#### Lecture 7

## Properties of regular languages

**COT 4420** 

Theory of Computation



# Closure properties of regular languages

If L<sub>1</sub> and L<sub>2</sub> are regular languages, then we prove that:

Union:  $L_1 \cup L_2$ 

Concatenation: L<sub>1</sub>L<sub>2</sub>

Star: L<sub>1</sub>\*

Reversal: L<sub>1</sub><sup>R</sup>

Complement:  $L_1$ 

Intersection:  $L_1 \cap L_2$ 

Are regular

Languages

# Closure properties of regular languages

If L<sub>1</sub> and L<sub>2</sub> are regular languages, then we prove that under:

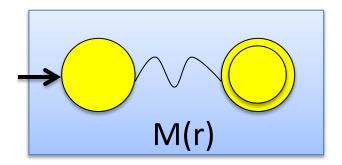
Substitution Homomorphism

Inverse homomorphism

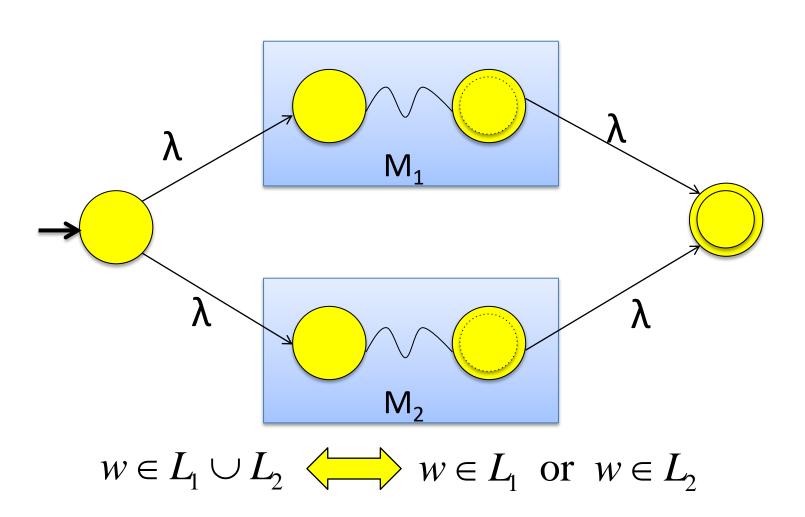
Right Quotient: L<sub>1</sub>/L<sub>2</sub>

Are regular Languages

Suppose this is the representation of an NFA accepting L<sub>1</sub>.

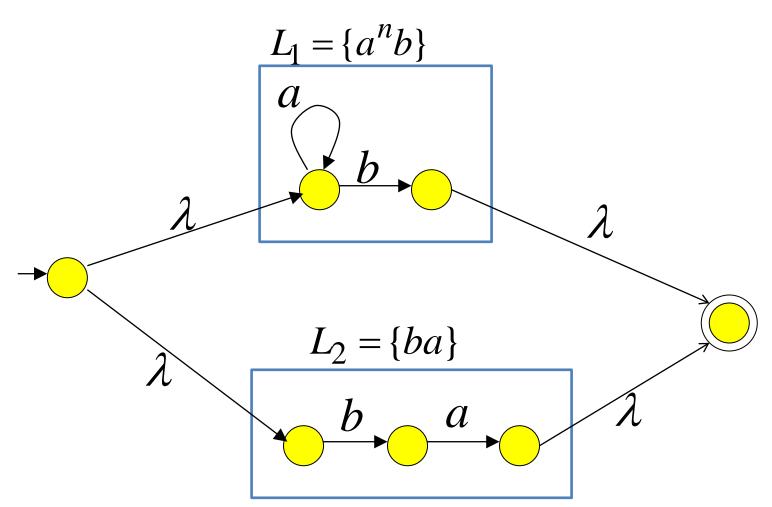


## Union $L_1 \cup L_2$

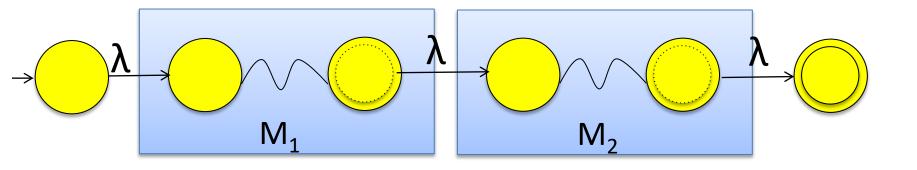


## Union - Example

$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$



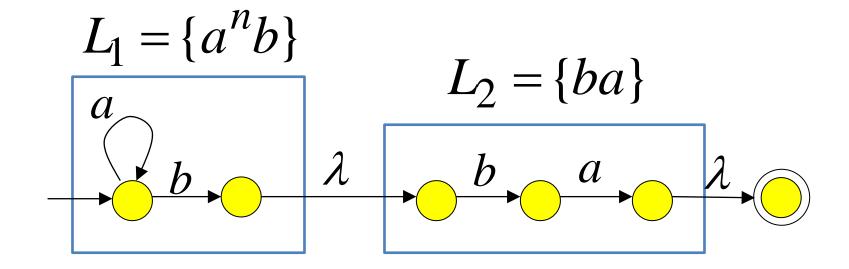
## Concatenation $L_1L_2$



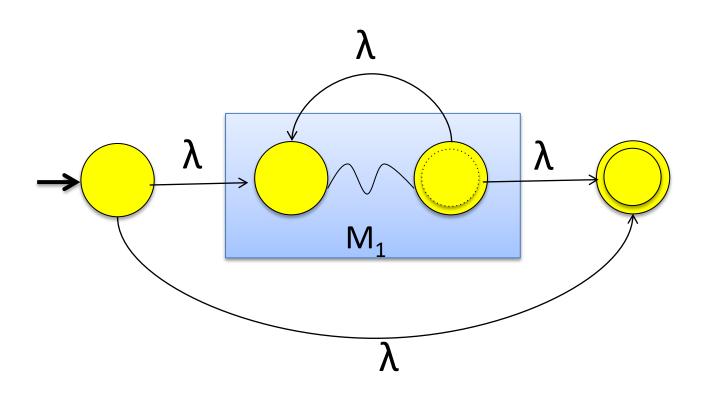
$$w \in L_1 L_2$$
  $w = w_1 w_2 : w_1 \in L_1 \text{ and } w_2 \in L_2$ 

## **Concatenation - Example**

$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$



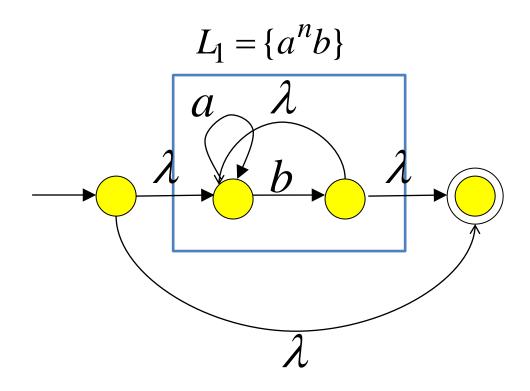
## Star Operation L<sub>1</sub>\*



$$w \in L^* \quad \Longrightarrow \quad w = w_1 w_2 \cdots w_k : \ w_i \in L$$
 
$$\mathbf{or} \quad w = \lambda$$

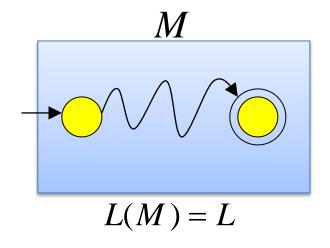
## Star Operation - Example

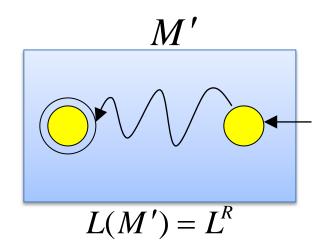
$$L_1^* = \left\{a^n b\right\}^*$$



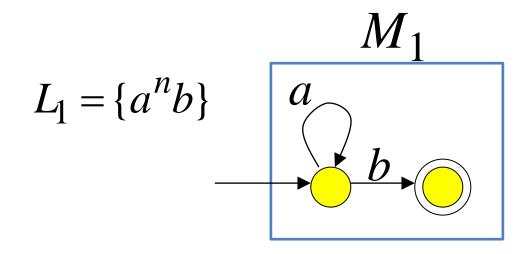
### Reverse L<sub>1</sub><sup>R</sup>

- Make sure your NFA has single final state.
- Reverse all transitions
- Make the initial state accept state and make the accept state initial state.





## Reverse - Example



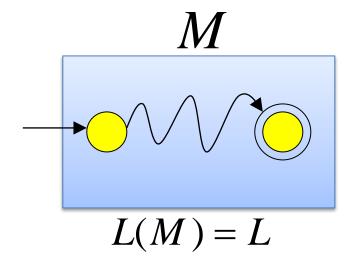
$$L_1^R = \{ba^n\}$$

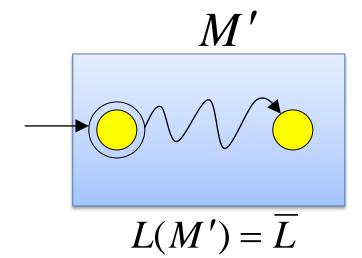
$$a \qquad b \qquad b$$

## Complement L

Let M be the DFA that accepts L.

 Make final states non-final states and vice versa for M'





## Complement - Example

$$L_1 = \{a^n b\}$$

$$\overline{L_1} = \{a,b\} * -\{a^n b\}$$

### Intersection $L_1 \cap L_2$

• De Morgan's Law:  $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ 

$$L_1$$
 and  $L_2$  are regular  $\longrightarrow$   $\overline{L_1}$  and  $\overline{L_2}$  are regular

$$\overline{L_1} \cup \overline{L_2}$$
 is regular

$$\overline{L_1} \cup \overline{L_2}$$
 is regular

#### Substitution

- A substitution f is a mapping f:  $\Sigma \to 2^{\Delta^*}$  (for some alphabet  $\Delta$ ). Thus f associates a language with each symbol of  $\Sigma$ .
- The mapping f is extended to strings as follows:

$$f(\lambda)=\lambda$$
  
 $f(xa) = f(x)f(a)$   $x \in \Sigma^*$ ,  $a \in \Sigma$ 

• The mapping f is also extended to languages by defining:  $f(I) = \prod_{i \in F(x_i)} f(x_i)$ 

$$f(L) = \bigcup_{x \in L} f(x)$$

## Substitution - Example

$$\Sigma = \{0,1\}$$
  $\Delta = \{a,b\}$   
Let  $f(0) = ab^*$  and  $f(1) = ac$   
 $f(011) = ab^*acac$   
 $f(011^*) = ab^*ac(ac)^*$ 

O If f(a) is a regular language for  $a \in \Sigma$ , we call the substitution a regular substitution.

#### $\bigcirc$

#### Closure under substitution

Theorem: Regular sets are closed under (regular) substitutions.

Let  $R \subset \Sigma^*$  be a regular language. We need to show that f(R) is a regular language.

For each  $a \in \Sigma$ , let  $R_a \subset \Delta^*$  be a regular set such that  $f(a) = R_a$ . Select regular expressions denoting R and each  $R_a$ .

Replace each occurrence of  $\mathbf{a}$  in the regular expression for R by the regular expression for  $R_a$ .

#### Closure under substitution

• The resulting regular expression is denoting f(R). And it can be shown that:

$$f(L_1 \cup L_2) = f(L_1) \cup f(L_2)$$
  
 $f(L_1L_2) = f(L_1)f(L_2)$   
 $f(L_1^*) = (f(L_1))^*$ 

## Homomorphism

 A homomorphism h is a substitution in which a single letter is replaced with a string.

for  $a \in \Sigma$ , h(a) is a single string in  $\Delta$ h:  $\Sigma \rightarrow \Delta^*$ 

If  $w = a_1 a_2 ... a_n$  then  $h(w) = h(a_1)h(a_2)...h(a_n)$ If L is a language on  $\Sigma$ ,  $h(L) = \{ h(w) : w \in L \}$  and is called its homomorphic image.

## Homomorphism - Example

$$\Sigma = \{0,1,2\}$$
  $\Delta = \{a,b\}$ 

$$h(0) = ab$$

$$h(1) = b$$

$$h(2) = a$$

Then 
$$h(0110) = abbbab$$
  
 $h(122) = baa$ 

The homomorphic image of  $L = \{0110,122\}$  is the language  $h(L) = \{abbbab, baa\}$ 

## Homomorphism

 Homomorphism is a substitution hence regular languages are closed under homomorphism.

#### Inverse homomorphism:

Let h:  $\Sigma \to \Delta^*$  be a homomorphism, then  $h^{-1}(w) = \{ x \mid h(x) = w \}$  for  $w \in \Delta^*$ .  $h^{-1}(L) = \{ x \mid h(x) \in L \}$  for  $L \subset \Delta^*$ 

## Inverse Homomorphism

Theorem: The class of regular sets is closed under inverse homomorphism.

• Let h:  $\Sigma \rightarrow \Delta^*$  be a homomorphism and consider L a regular language in  $\Delta^*$ . There must exists a dfa M=(Q,  $\Delta$ ,  $\delta$ , q<sub>0</sub>, F) that accepts L. We construct M<sub>\Sigma</sub> = (Q, \Sigma, \delta', \delta', q<sub>0</sub>, F) that accepts h<sup>-1</sup>(L) by defining  $\delta'$ (q, a) =  $\delta$ (q, h(a)) for a  $\in \Sigma$ .

By induction on |x| we can show that  $x \in L_{\Sigma}$  if and only if  $h(x) \in L$ .

#### $\bigcirc$

## Example

• Prove that  $L = \{ a^nba^n : n \ge 1 \}$  is not regular. Suppose we know hat  $\{0^n1^n : n \ge 1 \}$  is not regular.

```
\begin{split} &h_1(a)=a,\quad h_1(b)=ba \qquad h_1(c)=a\\ &h_2(a)=0 \quad h_2(b)=1 \qquad h_2(c)=1\\ &h_1^{-1}(\{a^nba^n\mid n\geq 1\})=(a+c)^nb(a+c)^{n-1}\\ &h_1^{-1}(\{a^nba^n\mid n\geq 1\})\cap a^*bc^*=\{a^nbc^{n-1}\colon n\geq 1\}\\ &h_2(h_1^{-1}(\{a^nba^n\mid n\geq 1\})\cap a^*bc^*)=\{0^n1^n\colon n\geq 1\} \end{split}
```

If  $\{a^nba^n : n \ge 1\}$  were regular since regular languages are closed under h and  $h^{-1}$  and intersection,  $\{0^n1^n : n \ge 1\}$  must have been regular, a contradiction.

## Right Quotient

 Let L<sub>1</sub> and L<sub>2</sub> be languages on the same alphabet. Then the right quotient of L<sub>1</sub> with L<sub>2</sub> is defined as:

$$L_1/L_2 = \{ \text{ x: xy} \in L_1 \text{ for some y} \in L_2 \}$$
 Example:  $L_1 = 0*10* \ L_2 = 10*1 \ L_3 = 0*1$  
$$L_1/L_3 = 0* \ L_2/L_3 = 10*$$

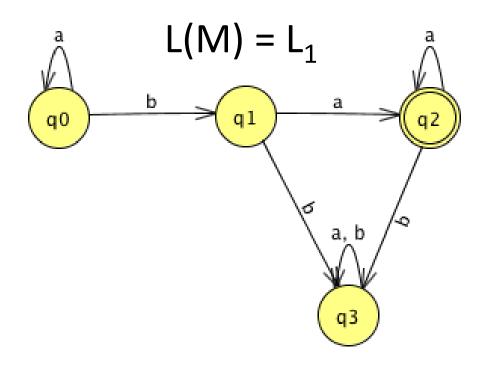
## Right Quotient

Theorem: If  $L_1$  and  $L_2$  are regular languages, then  $L_1/L_2$  is regular.

Suppose there is a dfa M=(Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) such that L<sub>1</sub> = L(M). We construct M'=(Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F') that accepts L<sub>1</sub>/L<sub>2</sub>.

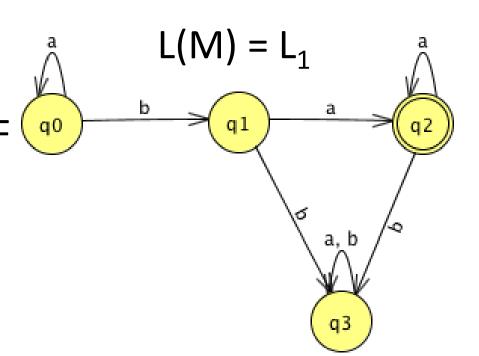
For all states  $q_i \in Q$  determine if there exists a  $y \in L_2$  such that  $\delta^*(q_i, y) = q_f \in F$ . In that case we add  $q_i$  to F'.

$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 



$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 

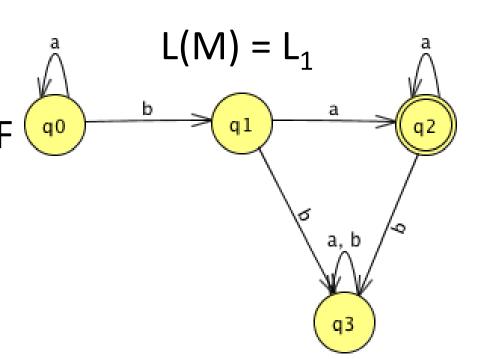
For every state  $q_i$ determine if there is a  $y \in L_2$  that  $\delta^*(q_i, y) \in F$ 



$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 

For every state  $q_i$ determine if there is a  $y \in L_2$  that  $\delta^*(q_i, y) \in F^0$ 

From  $q_0$ ? No



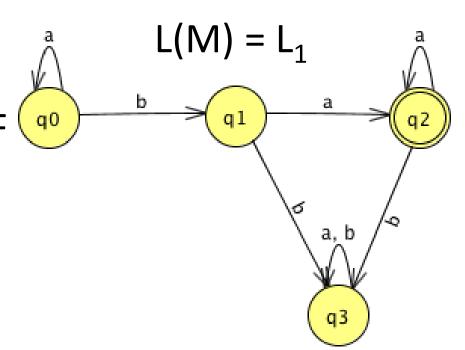


$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 

For every state q<sub>i</sub> determine if there is a  $y \in L_2$  that  $\delta^*(q_i, y) \in F^{(i)}$ 

From  $q_0$ ? No

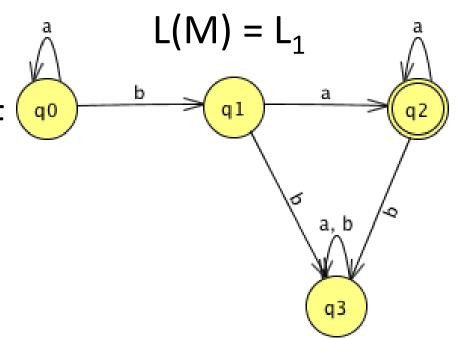
From  $q_1$ ? y = a



$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 

For every state  $q_i$ determine if there is a  $y \in L_2$  that  $\delta^*(q_i, y) \in F^0$ 

From  $q_0$ ? No From  $q_1$ ? y = aFrom  $q_2$ ? y = a





 $L(M) = L_1$ 

$$L_1 = L(a*baa*)$$
  
 $L_2 = L(ab*)$ 

For every state  $q_i$ determine if there is a  $y \in L_2$  that  $\delta^*(q_i, y) \in F$ 

From  $q_0$ ? No

From  $q_1$ ? y = aFrom  $q_2$ ? y = aFrom  $q_3$ ? No



$$L_1/L_2 = L(a*ba*)$$