
Nondeterministic Finite 
Accepters

COT 4420
Theory of Computation

Lecture 4

Section 2.2, 2.3



Nondeterminism

• A nondeterministic finite automaton can go to 
several states at once. 

• Transitions from one state on an input symbol 
can be to a SET of states. 
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Nondeterministic Finite Accepter

• The main difference with DFA is that
1. From one state with an input symbol there 

might be more than one choice in the 
transition function.

2. From a state there might be no transition 
with an input symbol ( The transition 
function is not total). In that case the 
automaton halts.
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Accepting a String

• An NFA accepts a string 
when there is a computation of the NFA that 

accepts the string

 All the input is consumed and the automaton 
is in a final state
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Rejection example
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Rejection example
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Rejection example
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An NFA rejects a string:

If there is no computation of the NFA that 
accepts the string.
Either:
• All the input is consumed and NFA is in a non 

accepting state
OR

• The input cannot be consumed
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Nondeterministic Finite Accepter (NFA)

• We have one start state. Starting from start 
state, an input is accepted if any sequence of 
choices leads to some final state. 1010 ?

110 ?
10 ?
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This is an example of NFA
Let’s see what are the differences with DFA?
We can go to multiple states from one state and one input symbol ( q1 with 0 goes to q0 and q2)
2) It’s also possible that transition is not defined for some state and input symbol ( because it can go to empty set) delta(q0, 0) is not defined
IT accepts 1010 ( it has two different ways to go)
It does not accept 110
It does accept 10 ( there are two ways to go there)
[[[[The intuition is that the NFA is allowed to guess which way to go, but it is able always to guess right, since all the guesses are followed in parallel and the NFA gets credit for the right guesses, no matter how many wrong guesses it also makes.]]]]




Nondeterministic Finite Accepter (NFA)

• A nondeterministic finite accepter is defined 
by 5-tuple 

M = (Q, Σ, δ, q0, F)

where Q, Σ, q0, and F are defined as DFA, but 

δ: Q × Σ 2Q
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Quintuple
Do you remember what was the definition of delta in DFA?
DFA delta: (Q × Σ  Q)
Now it goes to the power set of Q, it can go to any subset of Q






Extended Transition Function

δ* is defined recursively by:

δ*(q, λ ) = {q}
Let S be δ*(q, w) then:
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This is in fact saying that you first check to see where q goes with w labels and get the set of those states (S)
And then for each of those you will see where they go with a
And the union of those is the answer!



Language of an NFA

• The language of an nfa M is defined as the set 
of all strings accepted by M.

L(M) = { w ∈ Σ *: δ*(q0, w) ∩ F ≠ Ø }



NFA - Example

δ(q0,0)={q0,q3}
δ(q0,1)={q0,q1}
δ(q1,0)=Ø
δ(q1,1)={q2}
δ(q2,0)={q2}
δ(q2,1)={q2}
δ(q3,0)={q4}
δ(q3,1)=Ø
δ(q4,0)={q4}
δ(q4,1)={q4}

Presenter
Presentation Notes
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• It is easier to express languages with NFAs 
than with DFAs

NFA M1 DFA M2

L(M1) = L(M2) = {0}
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So for example if I ask you to give me a DFA for some language, you might come up with different DFA’s and they all might be correct. So if they all accept the same language exactly they will be equivalent.





NFA’s and DFA’s

• Is NFA more powerful than DFA?

• We can show that the classes of DFA’s and NFA’s 
are equally powerful. 

What does equivalence mean?
• Two finite accepters M1 and M2 are said to be 

equivalent if they both accept the same language, 
L(M1) = L(M2)



Equivalence of NFA’s and DFA’s

The set of languages 
accepted by NFAs

The set of languages 
accepted by DFAs OR 
Regular languages

=
Step1) The set of languages accepted by DFAs is 
a subset of the set of languages accepted by 
NFAs. 
This is trivially true since every DFA is an NFA.



Equivalence of NFA’s and DFA’s

Step2) The set of languages accepted by NFAs is 
a subset of the set of languages accepted by 
DFAs. 
 For any NFA there is a DFA that accepts the 

same language. 



Equivalence of DFA’s and NFA’s

• After an NFA reads a string w, we know that it 
must be in one state of a possible set of 
states, e.g. {qi, qj, …, qk}

• In the equivalent DFA after reading w we will 
be in a state labeled {qi, qj, …, qk} 
• The name of the states in our DFA will be sets of states! 

{q0, q1}



Equivalence of DFA’s and NFA’s

• If our NFA has |Q| states, the equivalent DFA 
will have  2|Q| states. 

Theorem: Let L be the language accepted by NFA 
MN = (QN, Σ, δN, q0, FN). Then there exists a DFA 
MD = (QD, Σ, δD, {q0}, FD) such that L = L(MD).



NFA to DFA 

1. Our NFA has a start symbol q0. The start state 
of DFA will be {q0}

2. Repeat these steps until no more edges are 
missing:
– For every DFA state {qi, qj, … qk} that has no outgoing 

edge for some a ∈ Σ
– δN(qi,a) ∪ δN(qj, a) … ∪ δN(qk, a) = {ql, … qn}
– Create a vertex labeled {ql, … qn} if it does not exist
– Add an edge from  {qi, qj, … qk}  to {ql, … qn} with label 

a



NFA to DFA 

3. Every state of DFA whose label contains a 
final state from NFA is identified as a final 
state.



NFA to DFA Example

NFA:
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What is the first step we need to do to convert this to a DFA?
















Proof of Equivalence

Theorem: Let MN be an NFA and MD be an 
equivalent DFA obtained by the procedure. Then 

L(MN) = L(MD)

We need to show that 
if w ∈ L(MN)                          w ∈ L(MD) 



Proof of Equivalence by Induction

• Show by induction on |w| that
δN(q0, w) = δD({q0}, w)

Basis: |w|=0  w = λ
δN(q0, λ) = δD({q0}, λ) = {q0}
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We want to show that if we start with start symbol on our nfa for a string w, we will get to the same set of states that if we start with start symbol in our dfa reading our input w.




Proof of Equivalence by Induction

• Inductive step: Assume it is true for strings shorter 
than w. let w = va. So the induction hypothesis is 
true for v (v is shorter than w).

• Let δN(q0, v) = δD({q0}, v) = S.
• The extended rule for NFA: 
δN(q0, w) =δN(q0, va) =  T = the union over all states p 
in S of δN(p, a)
• By the procedure we discussed we also know that 
δD({q0}, va) is the same set T. 

• Therefore δN(q0, w) = δD({q0}, w) = T.
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Because we know the induction hypothesis holds for x. we can say that deltaN euqal deltaD and it is a set like S
So deltaN q0 , x is a set of states S and deltaD q0 , x is a state called S (those sets)




NFA’s with ε transitions

• We can allow state to state transitions on ε
input. 

• It does not consume the input string. 
• Is ε-NFA more powerful than NFA ?
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NFA Example

input

state

0 1 λ

q0 {q0} {q0,q1} Ø

q1 {q2} Ø {q2}

q2 Ø {q3} Ø
q3 {q3} {q3} Ø

Presenter
Presentation Notes
Suppose I have input 01011



NFA Example

0 1 0 1
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We start at q0



NFA Example

0 1 0 1
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We read 0 and there is only one state to go (q0)



NFA Example

0 1 0 1
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Next we read 1, we have two choices we can stay on q0 or move to q1 so we keep track of where we are at, and the machine is like doing it in parallel or going all of these paths at the same time to see if any of them will halt ( it’s like the macine splits in two to follow each choice)
Here on q1 because there is a lambda it’s like the machine splits again and it can go to state q2 also 



NFA Example

0 1 0 1
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Then we read 0, q0 will stay the same. q1 will move to q2, and from q2 we cannot move with 0, so that process dies. 



NFA Example

0 1 0 1
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Now we are only at q0 and q2. We read the fourth character 1. the one on q0 will remain on q0 and will also go to q1, and because of lamda move we also have one on q2. the one that was on q2 will move to q3 with 1. now we have fingers on all 4 states

At least one of these instances is on final state




ε-closure

• The ε-closure of a state q of the NFA will be 
denoted by E(q).

• E(q) is the set of states that can be reached 
from q following ε-moves, including q itself.

• The ε-closure of a set of states R = union of 
the ε-closure of each state. 

E(R) = { q | q can be reached from R by traveling 
along zero or more ε transitions}
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ε-closure

E(R) = {q | q can be reached from R by traveling 
along zero or more ε transitions}
E(q0) = {q0}
E(q4) = {q1, q2, q3, q4}



Extended Transition Function

Is intended to tell us where we can get from 
a given state following a path labeled by a 
certain string w. 

δ is defined by:
δ(q, λ ) = E(q)
Let S be δ(q, w) then:

˄
˄

˄
˄



Example

δ(q0, λ) = E(q0) = {q0}
δ(q0, 0) = E(δ(q0, 0)) = E({q4}) = {q1, q2, q3, q4}
δ(q0, 01) =  E({q2, q3}) = {q2, q3}

˄
˄
˄
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For 01: we know where we can go with 0 : q1, q2, q3, q4  this is the set S , so now for each of these we see where we go with 1
Delta(q1, 1) = q2  Delta(q2,1) = q3  Delta(q3,1)={} Delta(q4,1) = {}  



Equivalence of NFA and ε-NFA

• Every NFA is an ε-NFA, it just does not have a ε
transition.  

• Theorem: If a language L is accepted by an ε-
NFA ME then L is accepted by an NFA M 
without ε moves.



ε-NFA to NFA

• Given ME=(Q, Σ, δE, q0, F) construct M=(Q, Σ, 
δ’, q0, F’) 
Where F’ = the set of states q such that E(q) 
contains a state of F.
and compute δ’(q, a) as follows:

1. Let S = E(q)
2.

Note that δE(p,a) in ε-NFA is actually  E(δ(p,a))˄

˄



ε-NFA to NFA Example
E(q0) = {q0}
E(q1) = {q1, q3}
E(q2) = {q2}
E(q3) = {q3}
E(q4) = {q4, q1, q2, q3}

E(q5) = {q5}



ε-NFA to NFA Example

δ’(q0, 0)  =>  S = E(q0) = {q0}  
δ’(q0, 0) =  δE(q0, 0) = E(δ(q0,0)) = E(q4) = {q4, q1, 
q2, q3}
δ’(q0, 1) = δE(q0, 1) = E(δ(q0,1)) = E(q1) = {q1,q3}

˄

˄



ε-NFA to NFA Example
E()              Σ E()

q0      :        {q0}                         , 0              {q4}       : {q1,q2,q3,q4}
q0 : {q0}                         ,  1             {q1}       : {q1,q3}
q1      : {q1,q3}                    , 0             Ø : Ø
q1 : {q1,q3}                    , 1             {q2}       : {q2}
q2 : {q2}                         , 0             Ø : Ø
q2 : {q2}                         , 1             {q3}       : {q3}
q3 : {q3}                         , 0             Ø : Ø
q3 : {q3}                         , 1             Ø : Ø
q4 : {q4, q1, q2, q3}       , 0  {q5}       : {q5}
q4 : {q4, q1, q2, q3}       , 1             {q2, q3} : {q2,q3}
q5 : {q5}                         , 0             {q3}       : {q3}
q5     : {q5}                         , 1             Ø : Ø



ε-NFA to NFA Example
E()              Σ E()

q0      :        {q0}                         , 0              {q4}       : {q1,q2,q3,q4}
q0 : {q0}                         ,  1             {q1}       : {q1,q3}
q1      : {q1,q3}                    , 0             Ø : Ø
q1 : {q1,q3}                    , 1             {q2}       : {q2}
q2 : {q2}                         , 0             Ø : Ø
q2 : {q2}                         , 1             {q3}       : {q3}
q3 : {q3}                         , 0             Ø : Ø
q3 : {q3}                         , 1             Ø : Ø
q4 : {q4, q1, q2, q3}       , 0  {q5}       : {q5}
q4 : {q4, q1, q2, q3}       , 1             {q2, q3} : {q2,q3}
q5 : {q5}                         , 0             {q3}       : {q3}
q5     : {q5}                         , 1             Ø : Ø

*

*

*
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We also have to check which ones are going to be final states
Before q3 was our final state so any state that has q3 in its epsilon closure is final  : q1, q3, q4
Red asterix one are going to be the final states




ε-NFA to NFA Example

NFA without ε moves



Summary

• DFA’s, NFA’s, and ε–NFA’s all accept exactly 
the same set of languages: the regular 
languages.

• The NFA types are easier to design and may 
have exponentially fewer states than a DFA.

• DFA’s are much easier to implement on a 
computer.
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