
SOCKET PROGRAMMING

INTERPROCESS COMMUNICATION
Within a Single System:
These IPC mechanisms are used when processes communicate within the same operating system.
Pipes & FIFOs
 Pipes: A unidirectional communication channel between related processes (e.g., parent and child processes). One process writes data, and the other reads it.
 FIFOs (Named Pipes): Similar to pipes but with a name in the filesystem, allowing communication between unrelated processes.
Message Queues
 A structured way to send and receive messages between processes.
 The OS manages the queue, allowing multiple processes to read from and write to it asynchronously.
 Provides more flexibility than pipes since messages can be prioritized.
Semaphores & Shared Memory
 Semaphores: Used for synchronization between processes, ensuring controlled access to shared resources.
 Shared Memory: The fastest IPC method. Processes access a common memory region, eliminating the need for data copying. However, synchronization mechanisms

(such as semaphores) are required to prevent conflicts.
Across Different Systems:

When processes communicate over a network, these mechanisms are used:
BSD Sockets
 A low-level networking API that allows communication between processes running on different machines.
 Supports both TCP (reliable, connection-based communication) and UDP (faster, connectionless communication).
 Used for client-server applications, such as web services.
Transport Layer Interface (TLI)
 An alternative to BSD sockets, used in older Unix systems.
 Provides a higher-level API for network communication, but is less commonly used today.

WHAT IS A SOCKET?

History and Background

1. Introduced in Berkeley UNIX in the 1980s, later
adopted widely.

2. Used for communication in client-server models.

3. In UNIX, everything is treated as a file, including
network communication.

How Sockets Work?

1. Process creates a socket using the socket() function.

2. The socket is bound to an address (IP + Port).

3. Clients and servers communicate through send() /
recv() functions.

4. When communication ends, the socket is closed

Application

Operating
System

Socket

Application

Operating
System

Socket

A socket is an endpoint for communication between two machines. It is a key concept in network programming,
allowing processes to send and receive data over a network.

WHAT IS A SOCKET?

 Key Characteristics

1. Bidirectional communication: Data can flow both ways.

2. Abstracts network details: Applications do not need to
manage low-level packet transmission.

3. Supports multiple protocols: TCP (reliable) and UDP
(fast but unreliable).

 Practical Usage

1. Web browsing (HTTP, HTTPS)

2. Email (SMTP, IMAP, POP3)

3. File transfers (FTP, SCP)

4. Online gaming, VoIP, and more

Application

Operating
System

Socket

Application

Operating
System

Socket

A socket is an endpoint for communication between two machines. It is a key concept in network
programming, allowing processes to send and receive data over a network.

CONNECTION-ORIENTED APPLICATION

 Server: Preparing to Handle Clients

Before a server can communicate with clients, it must go through the following steps:

1. Create a socket
 The server calls socket(AF_INET, SOCK_STREAM, 0) to create a TCP socket.

 AF_INET: Specifies IPv4 addressing.

 SOCK_STREAM: Indicates a stream-oriented (TCP) connection.

2. Bind an address (IP + port) to the socket
 The bind() function assigns a specific IP address and port number to the socket.

 This allows clients to locate the server.

3. Call listen() to mark it as a passive socket
 listen() tells the OS that this socket will be used to accept incoming connections.

 The backlog parameter determines how many pending connections can be queued.

4. Accept incoming connections from clients (accept())
 The server waits for a connection request.

 When a client connects, accept() returns a new socket specifically for communication with that client.

A connection-oriented application establishes a reliable communication channel before exchanging data. TCP
(Transmission Control Protocol) is commonly used for such applications because it ensures data is delivered
correctly and in order.

CONNECTION-ORIENTED APPLICATION
A connection-oriented application establishes a reliable communication channel before exchanging data. TCP
(Transmission Control Protocol) is commonly used for such applications because it ensures data is delivered
correctly and in order.

 Client: Connecting to the Server
To initiate communication, the client follows these steps:
1. Create a socket

• Just like the server, the client creates a TCP socket using socket(AF_INET, SOCK_STREAM, 0).
2. Connect to the server

• The client calls connect(), specifying the server's IP address and port number.
• If the server accepts the connection, a communication channel is established.

3. Exchange data (send() and recv())
• Once connected, the client can send data to the server using send().
• The server responds, and the client reads the data using recv().

 Further Communication
Once the connection is established, further communication depends on the application protocol.
For example:

• Web applications use HTTP over TCP.
• File transfers use FTP over TCP.
• Chat applications establish a continuous TCP session.

WHY TCP FOR CONNECT 4?

•Reliable & Ordered: We cannot afford to lose or reorder moves.
•Stream-based: No need to handle packet boundaries manually.
•Easier for a turn-based game: No re-transmission logic required in user space.

Feature TCP UDP

Reliability Ensures all moves are
received Packets can be lost

Ordering Moves arrive in order Moves may arrive out of
sequence

Data Handling Continuous stream, no
manual reassembly

Must handle packet
boundaries manually

TYPICAL CLIENT\ SERVER PROGRAM

Client

 Create a socket.

 Determine server address and port number.

 Initiate the connection to the server.

 Write data to the socket.

 Read data from the socket.

 Close the socket.

Server

 Create a socket.

 Associate local address and port with the socket.

 Wait to hear from a client (passive).

 Accept an incoming connection from a client.

 Write data to the socket.

 Read data from the socket.

 Close the socket.

 Repeat with the next connection request.

CREATE SOCKET

Parameters Explanation
1. Domain (Protocol Family)

Specifies the communication domain (or protocol family).
Common values:

Domain Description

AF_INET IPv4 Internet protocols

AF_INET6 IPv6 Internet protocols

AF_UNIX Local interprocess communication (IPC)

AF_IPX Novell IPX (rarely used)

Most common choice: AF_INET for IPv4 networking.

In socket programming, the socket() function is used to create a socket for communication.
• Returns: A file descriptor (integer) for the newly created socket.
• On failure: Returns -1 and sets errno to indicate the error.

2. Type (Communication Semantics)

Defines the type of communication the socket will use:

Type Description

SOCK_STREAM Reliable, connection-oriented (TCP)

SOCK_DGRAM Fast, connectionless (UDP)

SOCK_SEQPACKET Fixed-length, ordered message exchange

Most common choices:

 SOCK_STREAM for TCP (e.g., web services, file transfer).

 SOCK_DGRAM for UDP (e.g., video streaming, DNS).

Presenter
Presentation Notes
Which one to use for TCP, which to use for UDP

CREATE SOCKET

Parameters Explanation
3. Protocol

Defines the specific protocol to use within the selected type.

 Commonly set to 0, meaning the system selects the
default protocol for the given type:

 SOCK_STREAM → TCP

 SOCK_DGRAM → UDP

 If multiple protocols exist, an explicit protocol number can
be provided.

Example: Creating a TCP Socket

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd == -1) {

 perror("Socket creation failed");

 exit(EXIT_FAILURE);

}

 Creates a TCP socket using IPv4 (AF_INET).

 Returns a file descriptor (sockfd) if successful.

 Returns -1 if an error occurs, with details stored in errno.

Presenter
Presentation Notes
Which one to use for TCP, which to use for UDP

STREAMS AND DATAGRAMS

 Connection-Oriented Reliable Byte Stream (TCP -
SOCK_STREAM)

 Uses TCP, which ensures reliable, ordered, and error-free
data transfer.

 No message boundaries:
 Data is treated as a continuous stream.

 The receiver may receive multiple writes() in a single read() call.

 Suitable for:
 Web browsing (HTTP, HTTPS)

 File transfers (FTP)

 Email services (SMTP, IMAP, POP3)

 Connectionless Unreliable Datagram (UDP - SOCK_DGRAM)

 Uses UDP, which is faster but unreliable (no error
checking, no retransmission).

 Message boundaries are preserved:
 Each sendto() corresponds exactly to one recvfrom().

 Data is received as distinct packets.

 Suitable for:
 Video streaming, VoIP, gaming (low latency)

 DNS lookups (quick, lightweight requests)

 IoT devices with minimal overhead

In socket programming, communication can be categorized into two types:
1.Connection-oriented reliable byte streams (TCP - SOCK_STREAM)
2.Connectionless unreliable datagrams (UDP - SOCK_DGRAM)

CONNECTING TO THE SERVER

 Parameters Explanation

 1. sockfd (Socket Descriptor)

 A file descriptor returned by the socket() function.

 Identifies the client’s socket.

 2. addr (Server Address)

 A pointer to a struct sockaddr that specifies the server’s IP
address and port.

 Typically cast from struct sockaddr_in for IPv4:

struct sockaddr_in serv_addr;

serv_addr.sin_family = AF_INET; // IPv4

serv_addr.sin_port = htons(8080); // Port 8080

serv_addr.sin_addr.s_addr = inet_addr("192.168.1.1"); //
Server IP

 3. addrlen (Address Size)

 Specifies the size of the addr structure, typically sizeof(struct
sockaddr_in).

In socket programming, the connect() function is used by a client to
establish a connection with a remote server.

USEFULL STRUCTS

Purpose:

 A generic structure used by system calls like bind(), connect(), accept(), etc.
 Holds any type of socket address (IPv4, IPv6, etc.).

Limitations:

 sa_data is not structured, so it is not directly used in most cases.
 Instead, more specific structures like sockaddr_in are used.

Presenter
Presentation Notes
How do you know which one to use? What does everything mean?

USEFULL STRUCTS

Purpose:
 Specifically designed for IPv4 addresses.
 Used when working with TCP/IP or UDP/IP networking.

Key Fields:
Field Description
sin_family Set to AF_INET for IPv4 addresses
sin_port Holds the port number (must use htons())
sin_addr Stores the IPv4 address (use inet_addr() or inet_pton())
sin_zero Padding to keep structure size consistent

Presenter
Presentation Notes
How do you know which one to use? What does everything mean?

USEFULL STRUCTS (2)

SENDING AND RECEIVING DATA

 write(int sockfd, void *buf, size_t len).

 Parameters:

 sockfd: The socket descriptor.

 buf: A pointer to the buffer containing data to send.

 len: The size of the buffer in bytes..

 Returns the number of characters written, and -1 on error.

 read(int sockfd, void *buf, size_t len)

 Parameters:

 sockfd: The socket descriptor.

 buf: A pointer to a buffer to store received data.

 len: The maximum number of bytes to read..

 Returns the number of characters read, and -1 on error.

 int close(int sockfd)

 Closes the socket and releases resources.

 No further read/write operations can be performed after closing the
socket.

 Returns 0 on success, -1 on failure.

TYPICAL CLIENT PROGRAM

Application

Operating
System

Socket

Web server

Operating System

Socket
(port 80)

Client host Server host : 10.1.1.1

Service request for
 10.1.1.1 :80
(i.e., the Web server)

Echo server

Socket
(port 7)

Presenter
Presentation Notes
client
 Create a socket.
 Determine server address and port number.

TYPICAL CLIENT\ SERVER PROGRAM

Client

 Create a socket.

 Determine server address and port number.

 Initiate the connection to the server.

 Write data to the socket.

 Read data from the socket.

 Close the socket.

Server

 Create a socket.

 Associate local address and port with the socket.

 Wait to hear from a client (passive).

 Accept an incoming connection from a client.

 Write data to the socket.

 Read data from the socket.

 Close the socket.

 Repeat with the next connection request.

Presenter
Presentation Notes
No code provided to create a socket

BIND SOCKET TO THE LOCAL ADDRESS AND PORT

• Returns 0 on success → Binding is successful.

• Returns -1 on failure → Binding failed.

Parameters Explanation

1. sockfd (Socket Descriptor)

 A file descriptor returned by socket().

 Identifies the socket that will be bound to an address.

2. addr (Socket Address)

 A pointer to a sockaddr structure that contains the IP address and
port.

 Typically cast from struct sockaddr_in for IPv4:

 struct sockaddr_in server_addr;

 server_addr.sin_family = AF_INET;

 server_addr.sin_port = htons(8080);

 server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 AF_INET → IPv4 protocol.

 htons(8080) → Converts port 8080 to network byte order.

 htonl(INADDR_ANY) → Allows the socket to accept connections on
any available network interface.

3. addrlen (Address Length)

 The size of the address structure (e.g., sizeof(struct sockaddr_in)).

LISTEN FOR CONNECTIONS ON A SOCKET

• Returns 0 on success → The socket is ready to accept connections.

• Returns -1 on failure → Check errno for details.

Parameters Explanation

1. sockfd (Socket Descriptor)

 The socket file descriptor returned by socket().

 Must be bound to an address using bind() before calling listen().

2. backlog (Connection Queue Limit)

 Defines the maximum number of pending connections that can be queued before being accepted.

 If a new connection request arrives when the queue is full, the client may receive an error (ECONNREFUSED).

CONNECTION ACCEPTANCE BY SERVER

• Returns a new socket descriptor (client_sockfd) →
Used for communication with the client.

• Returns -1 on failure → Check errno for details.

Parameters Explanation

1. sockfd (Listening Socket)

 The server's listening socket descriptor created with
socket() and bind(), then marked as passive using
listen().

 Must be in listening mode (listen() called first).

2. addr (Client Address)

 A pointer to a sockaddr structure that will store the

client's IP address and port number.

 Typically cast from struct sockaddr_in for IPv4:

 struct sockaddr_in client_addr;

 socklen_t addr_size = sizeof(client_addr);

 If NULL, the server won't retrieve client address
details.

3. addrlen (Address Size)

 A pointer to a variable holding the size of the addr
structure.

 Must be initialized before calling accept().

socket()

bind()

listen()

accept()

send()

recv()

close()

socket()

connect()

recv()

send()

close()

Server Client

// Main function
int main() {
 struct sockaddr_in servaddr, clientaddr; // Server and client address structures
 char buff[1500]; // Buffer for storing received data
 int client_len; // Length of client address structure

 // Step 1: Create a UDP socket
 int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if (sockfd == -1) { // Check if socket creation failed
 perror("Socket creation failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 2: Clear the server address structure
 bzero(&servaddr, sizeof(servaddr));

 // Step 3: Assign IP and PORT
 servaddr.sin_family = AF_INET; // IPv4 address family
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY); // Accept connections from any IP
 servaddr.sin_port = htons(9090); // Port number 9090 (convert to network byte order)

 // Step 4: Bind the socket to the IP and Port
 if (bind(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
 perror("Socket bind failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 5: Define client address length
 int clientLen = sizeof(clientaddr);

 // Step 6: Server listens indefinitely for incoming data
 while (1) {
 bzero(buff, 1500); // Clear buffer before receiving new data

 // Step 7: Receive data from client
 recvfrom(sockfd, buff, 1500 - 1, 0, (struct sockaddr *)&clientaddr, &client_len);

 // Step 8: Print the received message
 printf("From client: %s\t To client: ", buff);
 printf("%s \n ", buff);
 }

 // Step 9: Close the socket (this will never execute because of the infinite loop)
 close(sockfd);

 return 0;
}

// Main function
int main() {
 struct sockaddr_in servaddr; // Server address structure
 char buff[1500]; // Buffer for storing data
 int sockfd;

 // Step 1: Create a UDP socket
 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
 if (sockfd == -1) {
 perror("Socket creation failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 2: Define server address
 bzero(&servaddr, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(9090); // Server port
 servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); // Server IP address

 // Step 3: Send a message to the server
 strcpy(buff, "Hello, Server!");
 sendto(sockfd, buff, strlen(buff), 0, (struct sockaddr*)&servaddr, sizeof(servaddr));

 // Step 4: Receive response from the server
 int len = sizeof(servaddr);
 recvfrom(sockfd, buff, sizeof(buff), 0, (struct sockaddr*)&servaddr, &len);
 printf("From server: %s\n", buff);

 // Step 5: Close the socket
 close(sockfd);

 return 0;
}

UDP client
UDP server

Presenter
Presentation Notes
More code, from the server and the client side clearly labeled this is client we

/ Main function
int main() {
 struct sockaddr_in servaddr, clientaddr; // Server and client address structures
 char buff[1500]; // Buffer for storing received data
 int sockfd, client_sockfd, client_len;

 // Step 1: Create a TCP socket
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd == -1) {
 perror("Socket creation failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 2: Define server address
 bzero(&servaddr, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(9090); // Port number
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY); // Accept connections from any IP

 // Step 3: Bind the socket
 if (bind(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0) {
 perror("Socket bind failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 4: Listen for incoming connections
 if (listen(sockfd, 5) < 0) {
 perror("Listen failed...\n");
 exit(EXIT_FAILURE);
 }
 printf("Server listening on port 9090...\n");

// Step 5: Accept a client connection
 client_len = sizeof(clientaddr);
 client_sockfd = accept(sockfd, (struct sockaddr*)&clientaddr, &client_len);
 if (client_sockfd < 0) {
 perror("Client connection failed...\n");
 exit(EXIT_FAILURE);
 }
 printf("Client connected!\n");

 // Step 6: Receive data from the client
 bzero(buff, 1500);
 read(client_sockfd, buff, sizeof(buff));
 printf("From client: %s\n", buff);

 // Step 7: Send response to client
 write(client_sockfd, buff, strlen(buff));

 // Step 8: Close the sockets
 close(client_sockfd);
 close(sockfd);

 return 0;
}

TCP server

// Main function
int main() {
 struct sockaddr_in servaddr; // Server address structure
 char buff[1500]; // Buffer for storing data
 int sockfd;

 // Step 1: Create a TCP socket
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd == -1) {
 perror("Socket creation failed...\n");
 exit(EXIT_FAILURE);
 }

 // Step 2: Define server address
 bzero(&servaddr, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(9090); // Server port
 servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); // Server IP address

 // Step 3: Connect to the server
 if (connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0) {
 perror("Connection to server failed...\n");
 exit(EXIT_FAILURE);
 }
 printf("Connected to server!\n");

 // Step 4: Send data to server
 strcpy(buff, "Hello, Server!");
 write(sockfd, buff, strlen(buff));

 // Step 5: Receive response from server
 bzero(buff, sizeof(buff));
 read(sockfd, buff, sizeof(buff));
 printf("From server: %s\n", buff);

 // Step 6: Close the socket
 close(sockfd);

 return 0;
}

TCP client

NON-BLOCKING SOCKET
 A non-blocking socket allows a program to perform other tasks while waiting for network data, preventing the process from getting stuck indefinitely.

What is a Non-Blocking Socket?

 By default, sockets are blocking.

 If you try to read from a blocking socket but there’s no data, the program waits indefinitely.

 Non-blocking sockets allow read(), recv(), or recvfrom() to return immediately even if no data is available.

 If no data is available, the function returns -1 and sets errno to EWOULDBLOCK or EAGAIN.

This modifies the socket file descriptor (sockfd)
to non-blocking mode.

Now, recv(), send(), or accept() will return
immediately if no data is available.

Presenter
Presentation Notes
Accept, read, receive.

MULTIPLEXING: SELECT() FUNCTION

• Multiplexing allows monitoring multiple file descriptors (sockets, pipes, files, etc.) to check which
ones are ready for I/O operations without blocking execution.

• readfds: The file descriptors in this set are watched to see if the are ready for reading.

• writefds: The file descriptors in this set are watched to see if the are ready for writing.

• exceptfds: The file descriptors in this set are watched for "exceptional conditions“.

• Timeout: select() should block waiting for a file descriptor to become ready.

• nfds : file descriptors in each set are checked, up to this limit.

MULTIPLEXING (2) – WORKING WITH FD_SET IN SELECT()

fd_set readfds;
 Creates a set of file descriptors to monitor for readability.

// Clear an fd_set bofore use
FD_ZERO(&readfds)
 Initializes the file descriptor set by clearing all bits.
 This is necessary before adding any file descriptors.

// Add a descriptor to an fd_set
FD_SET(master_sock, &readfds);
 Adds master_sock (server listening socket) to the set.
 select() will now monitor this socket for incoming connections
// Remove a descriptor from an fd_set
FD_CLR(master_sock, &readfds);

 Removes master_sock from the set.
 This is useful when closing a connection.

//If something happened on the master socket , then its an incoming
connection
FD_ISSET(master_sock, &readfds);
 Checks if master_sock is ready (e.g., has an incoming connection).
 FD_ISSET() returns non-zero if data is available.

SELECT EXAMPLE

fd_set readset;
FD_ZERO(&readset);

FD_SET(0, &readset);
FD_SET(4, &readset);

select(5, &readset, NULL, NULL, NULL);

if (FD_ISSET(0, &readset) {
/* something to be read from 0 */}
if (FD_ISSET(4, &readset) {
 /* something to be read from 4 */
}

FD_ZERO(&readset);
•Clears the fd_set to ensure no previous descriptors remain.
FD_SET(0, &readset);
•Adds file descriptor 0 (typically stdin) to the monitoring set.
FD_SET(4, &readset);
•Adds file descriptor 4 (which could be a network socket or a
file) to the monitoring set.
select(5, &readset, NULL, NULL, NULL);
•Blocks until one of the file descriptors is ready for reading.
•5 is nfds (highest file descriptor +1, i.e., max(0,4) + 1 = 5).

•FD_ISSET(fd, &readset) Returns true if fd is ready for
reading.

TIMEOUT IN SELECT

Timeout Behavior in select()
 Immediate Timeout (tv_sec = 0, tv_usec = 0)

 select() returns immediately, even if no file descriptors are ready.

 This makes it non-blocking.

 Indefinite Blocking (timeout = NULL)
 select() waits forever until at least one file descriptor is ready.

 Fixed Timeout (tv_sec > 0 or tv_usec > 0)
 select() waits for the specified time before returning.

 If no event occurs within the time, it returns 0 (timeout).

EXAMPLE
 #define STDIN 0 // Standard input file descriptor

int main() {
 struct timeval t_out; // Timeout structure
 fd_set readfds; // Set of file descriptors for reading

 // Step 1: Set timeout values
 t_out.tv_sec = 2; // 2 seconds timeout
 t_out.tv_usec = 500000; // 500,000 microseconds (0.5 seconds)

 // Step 2: Initialize the file descriptor set
 FD_ZERO(&readfds); // Clear the set before adding file descriptors
 FD_SET(STDIN, &readfds); // Add standard input (fd 0) to the read set

 // Step 3: Call select() to wait for input on stdin
 // We are only interested in readfds, so writefds and exceptfds are NULL
 int activity = select(STDIN + 1, &readfds, NULL, NULL, &t_out);

 // Step 4: Check if select() detected activity
 if (activity == -1) {
 perror("select() failed");
 exit(EXIT_FAILURE);
 } else if (FD_ISSET(STDIN, &readfds)) { // Check if stdin is ready for reading
 printf("A key was pressed!\n");
 } else { // No input detected within the timeout period
 printf("Timed out.\n");
 }
 return 0;
}

USEFUL FUNCTIONS

 Mapping between names and addresses (DNS)
 Host name to address: gethostbyname() "www.google.com"
 Host address to name: gethostbyaddr() "142.250.190.78"

 Mapping between different byte ordering schemes
 Host to Network Short: htons()
 Host to Network Long: htonl()
 Network to Host Short: ntohs()
 Network to Host Long: ntohl()

TCP ECHO SERVER EXAMPLE

int main() {
 // Step 1: Create a socket
 int sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd == -1) {
 perror("Socket creation failed");
 exit(EXIT_FAILURE);
 }

 // Step 2: Define server address
 struct sockaddr_in server_addr;
 server_addr.sin_family = AF_INET;
 server_addr.sin_addr.s_addr = INADDR_ANY; // Listen on all interfaces
 server_addr.sin_port = htons(8080); // Port number (convert to network byte order)

 // Step 3: Bind the socket to the address and port
 if (bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
 perror("Bind failed");
 close(sockfd);
 exit(EXIT_FAILURE);
 }

 // Step 4: Listen for incoming connections
 if (listen(sockfd, 5) < 0) { // Allow up to 5 pending connections
 perror("Listen failed");
 close(sockfd);
 exit(EXIT_FAILURE);
 }
 printf("Server listening on port 8080...\n");

 // Step 5: Accept and handle client connections
 struct sockaddr_in client_addr;
 socklen_t client_len = sizeof(client_addr);

 while (1) { // Infinite loop to handle multiple clients
 int clientfd = accept(sockfd, (struct sockaddr*)&client_addr, &client_len);
 if (clientfd < 0) {
 perror("Accept failed");
 continue;
 }
 printf("Client connected!\n");

 // Step 6: Receive and send (Echo back)
 char buffer[1024];
 ssize_t n = recv(clientfd, buffer, sizeof(buffer) - 1, 0);
 if (n > 0) {
 buffer[n] = '\0'; // Null-terminate the received string
 printf("Received: %s\n", buffer);
 send(clientfd, buffer, n, 0); // Echo back to client
 }

 // Step 7: Close the client socket
 close(clientfd);
 }

 // Step 8: Close the server socket (unreachable in an infinite loop)
 close(sockfd);

 return 0;
}

REFERENCES

 https://man7.org/linux/man-pages/

 TCP/ IP Sockets in C, Second edition, by Mickael J. Donahoo and Kenneth L. Calvert.

 Socket Programming presentation by Umit Karabiyik.

https://man7.org/linux/man-pages/

	Socket Programming
	Interprocess Communication
	WHAT IS A SOCKET?
	WHAT IS A SOCKET?
	Connection-Oriented Application
	Connection-Oriented Application
	Why TCP for Connect 4?
	Typical Client\ Server Program
	Create socket
	Create socket
	Streams and Datagrams
	Connecting to the Server
	USEFULL structs
	USEFULL structs
	USEFULL structs (2)
	Sending and Receiving Data
	Typical Client Program
	Typical Client\ Server Program
	Bind socket to the local address and port
	listen for connections on a socket
	Connection Acceptance by Server
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	non-blocking socket
	MULTIPLEXING: select() Function
	MULTIPLEXING (2) – Working with fd_set in select()
	Select Example
	Timeout in Select
	Example
	useful functions
	 TCP Echo Server Example
	References

