Problem Set 4 Due November 12, 2024 Ten points each: total points are 80

- 1. Find context-free grammars that will generate the following languages:
 - (a) $L = \{a^n b^m : 2n \le m \le 3n, n \ge 0, m \ge 0\}$
 - (b) $L = \{a^n b^m c^k : k = n + m, n \ge 0, m \ge 0\}$
- 2. The grammar below is ambiguous:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a \mid b$$

- (a) Extend this grammar to include subtraction (-) and exponentiation (\uparrow).
- (b) Is this grammar ambiguous? If so give two different parse trees for some yield.
- (c) Construct an unambiguous grammar for your extended grammar. Make sure the precedence and associativity is as we would expect.
- 3. Consider the language $L=\{a^nb^nc^m:n\geq 0,\,m\geq 0\}\cup\{a^nb^mc^m:n\geq 0,\,m\geq 0\}.$
 - (a) Find a context-free grammar for L.
 - (b) Show that L is ambiguous.
- 4. Consider the grammar:
 - $(1) E \rightarrow E + T \mid T$
 - $(2) \ T \rightarrow T * F \mid F$
 - (3) $F \rightarrow (E) \mid id$
 - (a) Give a rightmost derivation for the sentence w = id * (id + id) * id + id.
 - (b) Give a left most derivation for the same string w.
 - (c) The above grammar is left recursive. One way of eliminating left recursion is to replace productions of the form:

$$A \rightarrow A \alpha \mid \beta$$
,

where β does not begin with an A, by the productions:

$$A \to \beta \; A'$$

$$A' \to \alpha \; A' \; | \; \lambda.$$

Transform the above grammar into one without left recursion using this technique.

5. Eliminate λ productions from the following grammar.

$$S \to AaB \mid aaB$$

$$A \rightarrow \lambda$$

$$B \rightarrow bbA \mid \lambda$$

6. Convert the following grammar to Greibach normal form:

$$S \rightarrow AA \mid a$$

 $A \rightarrow SS \mid b$

- 7. Consider the grammar:
 - (1) $S \rightarrow i C t S$
 - (2) $S \rightarrow i C t S e S$
 - (3) $S \rightarrow a$
 - (4) $C \rightarrow b$

where i, t, and, e stand for **if**, **then**, and **else**, and C and S for "conditional" and "statement."

- (a) Construct a rightmost derivation for the sentence w = i b t i b t a e a.
- (b) Show the corresponding parse tree for the above sentence.
- (c) Is the above grammar ambiguous? If so, prove it.
- 8. Eliminate unit productions from the following grammar. Show your work.

$$S \rightarrow XY$$

$$X \to A$$

$$A \rightarrow B \mid a$$

$$B \to b$$

$$Y \rightarrow T$$

$$T \to Y \mid c$$

The following problems will not be graded but will be covered in the solutions.

2

Transform the following grammar into Chomsky normal form.

$$S \rightarrow abAB$$

$$A \rightarrow bAB \mid \lambda$$

$$B \to BAa \mid A \mid \lambda$$

Consider the language $L = \{ww^R : w \in \{a,b\}^*\}.$

- (a) Find a context-free grammar for L.
- (b) Find a context-free grammar for the *complement* of L.