Lecture 9

Nonregular Languages

COT 4420 Theory of Computation

Section 4.3

Regular and Nonregular languages

Regular languages

a*b+a

(a+b)((a+b)(a+b))*

(a+b+c)aa(a+b+c)

• Nonregular languages $\{a^nb^n : n \ge 0\}$ $\{waw^R : w \in \{a,b\}^*\}$

Regular and Nonregular languages

• All finite languages are regular

Suppose that
$$L = \{ w_1, w_{2_i} \dots w_n \}$$

Nonregular Languages

What about infinite regular languages or more generally non regular languages?

How can we prove in general that a languages L is not regular?

The pigeonhole principle n pigeons

• • • • • • • • • • • •

The pigeonhole principle

n pigeons m pigeonholes There is a pigeonhole with at least 2 pigeons

n > m

The pigeonhole principle and DFAs

• Suppose we have a DFA with 4 states

The pigeonhole principle and DFAs

• Suppose we have a DFA with 4 states

In a walk for baabb length > 4 $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 \rightarrow q_1$ State q_2 is repeated

The pigeonhole principle and DFAs

• The state is repeated as the result of pigeonhole principle.

Pigeons $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 \rightarrow q_1$ (walk states) In general if $|w| \ge number of states of DFA by the pigeonhole principle, a state is repeated in the walk$

Suppose we have an <u>infinite</u> regular language L We know that there exists a DFA for L (with m states) and a string $|w| \ge m$ accepted by the DFA.

Choose a string $w \in L$ such that $|w| \ge m$

Then from pigeonhole principle a state is repeated in the walk for w.

For this string $w \in L$ with $|w| \ge m$,

let q_r be the first state to repeat:

In xy there is no state repeated (except first reoccurrence of q_r).

In y there is at least one transition, and therefore, $|y| \ge 1$

String xz is accepted if we do not follow the loop at all.

String xyz, xyyz, xyyyz, ... are accepted if we follow the y loop multiple times ...

Therefore, string $xy^i z \in L$, i = 0, 1, 2, ...

Theorem: Let L be an infinite regular language. Then there exists a positive integer m such that for any $w \in L$ with $|w| \ge m$, w can be decomposed as w = xyz with $|xy| \le m$ and $|\mathbf{y}| \ge 1$ And $w_i = xy^i z$ is also in L for all i = 0, 1, 2, ...

• We can only use the pumping lemma to show certain languages are **not regular**.

• You cannot use this theorem for proving that a language is regular.

Using pumping lemma to prove a language L is not regular

- 1. Assume by contradiction that L is regular
- 2. Let m be the integer for pumping lemma
- 3. Pick a string $w \in L$, $|w| \ge m$
- 4. w can be decomposed as w = xyz such that $|xy| \le m \& |y| \ge 1$, and $xy^iz \in L$ for all $i \ge 0$.
- 5. Show that $w' = xy^i z$ is not in L for some i.
- 6. This results in a contradiction since pumping lemma says $xy^i z \in L$ for all i=0,1,2,3,...

Question: Prove that the language $L = \{a^nb^n : n \ge 0\}$ is not regular.

Answer: Proof by contradiction: assume L is regular.

Choose m as in the pumping lemma.

Pick $w \in L$ such that $|w| \ge m$:

 $w = a^m b^m$

Clearly w is in L.

There exists a decomposition such that w = xyz and $|xy| \le m \& |y| \ge 1$. We do not know the exact decomposition but it must be that the bounds m + Im - I hold. As an example: For some $0 \le j \le m - 1/2$ $w = a^m b^m$ a..aa...aa...aaab $y = a^k$, $1 \le k$

 $x = a^{m-j-k}$ $y = a^k$ $z = a^j b^m$

- Now we need to show that w' = xyⁱz is not in L for some i.
- w = xyz
- $x = a^{m-j-k}$ $y = a^k$ $z = a^j b^m$
- Since y is all a's and at least 1 a, the number of
- a's in xyⁱ (and including in z) will become greater than the number of b's given a sufficiently high value of i.

Is w' ∈ L ? No! CONTRADICTION!

The assumption that L is a regular language is not true.

Therefore, L is not regular.