges.

— Detecting live ranges of static
data used in more than one
function.

— Assigning memory locations to
live ranges.



FSU DEPARTMENT OF COMPUTER SCIENCE

6

Indirectly Referenced Live Ranges

• Indirectly referenced variables are
treated as having a single live range.

• Interference graph nodes not directly
connected can be overlapped in memory.

control flow graph interference graph

live range = possible predecessors∩ possible successors

live range of a[] = [1,2,3,4,5]∩ [2,3,4,5,6,7,8,9] = [2,3,4,5]

live range of b[] = [1,2,3,4]∩ [2,3,4,5,6,7,8,9] = [2,3,4]

live range of c[] = [1,2,3,4,5,6,7,8]∩ [6,7,8,9] = [6,7,8]

live range of d[] = [1,2,3,4,5,6,7,8]∩ [5,6,7,8,9] = [5,6,7,8]

1

2

3

4

5

a[i]

b[i]

a[i]d[i]

6

7

8

c[i]

d[i]

9

a b

c d



FSU DEPARTMENT OF COMPUTER SCIENCE

7

Determining Where Indirectly Taken
Addresses are Dereferenced

main()
{

int a[100][100];
int i, j;
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j]=0;

}

L16

L19

r[5]=0;

1.

2.

r[6]=HI[40000];

r[6]=r[6]+LO[40000];

IC=r[1]?r[2];

PC=IC<0->L19;

r[5]=r[5]+400;

IC=r[5]?r[6];

PC=IC<0->L16;

PC=RT;

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

1

2

3

4

5

r[12]=r[14]+a;

r[1]=r[5]+r[12];

r[2]=r[1]+400;

M[r[1]]=0;

r[1]=r[1]+4;

Source Code:

Machine Instructions:



FSU DEPARTMENT OF COMPUTER SCIENCE

8

Detecting Live Ranges across Functions

• Calculate live ranges without
propagating information into called
functions.
initial li ve range of x = [1,2,4,5,6]∩ [3,5,6,7] = [5,6]

• Include blocks within the functions that
are called within the live range.

updated live range of x = [5,6]∪ [11,12,13] = [5,6,11,12,13]

main:

call a

1

2

3

c:

11

12

13

a: b:

4

5

6

7

8

9

10

call b

ref x
call b

ref x
call c



FSU DEPARTMENT OF COMPUTER SCIENCE

9

Assigning Variables to Memory Locations
int x[10];
int y[] = { 0, 1 };
int g = -1;
short s;
...
printf("Data: ");

(a) C Code Segment

x

L19

0 4 8 12 16 20 24 28 32 36 40

s g mainy

(b) Offset Assignment

.seg "data" ! switch to the data segment

.global _x ! make _x known to the linker
_x: ! assoc _x address at offset 0
L19: ! label of string at offset 0

.ascii "Data: \0" ! string value

.skip 1 ! skip forward to offset 8 to align _s

.global _s ! make _s known to the linker
_s: ! assoc _s address at offset 8

.skip 2 ! skip forward to offset 12

.global _y ! make _y known to the linker
_y: ! assoc _y address at offset 12

.word 0 ! _y[0] set to 0

.word 1 ! _y[1] set to 1

.global _g ! make _g known to the linker
_g: ! assoc _g address at offset 20

.word -1 ! _g set to -1

.global _main ! make _main known to the linker
_main: ! assoc _main address at offset 24

save %sp,-96,%sp ! first inst within _main
... ! rest of insts in relocatable portion
.seg "text" ! switch to the code segment
... ! all insts not overlapped with data

(c) SPARC Assembly Directives and Code



FSU DEPARTMENT OF COMPUTER SCIENCE

10

Overlapping Instructions by Cross Jumping

• Performed on jumps and calls.

• The compiler examines sets and uses to
allow cross jumping of noncontiguous
sequences of instructions.

...

function entry
_pfnote:

r[14]=SV[r[14]-1120];

...

function entry
_newlabel:

_pfnote:

r[14]=SV[r[14]-1120];

r[10]=HI[_lineno];

r[10]=1;

r[9]=M[r[10]+LO[_lineno]];

...
r[9]=HI[L166];

Call 1

r[8]=r[9]+LO[L166];

CALL _pfnote();

...
r[9]=HI[L318];

r[8]=r[9]+LO[L318];

CALL _pfnote();

Call 3

CALL _pfnote();

...
Call 2

r[10]=HI[_lineno];

r[10]=1;

r[10]=HI[_lineno];

r[9]=M[r[10]+LO[_lineno]];

r[10]=1;

r[9]=M[r[10]+LO[_lineno]];

Before Cross Jumping After Cross Jumping

...
r[9]=HI[L166];

r[8]=r[9]+LO[L166];

CALL _newlabel();

Call 1

...
r[9]=HI[L318];

r[8]=r[9]+LO[L318];

CALL _newlabel();

Call 3

CALL _pfnote();

...
Call 2

...

...



FSU DEPARTMENT OF COMPUTER SCIENCE

11

Abstracting Relocatable Code Portions

• Can overlap a relocatable code portion
with a subset of another.

...

...

...

r[8]=224;
CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

PC=IC!=0->L651;

PC=L527;

r[9]=HI[_yyval];

...

...
.word L677

L648

L676

...

...

...

CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

r[8]=224;

PC=IC!=0->L651;

PC=L527;

r[9]=HI[_yyval];

...

...
.word L677

L648

L677

L676

jump table

928

929

930 930

929

928

jump table

After OverlappingBefore Overlapping

r[8]=224;

CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

PC=L527;

PC=L527;

r[9]=HI[_yyval];

...

969

970

... 968
PC=L527;

...
... 968

L677



FSU DEPARTMENT OF COMPUTER SCIENCE

12

Overlapping Static Data and Instructions

• Nonconflicting relocatable code portions
and uninitialized static data can be
overlapped in the initialized data
segment.

...
char string[432];

main(argc, argv)
char *argv[];
{

int y, i, j;
int m;

if(argc < 2) {
printf(...);
exit(0);

}
...

m = number(argv[1]);
...

cal(m,y,string,24);
...
}

number(str)
char *str;
{
...
}
...

(a) Portion ofcal Program

address num bytes
range bytes savedname

string 000-431 432 0
L31 000-024 25 25
L74 025-038 14 14
L43 039-048 10 10
L55 049-056 8 8
L54 057-060 4 4
L44 061-064 4 4
L56 065-066 2 2

block address num bytes
range range bytes saved

1-3 068-103 36 36
42-44 104-123 20 20
45-45 124-135 12 12
46-50 136-199 64 64
51-51 200-207 8 8
4-18 268-483 216 164

(b) Mappingstringwith Static Data
and Relocatable Code Segments



FSU DEPARTMENT OF COMPUTER SCIENCE

14

Results after Inlining and Cloning

• Code increasing transformations provide
additional overlapping opportunities.

Overlapping Overlapping
Run-Time Instructions
Stack Data with

with Inlining Cloning

Bytes Pct Bytes Pct
Orig Less Orig Less

Program

cal 232 3.45% 1868 18.42%
cmp 192 0.00% 1576 -0.25%
csplit 728 0.00% 7988 1.85%
ctags 24544 0.36% 10308 0.50%
dhrystone 200 4.00% 2000 2.00%
grep 304 0.00% 4604 1.65%
join 96 0.00% 4280 0.93%
lex 7208 0.11% 44900 3.79%
linpack 3312 3.38% 11464 1.92%
mincost 192 4.17% 4500 3.64%
sdiff 5784 0.28% 7972 3.66%
tr 96 0.00% 1692 1.18%
tsp 2216 2.53% 4788 0.59%
whetstone 488 60.66% 4812 3.82%
yacc 1360 0.59% 32800 1.91%

av erage 3130 5.30% 9703 3.04%



FSU DEPARTMENT OF COMPUTER SCIENCE

15

Future Work

• Obtain more accurate live ranges of
arrays.

• Overlap fields within a structure.

• Measure effect on unified secondary
caches and paging.



FSU DEPARTMENT OF COMPUTER SCIENCE

16

Conclusions

• Overlapping uninitialized static data
with static data and instructions was
shown to be quite beneficial.

• Over 10% of the memory requirements
of a program was eliminated.

• Code increasing transformations provide
additional overlapping opportunities for
instructions and run-time stack data.

• More accurate live range analysis of
arrays should result in improved results.


