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Abstract However, processors are mo dso being used in an

increasing number of applications that are often embedded
Most compiler optimizations focus on saving time and within some other type of system. These systems fre-
sometimes occur at thexgense of increasing sizevet guently do not hee \irtual memory and ha © be dle to
processor speeds continue to increase at a faster rate thamwompletely reside within main memoryrhus, embedded
main memory and disk access tim&socessos ae now systems often ha grict limitations on the size of the pro-
frequently being used in embedded systems that often haygams that the can eecute. Een if significant perfor
strict limitations on the size of ggrams it can ®ecute. mance gains are not achéd, general techniques for
Also, reducing the size of aqgram may result in  reducing the size of a program may be quite useful for
improved memory hierchy performance This paper  embedded system applications.
describes gnewl techniques for decreasing the memory  Reducing the size of a program on a machine with vir
requirements for a process by automaticallyedapping tual memory can enhance paging performandepage
portions of a ppgram. Liverange analysis, similar to the  fault can easily require 700,000 to 6,000,00@&les to
analysis used for allocating variables tegsters, is used  resole [1]. Thus,avdding a single page fault byverlap-
to determine whit program portions conflict. Noncon-  ping program portions can result in a significant perfor
flicting portions ae assigned werlapping memory loca- mance impreement. Furthermoregecreasing the mem-
tions. Theresults show an avage dcrease of over 10%  ory used by a processor may impeodata and instruction
in process size for a variety ofggrams with minimal or  caching performance when the size requirements for data

no dynamic instruction increases. and code are diminishedecondary caches are often uni-
fied and their performance may also benefit frorerlap-
1. Introduction ping data and instructions.

. An astute programmer may realize that certadmi-v
When computers were first iloped there was a gpjeg are ner used at the same time. The programmer
strong emphasis on minimizing the amount of storagem,y reyse the same variable for multiple purposes requir
needed for a programThis emphasis is reflected in the ing the same data type. If different types are required,

de§|gn of the FORTRAN EQVALE,NCE declaration,  en gne may use a mechanism supported by the semantics
which allovs a programmer to specify thatdver more ¢ 1he programming language (e.g. a union in Dgclar-
variables be assigned the same address in mensbiytle i one name for aaviable that is used for different pur
errors could be easily introduced if the programmer did poses violates the software engineering principle of using

not realize that the ariables specified in an EQVA- descriptve variable names. Manuallyverlapping \ari-
LENCE statement could be in use at the same tO\&r- 5105 in memory is error prone and difficult to maintain.

lays were also used as a techniqueviaome the limited This paper describes a set of techniques for decreasing

size of main memoriesProgrammers spent much of their  ,-ocess memory requirements by automaticairgrlap-
time dividing their program intovérlays, which were per  ing hrogram portions. Memory on the run-time stack is
tions that neer needed to be aot smultaneously With compressed byverlapping local dataThe static data area
the advent of larger physical memories and virtual mem-ig compacted byerlapping uninitialized globalariables
ory, the necessity for economizing the use of data memoryyith other static dataThe code area is compressed by
was mollified. . . ovelapping instructions via cross jumping and abstrac-
_ Currently the assignment ofwiables to memory loca-  iong of code portions.Overlapping uninitialized global
tions is of little concern to most compiler writeréfter variables with relocatable portions of code is also- per

most optimizations hee keen performed, a compiler will  ¢5-me4 - Applyingthese techniques resulted in significant
update the prologue and epilogue of a function to managgeqyctions in process memory requirements.
space on the run-time stackstatic data is also typically

arranged in the order in which the declarations are encoun

tered. Besidegnsuring that alignment requirements for 2. RelatedWork

the machine are met, the actual locations assigned are con- While some compiler optimizations do vsa ace,
sidered unimportant. most optimizations are performed with the goal of



reducing time. In fact, seral optimizations typically  uninitialized static data with instructions. The static data
increase the size of a program, which include functionoverlapper was not woked when indirect calls are
inlining, loop unrolling, scalar expansion [2], angiaing encountered since arxmicit call graph was needed for
jumps [3] and branches [4]Techniques that compress the accurate interprocedural analysiBinally, asssembly vas
size of a program without causing more instructions to generated into one file from th&' B and data directes,
execute would be appealing since the increase in processwhich can then be linked andeeuted.

memory requirements from performing these space-
increasing optimizations could be partially offset.

There hae keen a fav optimizations designed to & c c Unoptimized  [Back End an
space. Codéoisting maes identical instructions from Source{ Front o and. ;‘;ZKT;‘;F
multiple blocks in diferent paths to a single dominating || Files End Directives Overlapper
block [5]. Cross jumping mees identical instructions ‘
from multiple blocks in dfierent paths to a single post-
dominating block [6]. Fraseret. al.[7] applied a general ‘;?L'Z“'::j S‘agidDa‘ o
text compression algorithm to assembly cod&hey static pad ™ Instruction i
reported an werage 7% decrease in the number of static Directives | | Overlappe

instructions. Theirtechnique did not use wardata flav
information and hence required that each common
sequence of instructions be contiguou$hey also .
abgtracted segments of code using cé?ll and rZurn instruc4' Overlapping Data

tions. While this abstraction resulted in code size  Overlapping data @as implemented in twvsteps. Run-
decreases, the number of instructiomscated was typi-  time stack data isverlapped while optimizing each func-
cally increased. In contrast, the techniques we apply intion. Staticdata is @erlapped after all functions ke keen

this paper for verlapping program portions rarely results compiled since interprocedural analysis is required.

in a dynamic instruction increase. Some compilers with

limited code motion transformationsveslap ‘ariables 41 Owerlapping Run-Time Stack Data

declared in nonconflicting blocks [BRamsg [9] reduced

the size of object-code files by abstracting common reloca- Local variables and temporaries not allocated @ise
tion information to support more efficient and machine- ters are assigned offsets after most compiler optimizations
independent linking. The process memory requirementshave keen performed invpo. The analysis required for

Figure 1. Environment for Overlapping Program Portions

of the compiled programs were not affected. overlapping run-time stack data is very similar to that
required for allocating variables to registenst the goal is
3. Owerview to minimize space instead of the number of registers used.

Live ranges of directly accessed (e.g. scalar) data are

Figure 1 gves an werview of the environment thatas  detected in a similar manner that is performed fgister
used to compress the memory requirements of a processilocation invpo. Unfortunately significant size decreases
The C front end, calledpcc [10], expands intermediate  will only occur from werlapping nonscalarariables, such
code operations into unoptimized' R (register transfer as arrays, which are typically indirectly referenced (i.e.
lists) that represent machine instructionShe code  address is takenubnot immediately used). Detection of
expander portion of the front endas modified to produce accurate fie ranges of nonscalaraviables is much more
static data directes instead of assembly code for the difficult since the range of array elements accessed and the
static data declarationsThese directies include the size,  loops driving the induction variable(s) associated with the
alignment requirements, storage class, and init#@les  memory reference must be kmo. For instance, assume a
for each declaration.The unoptimized RTLs and direc- use of the ranga[ 1. . n- 1] is followed by a set of the
tives ae input to a compiler back end, callgob[11], that rangea[ 0. . n- 2]. T he set cannot start améive range
performs cowmentional compiler optimizations. This back when a[ n- 1] is used at a later point in the program.
end was modified toverlap run-time stack data at the Also, the range of array elements accessed canweysl
point that the entry andckits of the function are updated to e statically determined.
manage the run-time stack, which occurs after most opti- At this time we hae implemented a simpler approach
mizations hee keen performed. The back end was also for dealing with indirect referencesVe find all references
modified to produce encoded optimize@LR and static  to indirectly used variables in the controhvflof the func-
data directies as aitput to a file. All of the information  tion and create onevi: range for each of thesanables.
from these files for a compiled programasvread into  This one e range is simply the extent from its first refer
memory by a modifiedersion of the back end and a call ence(s) to its last reference(s), which was calculated by
graph was constructed.abels were adjusted from each of intersecting the basic blocks that can precede the-refer
the files to ensure their uniqueness. Intraprocedural analyences to the variable and the blocks that canvidhe ref-
sis was then performed toverlap uninitialized static data erences. Notéhat the blocks containing the references are
with static data, instructions with instructions, and included in this oneve range.



An example of e ranges of indirectly reference@n- dereferenced. Delasiots hae rot been filled to simplify
ables is gien in Hgure 2. There are four arrays refer the example. Theaddress of the local arrayis stored in
enced in the control flm The indirect reference to each registerr[ 12] at RTL 1. All of the R'Ls that access ge
array is indicated beside the basic block¥onsider the isters containing the address afor a relatve dstance
variable a that is referenced in blocks 2 and 5. Theeli  from it are shown in bol@dfce. Thecompiler recursiely
range ofa, which is [2,3,4,5], is calculated from the inter searches forward and finds that thgiseersr[ 1] and
section of its possible successor blocks [2,3,4,5,6,7,8,9F [ 2] are assigned addresses refatb a (i.e.,r[ 12] ) at
and possible predecessor blocks [1,2,3,4,5]. The |li RTLs 5 and 6. The gisterr [ 1] is found to be derefer
ranges of theariablesb, ¢, andd are calculated in a simi- enced at RTL 7. This memory reference is marked as ref-

lar manner. erencinga. r[ 1] andr[ 2] are not e entering block 4
control flaw graph live mnges andr [ 12] is not live entering block 5. No more ggsters
« 2345 containing an addre_ss relagi o va_rlablea are left at this
b [2.3.4] point and the recurse sarch terminates.
ali cfil [ 6] ¢ [6.7.8] If the compiler detects that the address itself is stored
d:[5,6,7,8] into memory then the point of the store and the return
dnl [ 7] interference graph points in the function are masll as references since
ol (8] a—0®) poi_nter analys_is is not perfo_rmed_ikewise, the same
action occurs if the address is passed to a function since
afildfl [9] interprocedural analysis has not yet been performad.
(o—a) both cases this action causes the compiler to camserv

tively consider the variablevée from the point of the store

Figure 2. Indirectly Referenced Live Ranges Example or call to the end of the function.

Before calculating thex¢éent of an indirectly referenced ~ The assignment of offsets for eackeliange is accom-
variable, the compiler first has to determine where the plished using an interference graphhe live range repre-
variable’s aldress is actually referencedWe acom- senting the extent for each indirectly referenced loa&l v

plished this by using a demandsdn gpproach rather able is added to the interference graph thas veon-
than an ehaustve lution. Ateach point the address of structed for the directly referenced local datny two
run-time stack data is tak indirectly the compiler recur live ranges that conflict are not allowed to vertapped in
sively searches forard marking all memory references memory Note that diferent lve ranges of the same
that use the addressie found this approach appealing directly referenced variable will mer conflict. Figure2
since the distance between taking the address of a locadlso depicts the corresponding interference graph for the
variable and the points where the address is dereferencelive ranges shown in the same figure. Eagk kange is
was typically close. Note that a single memory reference represented as a node in the graphn edge gists
may possibly be maed as being associated with multiple between tw nodes if the tw live ranges conflict. Thus,
local variables, which addresses mépes of aliasing. the live ranges for @riablesa andd have o conflicts
The example source code and corresponding represen€ach and both of thevé ranges for ariablesb andc have
tation in RTLs in Figure 3 illustrate the simple approach only a single conflict.
used to detect where a takemriables aldress is actually A heuristic often used to help guide the order in which
the live ranges of a function will be assigned tgisters is
to assign the Vie ranges that ha te greatest conflict Ve
els first [12]. A similar heuristic was used to determine

mai n() 1. r[12] =r[ 14] +a; 1 ) N N A
{ 2. r[5]=0; the order in which lie ranges not allocated togisters
int a[100][100]; 3. r[6]=HI[40000]; should be werlapped. Theationale is that if aVie range
ifm |( JO 00 1o 4.r[6] =r[v61 +LC 40000] ; conflicts with most of the othewk ranges in the function,
o (1=0: | <100: ++) L16[5 TS TSI Iz 2 then assigning its offset within the aetion record early
alillj]=o; 6. r[2] =r[ 1] +400; will give it the best chance of beingeanlapped with the
} 1] B few live ranges with which it does notveany onflicts.
L19|7. Mr[1]]=0; 3 Size of the data &s also used as a criteria so padding for
> I'E;]r[:'l][ i]r[“z‘] alignment requirements could be minimized.
10.PO=1 C<0- 5L 16, There are a f& complications in assigningvé ranges
to offsets in an aatétion record that are not encountered
11.r[5]=r[ 5] +400; 4 when lve ranges are assigned togisters. First,align-
12.1C=r[5] ?r[ 6] ment requirements kia 0 be dsened. Secondvariables
1P C<°v'>L16; can be of different size. Figure 4 st the algorithm
[14.PC=RT; 5 | used to assignJe ranges of run-time stack data tdsets.

The current e range of a variable is assigned to the first
offset within the actiation record that does notverlap
with ary previously assigned Ve ranges conflicting with

Figure 3. Determining Where Indirectly Taken
Addresses Are Dereferenced



the current ke range.

WHI LE any live ranges left to assignDO
curr_Ir : = live range not yet assigned with
biggest size and highest conflict \el;
curr_|r->of fset :=first offset in activation record
where locals can be assigned
FOR | r : = each live range in function DO
IF (lr->status = assigned) AND
(curr_Ir INIr->conflicts) AND
does_overlap(lr, curr_lr) THEN
curr_lr->offset := Ir->offset + |r->size;
curr_lr->offset := curr_lr->offset +
alignment padding,
;= assigned;

curr_lr->status
Figure 4. Stack Live Range Offset Assignment Algorithm

Figure 5 shows the results of awdfferent ofset

assignments for thevié ranges shown in Figure ZThe

figure also shws the declaration of the four thfent
arrays. Thefirst offset assignment attempts to assign the

limited value unless static data can be candidates for being
overlapped as well. There areveeal types of static data

in a C program. Global and topvike static variables are
placed in the static data area of a process. Lauébles

that are declared to be static are placed in the static data
area since theiralues are retained between caltSom-
posite constants, such as strings, and floating-point con-
stants are also typically placed in the static data area.

Much of the analysis to determine the extent of use for
each static data was similar to that performed for run-time
stack data.However, complications due to performing this
analysis interprocedurally required some changes to the
analysis algorithm and some concessions to ensure that
static data was safelyverlapped. Acall graph of the
compiled functions comprising the program was con-
structed, which was useful for obtaining summary analysis
data of called functions.

At this point, all static data was analyzed in a manner

live ranges in the order of least conflicts to most conflicts similar to that used for indirectly referenced run-time stack

(b, c, a, d). The variablesb and c were werlapped.
However, a andd could not be werlapped since thecon-
flicted with each other andd or c. The second dfet
assignment attempts to assign thve lianges in the order
of most conflicts to least conflicta,(d, b, ¢c). Eacharray
required the same number of bytes to simplify thene
ple. However, the algorithm shown in Figure 4 can be
used to efficiently werlap live ranges requiring diérent
amounts of memory as well.

Assignment 1: 1500 total bytes
c
b

declaration:
char a[500],
¢[500] ,

b[ 500] ,
d[ 500] ;

a d

Assignment 2: 1000 total bytes
c

a d

Figure 5. Offset Assignment of the Live Ranges in Figure 2

data. Thestatic data werlapper finds each point in the
control flov where the address of static data is con-
structed. Theovelapper recursiely searches forard
marking all memory references that use the address in a
similar manner for detecting where run-time stack data
was referenced. Whea mun-time stack data addresasv
passed to a function, the run-time stack daterlapper

had to assume that the data could be referenced from that
point to the end of the function since no interprocedural
analysis had yet been performethe static datawerlap-

per does not he this restriction and instead analyzes the
called routine for memory references using the passed
static data address. If a static data address is passed to a
library function, then the point between the call and the
following block is treated as a reference to the static data.
If a static data addressaw stored in memory (or passed to

a library function, such asetbuf which is known to store

an address in memory), then that point was marked as a

Mary compilers generate assembly code that referenceseference to the static datén addition, the returns from

local variables using a symbolic offset from a stack
pointer For instance, on the 8RC a local variable (e.g.
called i) may be symbolically referenced within an
instruction (e.gl d [ %sp+.1], %99 s ince the symbolic
offset can be defined (e.qgi 104). Themechanism
for overlapping local ariables on the SPARC was accom-
plished by using a different symbolic offset for eacte li
range. Br instance, the firstve range ofi and the sec-
ond live range ofj can be werlapped by assigning the
same value to each symbolicfasft (i _1 112 and
]2 112). Thismechanism did not require modifi-

the mainfunction and all calls text were also marked as
references. Thughe live range of the static data whose
address is stored in memory will extend from the point of
the store to the end of the program.

Static data can be initialized as part of its declaration
and is translated into assembly data divesti Thestatic
data werlapper marks the entry block of the main function
as having a reference to each initialized static data-refer
enced in the program. Thus, initialized static data will be
viewed as being Ve from the beginning of the program to
its last reference. If the address of one static datalive

cation of the instructions when offsets were assigned angy constant is referenced in the initialization of the decla-

simplified debugging of analysis errors.

4.2. Owrlapping Static Data

It has been observed that agerpercentage of static
data are arrays or other aggae data structures [1]If
most of the composite data structures in a program ar
declared as static data, thevedapping data may be of

e

ration of other static data (i.e. its address is initially in
memory), then references for it are megkwherger the
other static data is referenced, at the returns fronmtie
function, and at all calls text. This efectively causes
such static data to beg@&ded as le from the first refer
ences to the other static data to the end of the program.



If a top-level variable does not contain ampdicit ini- information is propagated to the called functionkhe
tializer as part of its declaration, then the static dat&-0  static data denoted asgdiin a Hock that is terminated by a
lapper assumes that the variable is uninitialized. The deficall to a compiled function is intersected with the static

nition of C states that uninitialized top+& variables will data denoted asvé in the block after the call. The inter
have a afault initializations of zero (i.e. its bits cleared). section contains the static data that e licross the call.
This is not true in manother languages, such as Ada. This static data is denoted agliin the called function and

fact, relying upon default initialization is typically consid- ary functions it in turn calls.Thus, blocks 11, 12, and 13
ered a bad programming practice since this does noin function c are marked as part of thevdi range ofx
explicitly show that an initial alue will be used.The sincex was live in blocks 5 and 6 (i.e. across the call to
static data werlapper performs analysis in an attempt to c¢). Thelive range ofx does not include the blocks in
detect if an uninitialized topel variable is ger used functionb sincex was neve live across a call tb.
before it is set. When this occurs a warning message is The conflicts between static data are calculated after the
issued that instructs the user trpkcitly initialize the live range of each staticaviable and constant is deter
variable rather than relying on the default initialization. mined. Sometimethe live ranges of tw datic data may
After marking the blocks where static data is refer have Hocks in common and still not conflict. Figure 7 has
enced, Ne range analysis is performed in a similar manner two calls to the utilityf . One call passes the addressof
as the analysis forvé ranges of local variables that were and the other passes the addresg.ofThe address in the
indirectly referenced. Some enhancements were requiregharameter is dereferenced in blockSo bothx andy are
to address the problem of dataflmerges at the entry and live in that block. Yet, the lve ranges do not conflict since
exits of functions being woked from more than one site. the calls occurred from different siteBor each static data
Figure 6 shws the control flav of an exkample program  that is live in a Hock, there will be a conflict denoted with
that is used to illustrate the analysis.variablex is refer ary other static data that is alsovdi in the same block
enced in blocks 5 and 6 onlyCalls and returns are when either static data did notveaits address passed to
depicted using dashed directed edgééaive analysis the function containing the blocKf both addresses were
treating the calls and returns agukar transitions wuld passed in, then theverlapper checks the blocks contain-

result in consemtively calculated Ne ranges. Br ing calls to compiled functions that can reach the current
instancex would be denoted as/k in functionb. function. If both static data addresses awe land one or
- A P ~ both had its address taken in the function containing the
main: a: ! b: [ . -
i 2 [ s " call, then the iie ranges are marked as conflicting.
i callb —«L 3 main: f:
Y 3 Y o Y 1 s
calli i (r:%fllxi 3 3 3 ° 1 call f(&x) ,,,,é ref x‘,y
[ TN | { IR R
3 ! 6 [ 10 13 ref x
! Sl V |
AR U S | s |
! callf@y)| |
e
Figure 6. Example Control Flow for Live Variable Analysis refy
The calculation of lie range information for static data Figure 7. Example Control Flow for Conflict Analysis

was accomplished in three steps. (1) An itevatidgo-
rithm was used to calculate the blocks that can precedqcro
and follow references to each static data variable and conq.,
stant. Thigterative dgorithm alloved information to fla
from a called function, but not into ifThe blocks in Fig-
ure 6 that are denoted as possibteceited preceding the
reference to theariablex are blocks 1, 2, 4, 5, and 6.
Likewise, the blocks that are found to possibtgaaite fol-
lowing the reference tw are blocks 3, 5, 6, and Blocks

8 through 13, which are in the functiobsandc, are not
included since this information is not yet proptegl into

The static data within a program were assigndsets

m the beginning of the data segment in a manner simi-
to assigning offsets for run-time stack datée mech-
anism for @erlapping static data is quite simple in most
assembly languages. Consider the C codenset in Fig-

ure 8(a). Assume that, g, s, and the string passed to
printf can be werlapped withx as depicted in Figure
8(b). TheSFARC assembly direates in Fgure 8(c) were
generated towerlap x with the other static data. Note that
the directves for the static data are generated in the order

. . X . in which the are assigned offsets instead of the order in
called functions.(2) The information about the preceding which they ;/e declaregA discussion of ha static data is

and succeedlng_blocks are intersected to determinevthe li overlapped with instructions is gin in a later section.
range representing the extent from the first reference(s) to Uninitialized static data is typically placed in a separate

the last reference(s) of each static daaaable or con- segment from initialized static datd=or instance, Figure 9

stant. Thusblocks 5 and 6 are initially denoted as tlve li : . o .
range of the ariablex. (3) The static dataVle range shaws that the static data area is split int@ tsggments in



SunOS. Ofteroperating systems provide special support 5.1. Cross Jumping
for uninitialized static data by zero-filling, whickigds an
initial disk access and reduces the size of tteewgable
files [13]. Any uninitialized static data that could not be
ovelapped with other initialized static data (or instruc-
tions) is placed at the end of the static data area in th
uninitialized data ggment. Notethat two or more unini-
tialized static data variables can still bestapped in the
uninitialized data segment by the static datarlapper.

Our algorithm for performing cross jumping has man
similarities to other implementations of this spacérgn
transformation. Br each basic block in the program we

xamine its immediate predecessors. When identical
TLs are found in multiple predecessors, the common
RTLs can be werlapped without additional instructions
executed when one of twoonditions occur (1) When no
block falls into the current block, fall-through blocks can

int x[10]; O [ e ate be created to contain the commoRnLR. (2) When a all-
int y[] ={ 0, 1}; information through block already exists, théTlRs to be oerlapped
int g=-1 initial stack must already be in this block. Each predecessor need not
short s; run-time have the same number of commolIR. Transfers from
printf("Data: "): pr°g’a'm stack other blocks with commonRs can be adjusted to jump
(a) C Code Segment to its first common RTL Wlthl!’l the appropriatallf
A through block. A predecessor Wing no common RLs
o 4 8 1216 20 24 28 32 36 40 heap would simply transfer control to its original target.
[o]d [y [olman — _ Unll_ke nmost |mplementat|ons of cross jumping, our
[x | ialzed dam improving transformation allvs other RTLs to folle
_ program code common RTLs in the predecessor block#fe perform
(b) Offset Assignment segment analysis that determines if the RTLs in the predecessor
oo | Startup code blocks can be reordered so the common RTLs appear last.

This analysis first detects the registers that are set and used
in each RTL within the program and efficiently represents
these sets and uses as kittors. Asearch within one pre-

Figure 9. SunOS Virtual
Address Space Organization

. seg “data" ! switch to the data segment decessor block for an RTL that appears in a different pre-
_-global _x | male_x mg‘(’jv” to ”le 'f'f”k‘tafo decessor block is terminated when gister the RTL uses

Tlo: ; gsbsgcof_)s(tﬁngr?zf?se(; o0 or sets is found to be set by a different RTL.

_ascii "Data: \0" ! string value To facilitate fast comparisons of instructions, we calcu-
.skip 1 I skip forward to offset 8to align _s  late a checksum for each RTL as their sets and uses are
-global _s ! male _s lnown to the linker determined. Whewromparing two RTLs for equvalence,

-st ! assoc _s address at offset 8 the checksums for eachTR are first comparedA full
.skip 2 ! skip forward to offset 12 . f the to RTLS i | ired wh th
“global y | male_y known to the linker comparison of the to/ s is only required when the

_y: ! assoc _y address at offset 12 checksgms are Identl(?a|. . .

.word 0 ! _y[0] setto O Traditionally, cross jumping occurs only on the instruc-
-ch"g | 1 g _Y[%Ie]SE‘t;? 1 e ik tions within a single function [6]We dso apply cross-
_-grobal g t male _g known to the linker jumping on calls to the same function fromfeliént sites.

_g: I assoc _g address at offset 20 L. .
word -1 I gsetto-1 Often similar aguments are passed to the same function
.global _main ! malke _main known to the linker from different calls. Figure 10 shs an example of fev

_mai n: . . ! assoc _main address at offset 24 calls to the functiorpfnotein the programctags Three
save  p,-96,%p! firstinstwithin _main . RTLs were found to be the same preceding four of the
o ! rest of insts in relocatable portion lls. Theseh RTL | d bef th iginal
. seg "text" I switch to the code segment calls. es ree_ S areveriapped beiore the origina

I all insts not serlapped with data entry of the function. The call RTLs are updated to trans-
(c) SPARC Assembly Direstés and Code fer control to a n& label preceding theverlapped H'Ls.

Other calls to the function can still transfer control to the
original label. Without inspecting the sets and uses of the
. . RTLs to allov reordering of instructions, the first common

5. Overlapping Instructions RTL would not be detected and only six RTLs would be

Overlapping instructions as accomplished by twadif- compressed instead of nine.
ferent types of transformations deemed likely to be benefi-
cial. First,a general cross-jumping transformation is per 5.2. AbstractingRelocatable Code Portions
formed. Net, separate relocatable portions of code are . . - S
abstracted into one portion when possible. These tech-relgg;;glsérucot'rggﬁswgp'Qozgggﬁamomgz Z?a:ggdvxll%oa
niques for eerlapping instructions he sSmilar goals as basic block ?hat is not fallen into fPom another block and
the approach used by Frastr al.[7], with the additional

goal that the number okecuted instructions not increase. ends with a block containing an unconditional transfer of
control, which cannot be a call instructionEach

Figure 8. Static Data Declarations and Assembly



Before Cross Jumping

After Cross Jumping

Calll

r[9]=H[L166];
r[10]=H [ _li neno];
r[8]=r[9]+LO L166] ;

Call 1

r[9]=H[L166];
r[8]=r[9] +L[ L166];
CALL _new abel ();

Call 3

r[9] =H [L318];
r[10] =HI [ _l i neno] ;
r[8]=r[9]+LQ L318];

r[9]=M r[10]+LC _Iineno]]; Call2

r[10] =1; A

CALL _pfnote(); CALL _pfnote();
Call 2 Call 3

CALL _pfnote(); r[9] =H[L318];

r[8]=r[9]+Lq L318];
CALL _new abel ();

Call4

r[91=Mr[10] +Lg _I i neno] ];

r[ 8] =r[14] +. 16_nanbuf;
CALL _new abel ();

Before Overlapping After Overlapping
jump table jump table|
.word L677 .word L677
L648 L648
s 928 e 928
PC=I Cl =0- >L651; PC=I C! =0- >L651;
L677
r[8]=224; 929 r[ 8] =224; 929
CALL _m0(); CALL _mo0();
r[9]=HI[ _yyval]; 930 r[9]=H [ _yyval]; 930

Mro]+Ld _yyval]]=r[8];
PC=L527;

Mr[9] +Ld _yyval]]=r[8];
PC=L527;

r[10] =1;

CALL _pfnote();
Call4

r[10]=H [ _li neno];

r[ 8] =r[14] +. 16_nanbuf ;

Call 5

L676

L676

r[ 8] =r[14] +. 20_nanbuf;
CALL _new abel ();

function entry

r(8]=Mr[19]-4]; 968
r[9]=H[ _yyval];

Mr[9]+L] _yyval]]=r[8];
PC=L527;

r[8]=Mr[19]-4]; 968
r[9]=H[_yyval];
Mr[9]+L] _yyval]]=r[8];

PC=L527,

r[9]=Mr[10] +Ld _lineno]];

r[10] =1;

CALL _pfnote();
Call5

r[10] =HI [ _l i neno] ;

r[ 8] =r[14] +. 20_nanbuf;

_new abel :

r[10] =HI [ _l i neno] ;
r[9]1=Mr[10] +LQ _l i neno] ];
r[10] =1;

_pfnote:

r[14] =SV[r[14]-1120];

L677
r[ 8] =224; 969
CALL _mO0();
r[9]=H[ _yyval]; 970

Mr[9]+L] _yyval]]=r[8];
PC=L527;

r[91=Mr[10] +Lg _I i neno] ];

Figure 11. Example of Overlapping Instructions
by Relocating Code Segments

r[10] =1;
CALL _pfnote();
function entry

_pfnote: from the instruction follwing the branch is a sign-
ri14]=svir[14]-1120; extended 22 bit value representing a displacement in
words (i.e. SPARC instructions), not byteBhus, the dis-
tance between a branch or jump and itggacan be wer

2 million instructions. Abstracting relocatable code for
relocatable code portion is comparediagt other relocat- tions is not performed when the distance between code
able portions in the program. If one code portion is portions is too great, which rarely occurs for a SPARC.
entirely equvalent to another code portion or a subset of
it, then the tw code portions arewerlapped. Branches _ — _
and jumps that transfer control to the same rsdalbca- |__opcode | displacement in instructions |
tion within the code portions are considered egant 31 2221 0
even though thg reference different labels.

Figure 11 shows an example of one relocataljenseat
being werlapping with a portion of another in the function ; : ;
yyparsewithin thelex program. Block®928, 929, and 930 6. Overlapping Static Data and Instructions
comprise one relocatable ggeent. Blocks969 and 970 Uninitialized static data and instructions may hero
comprise anotherBlocks 969 and 970 are identical to lapped in memory on a 8RC running SunOS without
blocks 929 and 930, respeey. The code segment at increasing the dynamic number of instructioxeceited.
blocks 969 and 970 is deleted. Block 929 is updated toThere are tw reasons that thisverlapping may occur
have the label that was formally at block 969 to allo  First, the code is next to the static data in memahjch
transfers of control to that label, such as the referencds shown in Figure 9. Second, the displacement for
from the indirect jump table, to still be valid. branches and unconditional jumps on theARE as

The target distance associated with branches or jumpshavn in Figure 12 is typically large enough to transfer
to blocks within or from a relocated code portion may be between the code gment and static data area without
significantly increased since the code portions beirgg-0  requiring an additional instruction. Note that consisgenc
lapped may be in different functions. Figure 12vwhiche between separate instruction and data caches need not be
format of a SPARC branch or jump instructiofhe ofset maintained since the verlapped area will ner be

Figure 10. Example of Interprocedural Cross Jumping

Figure 12. SPARC Branch and Jump Instruction Format



referenced for instructions after being referenced for datathat are only referenced prior to the first tisier i ng is
Relocatable code portions are identified in the samereferenced. Theanges of blocks represent relocatable

manner as was accomplished feerdapping instructions.

code sgments. Blockd to 3 is he first code segment in

A relocatable code portion can be viewed as data with amain This segment can only be accessed before the

initial value. Thusa live range for a code portionould

string variable. Blocks4 to 18 onflicts with the

include the code portion itself and all of the blocks in the st ri ng variable starting at block 15This block imme-

program that can bexecuted preceding the portionA
code portion cannotverlap in memory with ay satic
data with which it has conflictsAll initialized static data
will conflict with code portions. The uninitialized static
data that conflicts with a code portion isyastatic data

diately follows the call to the functioral, which accesses
the st ri ng variable. Thus,only the portion of the sec-
ond code segment that does not conflict withsthei ng

variable, blocks 4 to 14, isverlapped with the end of the
variable. BlocksA2 to 44 is the code gment at the end of

that is lve in any of the possible predecessors of the last the main function, which is only accessed when the com-

block in the code portion.

mand line aguments are walid. Thenext three code e

Each relocatable code portion is assigned the address ahents listed are within the functiorumber which is also

the first offset within the data segment that does wet o
lap with ary static data conflicting with the code portion or
overlap with ary previously assigned code portions. If a
code portion partially conflicts with an uninitialized static
variable, then only the basic blocks that conflict arevedo
past the ariable. Ary code portions that cannot be par
tially or completely werlapped are &pt in the code ge
ment. Thesame assembly skip direas used to position

never invoked dter st ri ngis accessed.

Overlapping static data and instructions requiresakno
ing the &act number of machine instructions associated
with each basic block in the program. Each RTL in the
vpo compiler is associated with a single assembly instruc-
tion, which is quite useful when performingyagpan-
dependent transformatiorSome assemblers, such as the
MIPS, may translate an assembly instruction into multiple

static data were used to position code portions within themachine instructions.Fortunately assemblers for most

static data area as shown in Figures 8(b) and 8{bg

machines translate each assembly instruction into a single

assembler carerts the instructions in these code portions machine instruction.

to machine code, but lees them in the data segment.
Figure 13 depicts o static data and instructions were

overlapped in the prograncal, which is one of the test

programs used in the Results sectiigure 13 (a) shas

a portion of the code ircal. Thest ri ng variable is the

only uninitialized static data in the prograrigure 13 (b)

7. Results

Table 1 shows the amount of@lapping that occurred
in the different areas of memonA variety of bench-
marks, Unix utilities, and application programs were used

data and instructionverlapper) that depicts kothis vari-
able was werlapped with initialized static data and relo-
catable code genents. Théabels refer to string constants

char string[432]; name address| num| bytes
range bytes| saved
mai n(arge, argv) string | 000-431| 432 0
char *argv[]; "~ L31 | 000-024| 25 25
) o L74 | 025-038| 14 14
I nty, i, J; L43 | 039-048 10 10
int m L55 | 049-056 8 8
. L54 | 057-060 4 4
if(arge < 2) { L44 | 061-064 4 4
printf(...); L56 | 065-066 2 2
exit(0);
} block address| num | bytes
o range range | bytes | swaed
m = nunber (argv[1]); 1-3 | 068-103| 36 36
. 42-44 | 104-123] 20 20
cal (my,string, 24); 45-45 | 124-135| 12 12
ce 46-50 | 136-199| 64 64
} 51-51 | 200-207| 8 8
4-18 | 268-483| 216 164
nunber (str)
char *str; (b) Mappingst r i ngwith Static Data
{ and Relocatable Code Segments

}
(a) Portion ofcal Program

Figure 13. Overlapping Static Data and Instructions in cal

number of bytes for the run-time stack was obtained by
simply calculating the sum of the sizes of thefedént
activation records as opposed to measuring the space used
for the run-time stack atxecution time. The number of
bytes required for library functionsas not included since
library functions are dynamically lid. Little overlap-

ping could occur on run-time stack data. Most directly
referenced data (i.e. local scalar variables) were allocated
to registers bwpa This resulted in 90.99% of the func-
tions haing no local variables in the aedtion record and
hence no possibility forwerlapping run-time stack data.
The remaining functions with indirectly referenced data
provided fav overlapping opportunities. There werevse
eral opportunities forwerlapping static data. Often string
constants and scalar globalriables could bewerlapped

with uninitialized global ariables. Vpically, the lager
data structures werevé ove most of the program and
could not be werlapped with each otherOverlapping
instructions with instructions could V& accurred much
more frequently if procedural abstraction had been used.

! The authors did diseer a few indocumented cases where the
SFARC assembler inserted an additional instruction between floating-
point instructions to resoévdata hazards not handled by the haadsy
Thevpocompiler was updated to modify sucfilRsequences to ke an
accurate correspondence between RTLs and machine instructions.



Table 1: Overlapping Results

Overlapping Run-ifne Oerlapping Overlapping Instructions ‘
P Stack Data Static Data with Instructions with Static Data
rogram Oerall
Bytes | Bytes Pct Bytes | Bytes Pct Bytes Bytes Pct Bytes Pct
Orig | Saved Less Orig | Saved Less Orig | Saved Less Seed Less
cal 312 8 2.56% 725 67 9.24% 1376 20 1.16% 304| 22.09% | 16.54%
cmp 768 0 0.00% 16677| 157 0.94%| 1576 -4 | -0.25% 792| 50.25% 4.97%
csplit 1488 0 0.00% 2688| 641 | 23.85%| 7736 132 1.71% 510| 6.55% | 10.78%
ctags 8144 0 0.00% 6644 185 2.78% | 9816 80 0.81% 892| 9.09% 4.70%
dhrystone 644 0 0.00% 10816 66 0.61% | 1956 32 1.64% 18| 0.92% 0.86%
grep 592 0 0.00% 1827| 105 5.75% | 4048 80 1.98% 1400| 34.58% | 24.51%
join 480 0 0.00% 2754 127 4.61%| 2736 56 2.05% 996| 36.40% | 19.75%
lex 9472 0 0.00% 11836 353 2.98% | 35724 732 | 2.05% 1076 3.01% 3.79%
linpack 1504 48 3.19% | 646502 76 | 0.01% | 10588| 268 2.53%| 5468 | 51.64%| 0.89%
mincost 1216 0 0.00% 11436 151 1.32%| 4428 120 2.71% 768| 17.34% 6.08%
sdiff 2536 0 0.00% 5312| 2305 | 43.39%| 7476 272 3.64% 1852| 24.77% | 28.90%
tr 192 0 0.00% 845 36 4.26% | 1692 20 1.18% 488| 28.84% | 19.93%
tsp 3008 8 0.27% 83015 91 0.11% | 4788 32 0.67% 248| 5.18% 0.42%
whetstone 568 0 0.00% 466 52 | 11.16%| 4812 184 3.82% 76| 1.58% 5.34%
yacc 4232 0 0.00% | 233818| 1117 0.48%| 31236 476 1.52% | 15432| 49.40% 6.32%
aveaage 2345 4 0.40% 69024 369 7.43%| 8666 167 1.81% 2022 | 22.78% | 10.25%

However, this abstraction would ka required the inser ~ wheneer cloning was possible. Cloning provided more
tion of calls and returns, whichawld hare increased the opportunities for verlapping instructions with instructions
execution time. The ngative result in the progranemp since a cloned relocatible codegseent was often identi-
occurred due to interference with filling delay slots by cal to the original sgment. While the original size
relocating code ggnents. Oerlapping uninitialized static  decreases forverlapping data in the run-time stack and
data and instructions resulted in surprisingly géar overlapping instructions with instructions were notdey
decreases in instruction memory requireme@gen relo- more opportunities for w@rlapping were obtained when
catable code portions of thmain function or various ini-  code duplication transformations are applied.

tialization functions could beverlapped with static data

that had not yet been referenced. Therall savings vas Table 2: Overlapping after Inlining and Cloning

determined by calculating the sum of the bytesdérom Overlapping Run-ifne Overlapping Instructions
the areas of memory andvitling by the sum of the origi- Program |__>\ack Data With Inlining with Cloning
nal bytes. Often the static data and instructions had a e | Soer | Less | ore | Sves | Lecs
larger efect since these areas typically were larger than o >3 s T 3450 1sesl 324 | 184294
the area used in the run-time stack. cmp 192| 0 | 000% | 1576 -4 | -0.25%
Table 2 shOV\_/s 'the results foryetlapping 'run—time ctsplit 24752;34 Sg %%%"0/; 1g§g88 1%83 015850;/0
stack data after inlining and/erlapping instructions after dhyetone | 200 8 | 400%| 2000 40 | 2.00%
cloning. Inlining provided mary opportunities for wer- grep 304| O | 000% | 4604 76 | 1.65%
lapping run-time stack data since more variables were can- llg)'(“ 7282 % 8-22‘;/2 41%%% 17‘(‘)% %339‘:{2
didates for being@rlapped in a single functioninlining linpack 3312| 112 | 3.38%| 11464 | 330| 1.929
was accomplished by modifying an existing inliner within mincost 192| 8 | 417% | 4500\ 164 | 3.64%
vpcg which only performed inlining within a single file of Sai SR | e TR | oo
a ompiled program. The meinliner processes all the tsp 2216| 56 | 2.53%| 4788 28 | 0.59%
files of intermediate code produced from each source file |whetstone| 488 296 | 60.66%| 4812 | 184 | 3.829
in the program, resolves conflicting labels between the |¥3 1360] 8 | 059% | 32800] 628 | 191%
files, and remees functions that are no longer referenced. aveage | S8130] 41 | 530%] 9703] 270] 3.049

Note that the size of the run-time stack data changed after
inlining. Sometimeghe size was decreased due tode
activation records required. Sometimes it was increased
due to multiple inlined copies of functions each requiring
a oopy of their variables. Thepercentage decreases for
overlapping run-time stack data may be larger for other

grchitectur_es since compiled functions f_or the .SPARC YP-decreased. Thestimated frequencthat each variable is
ically required 92 bytes to support register windows and referenced should also be a criteria for ordering tres-o

other state information for its calling sequenc&he labDi f run-ti K fter inlini laDDi
cloning measurements were obtained by manually updat-appmg of run-time stack data after inlininglverlapping

ina th de of the test 0 ol the f instructions also occasionally causegty small dynamic
Ing the source code of Ihe test programs 10 CIone e TUNCh,oyaages since it couldfett the performance of filling
tions. Thecode area of cloned programs increased in size

Occasionallysmall dynamic instruction increases were
obsened due to werlapping program portionsOverlap-
ping run-time stack data after inlining changed the loca-
tion of local variables within astdtion records. Offsets
larger than 4095 had to be calculated im twstructions.
The dynamic instructions sometimes increased or



delay slots. A more sophisticated instruction scheduler the software engineering practice of using appropriately

could undo the écts of cross jumping when needéd.
also proided more opportunities for branch chaining.
Overall, dynamic instructions decreased slightly.

8. Future Work

There are seral areas to westigate that can poten-  [1]
tially result in greater reductions in process memory
requirements. Onebvious area is to usevk ranges of
indirectly referenced data instead of simply calculating the 2]
extent throughout the function (run-time stack data) or
program (static data) that the data can be referenced.
While the current data size decreases are beneficial, the
results might be substantially immenl ater performing [3]
such lve range analysis.Another area is toxperiment
with heuristics for choosing the order of data to bero
lapped. V& wsed the number of conflicts and the size of
the data.Marny different heuristics he been ivestigated [4]
for register coloring algorithms.Likewise, diferent
heuristics need to be \estigated to determine the best
order in practice for werlapping run-time stack and static
data portions. Another promising area twestigate is 5]
automatic w@erlapping of fields within a structure or
record, which would hzae the efect of unions in C orari- 6]
ant records in &cal. Finallythe overlapping techniques
were shown to be more beneficial after inlining and
cloning. Othercode or data size increasing transforma- 7]
tions may provide additionalerlapping opportunities.

While the decrease in process memory requirements
has been measured, a more detailed analysis of féxt ef
that overlapping program portions has on performance is 8]
still needed. Little impact was observed on primary
instruction and data caching/Vhile the caching perfer
mance of may programs changed, thevamage perfor
mance was almost identical. This may indicate that the
positioning of data or instructions has a greater caching
impact than reductions in siz&.he impact on secondary
caches needs to be measured sinedapping of relocat-
able code portions with uninitialized static data coul
result in greater localityThe efect on paging of concur
rent processes also needs to be observed.

(9]

g [10]

Compile-time @erhead for determining static datadi (1]
ranges was evident when analyzing larger prograhimss
overhead could be significantly reduced if demand-iri
instead of exhaust ®lutions were used [14]. [12]

9. Conclusions

This paper described techniques farertapping pof
tions within the run-time stack, static data, and code area$l3]
of a program. Relocatable portions of code were also
overlapped with uninitialized static dat®verlapping run-
time stack data andverlapping instructions were st [14]
to be quite beneficial for decreasing memory requirements
after inlining or cloning.The techniques will be also use-
ful for embedded systems, which oftervéaarict memory
limitations. Automaticoverlapping of variables supports

named variables for different purposes. The resultsvsho
significant decrease in process memory requirements for a
variety of programs.
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