Lecture 5

Regular Expressions

COT 4420
Theory of Computation

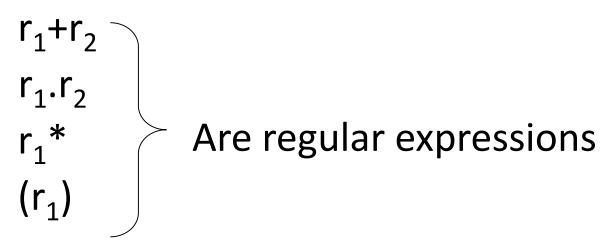
Regular Expressions describe regular languages.

```
(a+b.c)*

describes the language:

\{a, bc\}^* = \{\lambda, a, bc, aa, abc, bca, ...\}
```

- Regular expressions use three operations:
 Union (+), Concatenation (.) and Kleene Star(*).
- 1. \emptyset , λ , $a \in \Sigma$ are all primitive regular expressions.
- 2. Given regular expressions r_1 and r_2 :



3. A string is a regular expression iff it can be derived from primitive regular expressions and a finite number of applications of defined operators.

Languages Associated with Regular Expressions

$$L(\emptyset) = \text{empty set}$$

 $L(\lambda) = \{\lambda\}$
 $L(a) = \{a\}$
If r_1 and r_2 are regular expressions:
 $L(r_1+r_2) = L(r_1) \cup L(r_2)$
 $L(r_1,r_2) = L(r_1).L(r_2)$
 $L(r_1^*) = (L(r_1))^*$

Union of languages

Example: $\{01,111,10\} \cup \{00,01\} = \{01,111,10,00,01\}$

Concatenation of languages L₁ and L₂

```
L_1 \cdot L_2 = \{(x.y) \mid x \in L_1 \text{ and } y \in L_2\}
```

Example: $\{01,111,10\}\{00,01\} = \{0100,0101,11100,11101,1000,1001\}.$

 Kleene Star L* is the set of strings formed by concatenating zero or more strings from L, in any order.

$$L^* = \{\lambda\} \cup L \cup LL \cup LLL \cup ...$$

Example: $\{0,10\}^* = \{\lambda, 0, 10, 00, 010, 100, 1010,...\}$

```
Example: (a+b).a*
L((a+b).a*) = L(a+b).L(a*)
= (L(a) \cup L(b)).(L(a))*
= (\{a\} \cup \{b\})(\{a\})*
= \{a,b\}\{\lambda, a, aa, aaa, ...\}
= \{a, aa, aaa, ..., b, ba, baa,...\}
```

Precedence of Operators

Parentheses can be used whenever needed.

 Oder of precedence from high to low is star * then concatenation, and then union +.

Regular Expression Examples

```
{01}
01
             \{01, 0\}
01 + 0
             \{01, 00\}
0(1+0)
             \{\lambda, 0, 00, 000, ...\}
             \{\lambda, 0, 1, 00, 01, 10, 11, 111, 000, 010, ...\}
(0+1)*
(0+1)*(0+11)
             Any string of 0's and 1's that ends with
```

either a 0 or a 11.

Regular Expression Example

Give a regular expression r such that

L(r) = {
$$w \in \{0,1\}^*$$
: w has at least one pair of consecutive 0s}

$$r = (0+1)* 00 (0+1)*$$

Regular Expression Example

What is the language described by regular expression r = (aa)*(bb)*b

$$L(r) = \{ a^{2n}b^{2m}b: n,m \ge 0 \}$$

Equivalence of Regular Expressions and Regular Languages

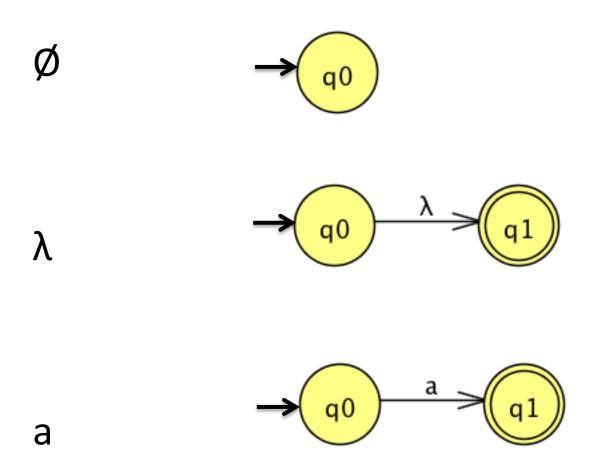
Languages generated — Regular languages by Regular Expressions

Part 1) The set of languages generated by regular expressions is a subset of regular languages.

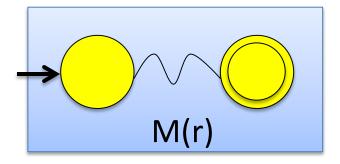
Equivalence of Regular Expressions and Regular Languages – Part 1

Theorem: Let r be a regular expression. There exists some NFA that accepts L(r).

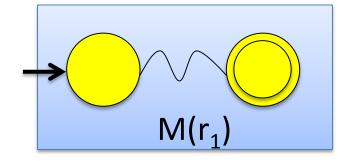
Proof is an induction on the number of operators (+, concatenation, *) in the regular expression.

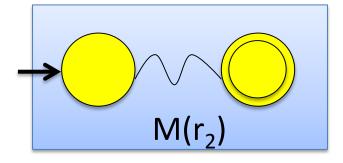


 Suppose this is the representation of an NFA accepting L(r) for regular expression r.

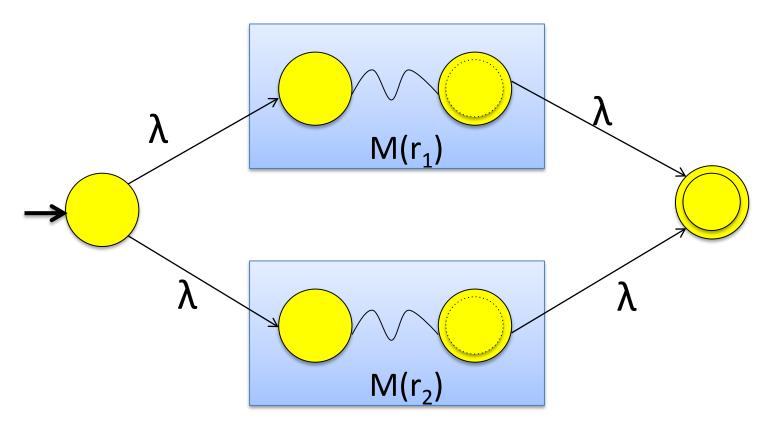


 $r_1 + r_2$

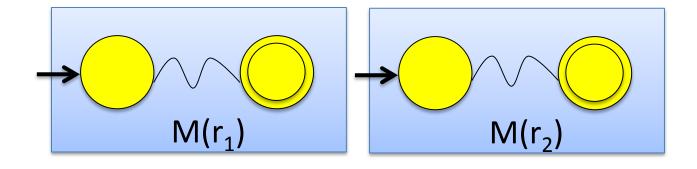




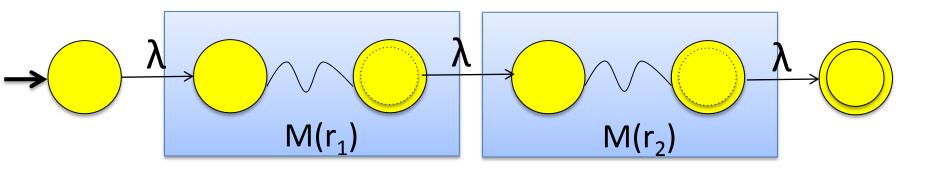
$$r_1 + r_2$$



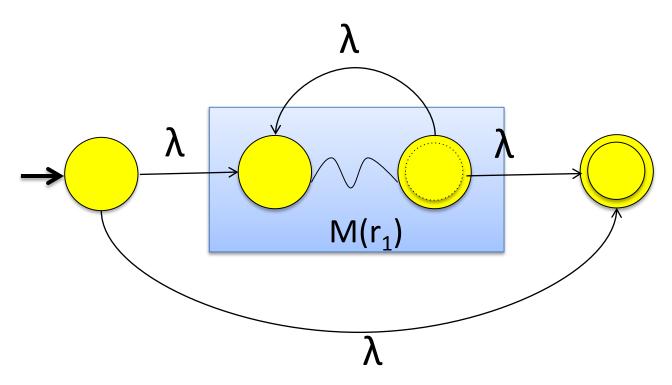
 r_1r_2



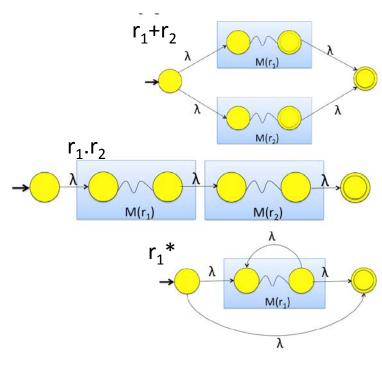
 r_1r_2



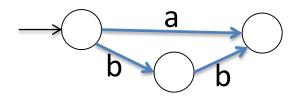
r₁*

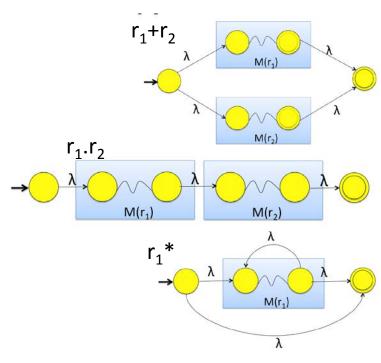


$$r=(a+bb)*(ba*+\lambda)$$

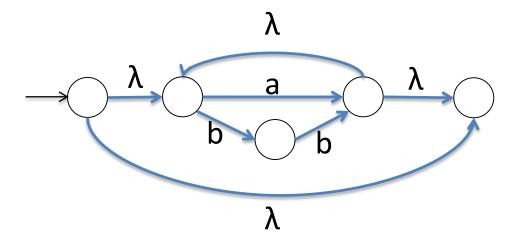


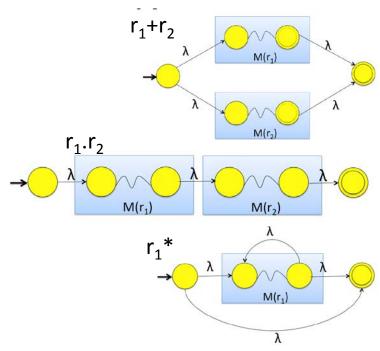
$$r=(a+bb)*(ba*+\lambda)$$



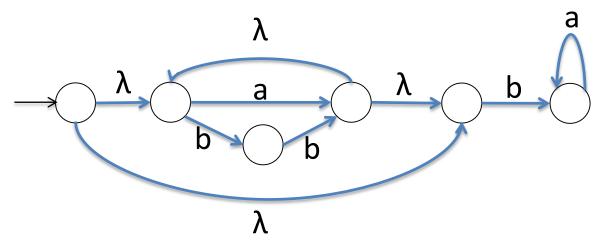


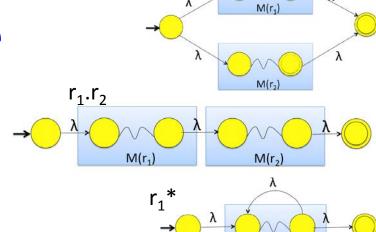
$$r=(a+bb)*(ba*+\lambda)$$



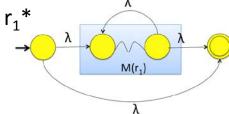


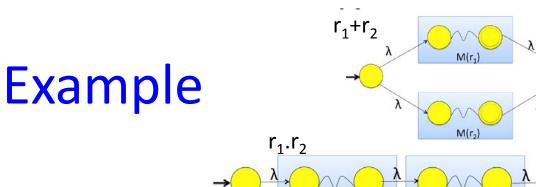
$$r=(a+bb)*(ba*+\lambda)$$





r₁+r₂





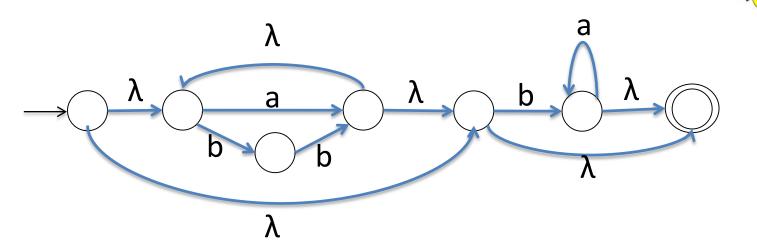
 $M(r_1)$

 $M(r_2)$

M(r₁)

λ

$$r=(a+bb)*(ba*+\lambda)$$



Equivalence of Regular Expressions and Regular Languages

Languages generated by Regular Expressions

Part 2) Regular languages are a subset of the set of languages generated by regular expressions.

 For any regular language L there is a regular expression r with L(r) = L.

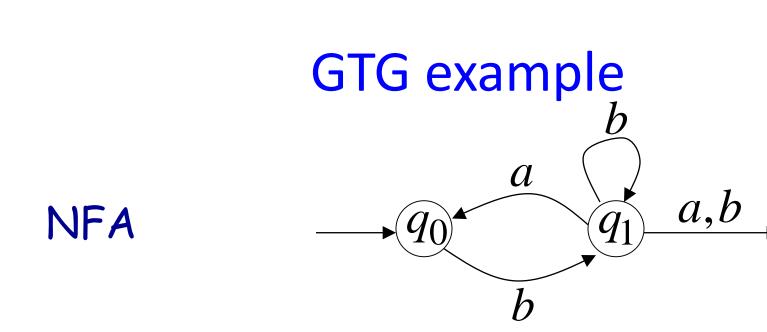
Equivalence of Regular Expressions and Regular Languages – Part 2

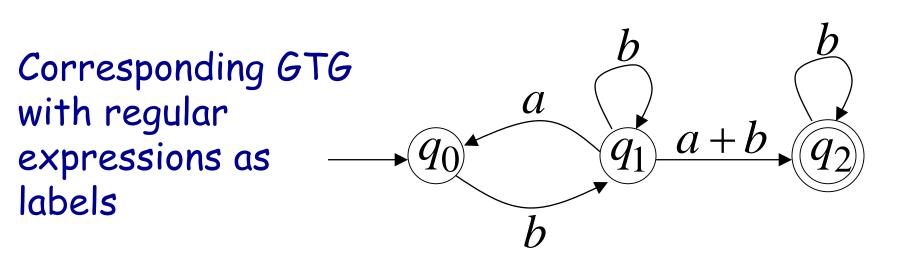
Theorem: Let L be a regular language accepted by an NFA M. Then there exists a regular expression r such that L = L(r).

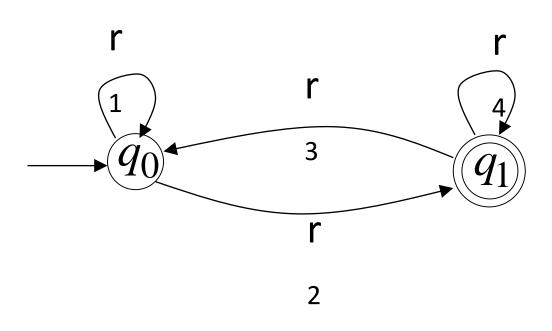
 We will convert an NFA that accepts L to a regular expression.

 We first construct the equivalent Generalized Transition Graph in which transition labels are regular expressions.

Edge in NFA	Edge in GTG
a	a
a,b,c	a+b+c





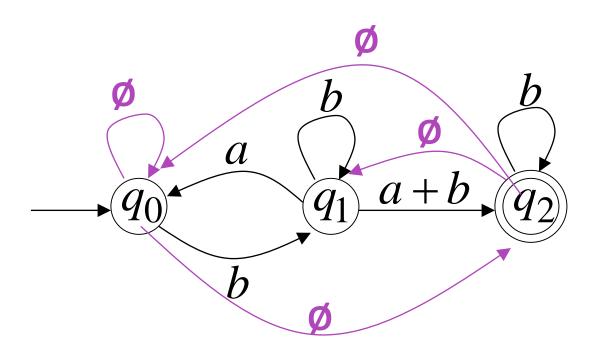


$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

Creating Generalized Transition Graph (GTG)

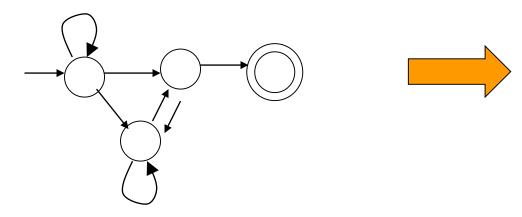
- A complete GTG needs to have edges from every state to every other state.
- A complete GTG of |V| nodes will have |V|² edges.
- If a GTG has some edges missing, we add the missing edges with label Ø.

Creating Generalized Transition Graph (GTG)

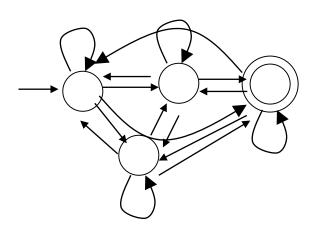


STEP 1

Initial NFA graph

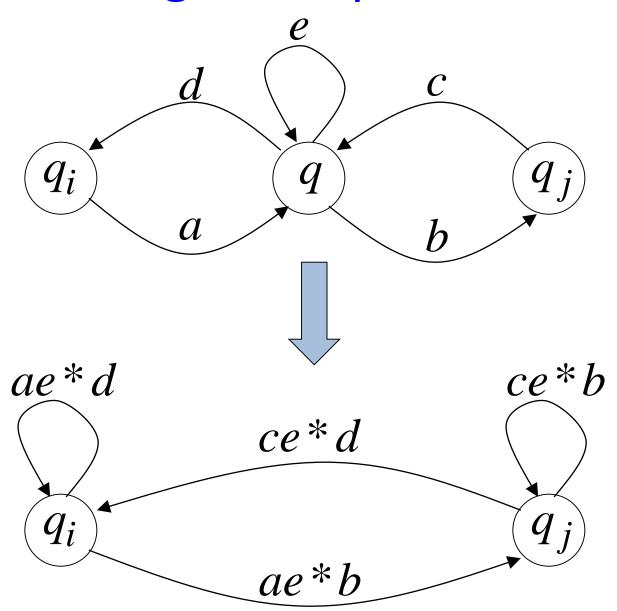


Corresponding GTG with regular expression labels



STEP 2

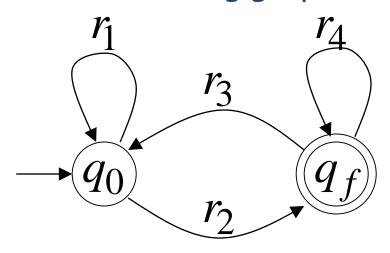
 Keep removing states one at a time from GTG until two states are left only.



STEP 3

 When GTG has two states, its associated regular expression is:

Resulting graph



$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

Convert NFA to Regular Expression STEP 1: Create GTG

 Start with an NFA with a <u>single</u> final state, <u>distinct</u> from its initial state.

• Convert the NFA into a complete generalized transition graph (with expressions on the edges). r_{ij} is the label of the edge q_i to q_j .

Convert NFA to Regular Expression STEP 2: removing states

If the GTG has more than three states, pick an intermediate state q_k to be removed. Introduce new edges for all pairs of states (q_i, q_j), i ≠ k and j ≠ k.

• If you have three states q_i , q_j , and q_k and you want to remove q_k , introduce new edges labeled

$$r_{pq} + r_{pk} r_{kk} r_{kq}$$
 for p=i,j and q =i,j

Convert NFA to Regular Expression STEP 2: removing states

Note that

$$r + \emptyset = r$$

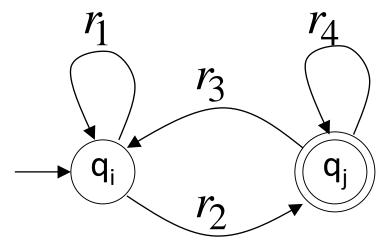
 $r.\emptyset = \emptyset$
 $\emptyset * = \lambda$

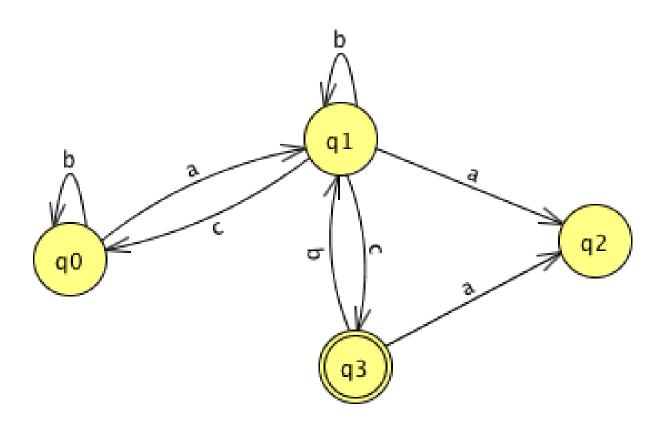
• Then remove node q_k and its associated edges.

• If the GTG has only two states, with q_i as its initial state and q_j its final state, its associated regular expression is

$$r = r_{ii} r_{ij} (r_{jj} + r_{ji} r_{ii} r_{ij})^*$$

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

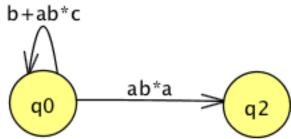




Eliminating q₁

We need to find transitions for all pairs of states (q_i, q_i)

1)
$$(q_0, q_2)$$
: $p=0, q=0$: $b+ab*c$
 $p=0, q=2$: $\emptyset + ab*a = ab*a$
 $p=2, q=0$: $\emptyset + \emptyset b*c = \emptyset + \emptyset = \emptyset$
 $p=2, q=2$: $\emptyset + \emptyset b*a = \emptyset + \emptyset = \emptyset$
 $p=4, q=2$: $\emptyset + \emptyset = \emptyset$

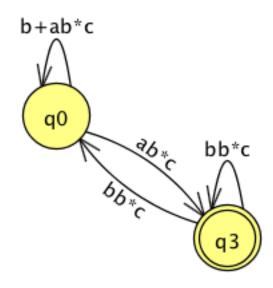


Eliminating q₁

We need to find transitions for all pairs of states (q_i, q_i)

2)
$$(q_0, q_3)$$
: $p=0, q=0$: $b+ab*c$
 $p=0, q=3$: $\emptyset + ab*c = ab*c$
 $p=3, q=0$: $\emptyset + b b*c = bb*c$

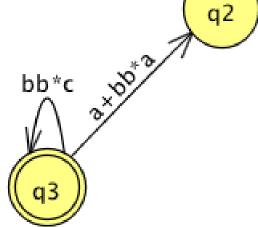
p=3, q=3: Ø +b b*c = bb*c

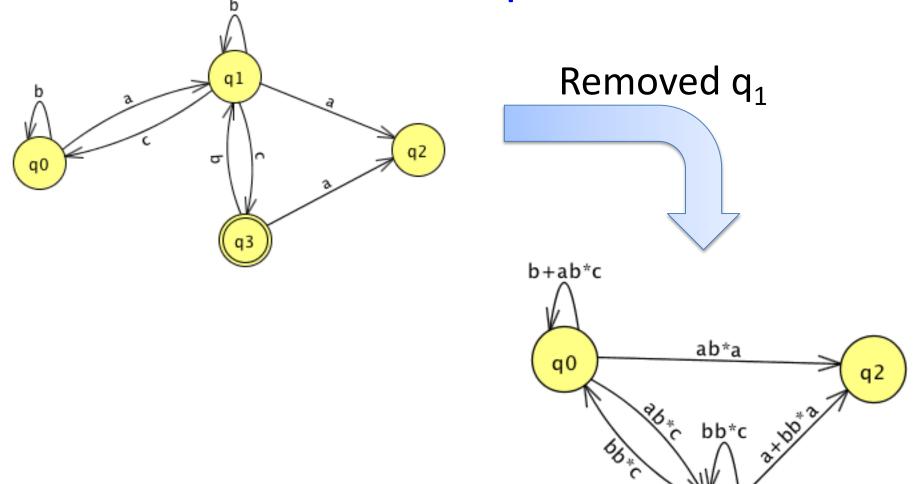


Eliminating q₁

We need to find transitions for all pairs of states (q_i, q_i)

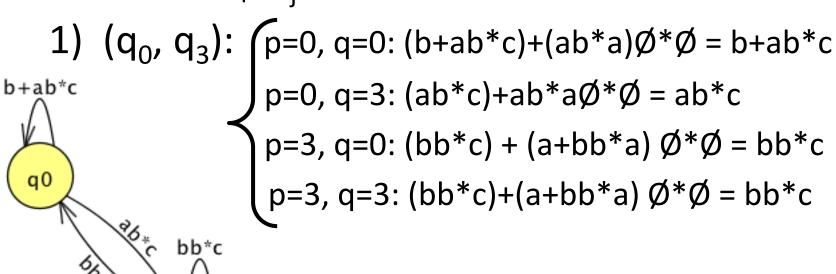
3)
$$(q_2, q_3)$$
: $\begin{cases} p=2, q=2: \emptyset + \emptyset b^*a = \emptyset + \emptyset = \emptyset \\ p=2, q=3: \emptyset + \emptyset b^*c = \emptyset + \emptyset = \emptyset \end{cases}$ $p=3, q=2: a+bb*a$ $p=3, q=3: \emptyset + bb*c = bb*c$

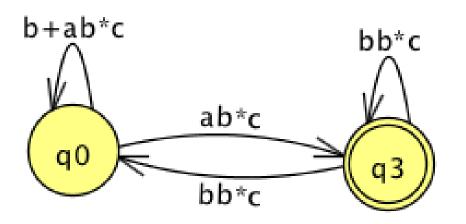




Eliminating q₂

We need to find transitions for all pairs of states (q_i, q_i)





$$r = r_{ii} r_{ij} (r_{jj} + r_{ji} r_{ii} r_{ij})^*$$

$$(b+ab*c)*(ab*c)((bb*c) + (bb*c)(b+ab*c)*ab*c)*$$

Summary

 Each of the three types of automata (DFA, NFA, ∈-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.