Lecture 5

Regular Expressions

COT 4420 Theory of Computation

Section 3.1, 3.2

• Regular Expressions describe regular languages.

Example:

 $(a+b.c)^*$

describes the language: ${a, bc}^* = {\lambda, a, bc, aa, abc, bca, ...}$

- Regular expressions use three operations: Union (+), Concatenation (.) and Kleene Star(*).
- 1. \emptyset , λ , $a \in \Sigma$ are all primitive regular expressions.
- 2. Given regular expressions r_1 and r_2 :

3. A string is a regular expression iff it can be derived from primitive regular expressions and a finite number of applications of defined operators.

Languages Associated with Regular Expressions

- $L(\emptyset)$ = empty set
- $L(\lambda) = {\lambda}$
- $L(a) = \{a\}$

If r_1 and r_2 are regular expressions: $L(r_1+r_2) = L(r_1) \cup L(r_2)$ $L(r_1.r_2) = L(r_1).L(r_2)$ $L(r_1^*) = (L(r_1))^*$

- Union of languages Example: $\{01,111,10\} \cup \{00,01\} = \{01, 111, 10, 00, 01\}$
- Concatenation of languages L_1 and L_2

L₁. L₂ = {(x.y) | $x \in L_1$ and $y \in L_2$ } Example: $\{01, 111, 10\}$ {00, 01} = {0100, 0101, 11100, 11101, 1000, 1001}.

• Kleene Star L^{*} is the set of strings formed by concatenating zero or more strings from L, in any order. $L^* = {\lambda} \cup L \cup LL \cup LL \cup ...$

Example: $\{0,10\}^* = \{\lambda, 0, 10, 00, 010, 100, 1010, ...\}$

```
Example: (a+b).a*
L((a+b).a^*) = L(a+b).L(a^*)= (L(a) \cup L(b)).(L(a))*
              = (\{a\} \cup \{b\}) (\{a\})^*= {a,b}{\lambda, a, aa, aaa, ...}
             =\{a, aa, aaa, ..., b, ba, baa, ...\}
```
Precedence of Operators

• Parentheses can be used whenever needed.

• Oder of precedence from high to low is star $*$ then concatenation . and then union $+$.

Regular Expression Examples

- 01 {01}
- $01 + 0$ $\{01, 0\}$
- $0(1+0)$ {01, 00}
- $0*$ $\{\lambda, 0, 00, 000, ...\}$
- $(0+1)^*$ $\{\lambda, 0, 1, 00, 01, 10, 11, 111, 000, 010, ...\}$

```
(0+1)*(0+11)
```
Any string of 0's and 1's that ends with either a 0 or a 11.

Regular Expression Example

• Give a regular expression r such that

 $L(r) = \{ w \in \{0,1\}^* : w \text{ has at least one pair of }$ consecutive 0s}

$$
r = (0+1)^* 00 (0+1)^*
$$

Regular Expression Example

What is the language described by regular expression $r = (aa)^*(bb)^*b$

$$
L(r) = \{ a^{2n}b^{2m}b : n, m \ge 0 \}
$$

Equivalence of Regular Expressions and Regular Languages

Languages generated by Regular Expressions = Regular languages

Part 1) The set of languages generated by regular expressions is a subset of regular languages.

Equivalence of Regular Expressions and Regular Languages – Part 1

Theorem: Let r be a regular expression. There exists some NFA that accepts L(r).

Proof is an induction on the number of operators (+, concatenation, *) in the regular expression.

a

λ

 \emptyset

• Suppose this is the representation of an NFA accepting L(r) for regular expression r.

 r_1+r_2

 $\boxed{\bigcirc}$

 r_1+r_2 $M(r_1)$ $M(r_2)$ λ λ $\overline{\lambda}$ λ

 r_1r_2

 r_1r_2

 $r=(a+bb)*(ba*+\lambda)$

λ

Equivalence of Regular Expressions and Regular Languages

Languages generated by Regular Expressions = Regular languages

Part 2) Regular languages are a subset of the set of languages generated by regular expressions.

• For any regular language L there is a regular expression r with $L(r) = L$.

Equivalence of Regular Expressions and Regular Languages – Part 2

Theorem: Let L be a regular language accepted by an NFA M. Then there exists a regular expression r such that $L = L(r)$.

• We will convert an NFA that accepts L to a regular expression.

• We first construct the equivalent Generalized Transition Graph in which transition labels are regular expressions.

Example

2

 $r = r_1 * r_2(r_4 + r_3r_1 * r_2) *$

Creating Generalized Transition Graph (GTG)

- A complete GTG needs to have edges from every state to every other state.
- A complete GTG of |V| nodes will have $|V|^2$ edges.
- If a GTG has some edges missing, we add the missing edges with label \emptyset .

Creating Generalized Transition Graph (GTG)

STEP 1

Initial NFA graph

Corresponding GTG with regular expression labels

STEP 2

• Keep removing states one at a time from GTG until two states are left only.

STEP 3

When GTG has two states, its associated regular expression is:

Resulting graph

$$
r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *
$$

Convert NFA to Regular Expression STEP 1: Create GTG

• Start with an NFA with a single final state, distinct from its initial state.

• Convert the NFA into a complete generalized transition graph (with expressions on the edges). r_{ij} is the label of the edge q_i to q_j .

• If the GTG has more than three states, pick an intermediate state q_k to be removed. Introduce new edges for all pairs of states (q_i, q_j) , i $\neq k$ and $j \neq k$.

• If you have three states q_i , q_j , and q_k and you want to remove q_k , introduce new edges labeled

$$
r_{pq} + r_{pk}r_{kk} * r_{kq} \qquad \text{for p=i,j and q=i,j}
$$

Convert NFA to Regular Expression STEP 2: removing states

• Note that

$$
r + \emptyset = r
$$

r.\emptyset = \emptyset

$$
\emptyset^* = \lambda
$$

• Then remove node q_k and its associated edges.

• If the GTG has only two states, with q_i as its initial state and q_i its final state, its associated regular expression is

$$
r = r_{ii} * r_{ij} (r_{jj} + r_{ji} r_{ii} * r_{ij}) * \n\qquad \qquad \frac{r_1}{q_1}
$$
\n
$$
r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) * \n\qquad \qquad \frac{r_3}{q_1}
$$

 $\boxed{\bigcirc}$

Eliminating q_1

We need to find transitions for all pairs of states (q_i, q_j) 1) (q_0, q_2) : $\bigcap p=0, q=0: b+ab *c$ p=0, q=2: Ø +ab*a = ab*a p=2, q=0: $\emptyset + \emptyset$ b*c = $\emptyset + \emptyset = \emptyset$ p=2, q=2: \emptyset + \emptyset b*a = \emptyset + \emptyset = \emptyset $b+ab$ *c ab*a $q₀$

Eliminating q_1

We need to find transitions for all pairs of states (q_i, q_j) 2) (q_0, q_3) : $\bigcap p=0, q=0: b+ab *c$ $p=0$, $q=3$: \emptyset +ab*c = ab*c $b+ab*c$ $p=3$, q=0: \emptyset +b b*c = bb*c $p=3$, $q=3$: \emptyset +b b *c = bb*c q₀

bb*c

Eliminating q_1

We need to find transitions for all pairs of states (q_i, q_j) 3) $(q_2, q_3):$ $\bigcap p=2, q=2: \emptyset + \emptyset b^*a = \emptyset + \emptyset = \emptyset$ p=2, q=3: Ø +Øb*c = Ø+Ø=Ø p=3, q=2: a +b b*a $q2$ $p=3$, $q=3$: \emptyset +b b *c = bb*c **HIVOLT** bb*c

$$
r = r_{ii}^* r_{ij} (r_{jj} + r_{ji} r_{ii}^* r_{ij})^*
$$

 $(b+ab*c)*(ab*c)$ (bb*c) + (bb*c)(b+ab*c)*ab*c)*

Summary

• Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.