Lecture 8 Elementary Questions about Regular Languages

COT 4420 Theory of Computation

Section 4.2

Representation of Languages

- Informal: a logical or prose statement about its strings:
 - $\{0^n 1^n \mid n \text{ is a nonnegative integer}\}$
 - "The set of strings consisting of some number of 0's followed by the same number of 1's."

• Formal: represent a language by a **Regular** Expression, NFA, DFA or Regular Grammars.

Representation of Languages

When we say:

We are given a Regular Language L

We mean:Language L is in a standardrepresentation

Decision Properties

• A *decision property* for a class of languages is an algorithm that takes a formal description of a language and tells whether or not some property holds.

• Example: Is language L empty?

Why Decision Properties?

- Suppose we have a DFA representing a protocol.
- Example: "Is there an upper bound (in terms of transitions) for when the protocol terminates?" = "Is the language finite?"
- Example: "Can the protocol fail?" = "Is the language nonempty?" (when the final state is the "error" state)

Membership Problem

Question: Is string w in regular language L?

Answer: Take the DFA representing L and check if w is accepted by this DFA.

Membership Problem

• If the regular language is in some other representation, we have an algorithm to convert it to a DFA as we have:

The Emptiness Problem

Question: Given regular language L, does it contain any string at all? Is L empty? $(L = \emptyset)$.

Answer: Take the DFA that accepts L, check if there is any path from the initial state to a final state. Note: need only check strings up to length *n*, where *n* is the number of states of the DFA.

The Infiniteness Problem

Question: Given regular language L, Is it finite?

Answer: Take the DFA that accepts L, check if there is a walk with cycle from the initial state to a final state. If there is a cycle, the language of DFA is infinite, otherwise the language is finite.

The Infiniteness Problem

- 1. Eliminate states not reachable from the start state.
- 2. Eliminate states that do not reach a final state.
- 3. Test if the remaining transition graph has any cycles.
 - Starting at each node N, search forward until you either can reach no more nodes, or you discover you can reach N.
 - If you can reach N, you have a cycle
 - If you exhaust all the nodes as starting points, and you still haven't found a cycle, then there are none.

Equivalence Problem

Question: Given regular languages L_1 and L_2 , Is $L_1 = L_2$?

Answer:

1. Create
$$L_3 = (L_1 \cap L_2) \cup (L_1 \cap L_2)$$

2. Check if $L_3 = \emptyset$? If L_3 is empty, $L_1 = L_2$

