
Deterministic Finite Accepters

COT 4420
Theory of Computation

Lecture 3

Section 2.1

Review Question

• What’s the number of non-empty languages that
contain only strings of a’s and b’s of length n?

a. 2n -1
b. 2n

c.
d.

Answer: d. There are 2n strings of a’s and b’s of length
n. Each of these strings can show up or not show up.

Finite Automaton

• Finite Automaton is a mathematical model that
remembers only a finite amount of information.

• States
• States changes in response to inputs
• Rules that tell how the states change are called

transitions.

Presenter
Presentation Notes

We are going to start with more limitted automatan and move toward more powerful ones that can accept more languages…
Since the number of states is finite, it can only deal with situations in which the information to be stored at any time is bounded. In cases when we need to remember more information about the past finite automatan is not useful.

Finite Automaton

• Used in design and verification of
communication protocols.

• Used for text processing and in text searching
algorithms

• Used in programming languages compilers for
lexical analyzing and parsing.

Simple Example
Automatic door

• The controller is in either of two states: OPEN,
CLOSED

• There are four input possibilities: Front, Rear,
Both, Neither

• The controller moves from state to state
depending on the input it receives

Presenter
Presentation Notes
As a simple example lets consider an automatic door on entrance of supermarket/ swings open when sensing that a person is approaching
Has a pad in frond and one in rear: to hold the door enough for the person to pass and also to not strike someone standing behind it
Front: a person is standing on the pad in front of the door

Simple Example
Automatic door

Presenter
Presentation Notes
If we are in closed state, and someone stands in the front pad it will go to open state
If someone is in the rear pad, or no one is on the rear or front pad or if there are people at both sides of the door, the door will not open

Deterministic Finite Accepter (DFA)

DFA is a 5-tuple M = <Q, Σ, δ, q0, F>

• Q: a finite set of states
• Σ: a finite set of symbols called input alphabet
• δ: transition function (Q × Σ Q)
• q0: the start state (q0 ∈ Q)
• F: a set of final/accepting states (F ⊆ Q)

Presenter
Presentation Notes
As we said before there are automata that can output something. But here we mostly emphasis on automata that accepts a language or accepts or rejects an input

The way it works

• It starts in the start state, and with the
leftmost symbol of the input.

• Each move consumes one input symbol, and
based on the transition functions moves to a
different state.

• When the end of the input string is reached,
the string is accepted if the automaton is in
one of the final states, otherwise it is rejected.

The transition function

• Takes a state (q) and an input symbol (a) and
returns a state (q’)

δ(q, a) = q’

This means that if the automaton is in state q,
and the current input symbol is a, the DFA will
go into state q’.

Presenter
Presentation Notes
We’re going to use the abbreviation DFA for “Deterministic Finite Automaton.” The “deterministic” means that there is a unique transition for every state and input symbol. We’re going to meet nondeterministic automata soon, and there it is possible to transition to many states from one state on one input.

Example

M = < {q0, q1, q2}, {0, 1}, δ, q0, {q2} >

δ(q0, 0) = q0 δ(q1, 0) = q0 δ(q2, 0) = q2

δ(q0, 1) = q1 δ(q1, 1) = q2 δ(q2, 1) = q2

Graph representation

• States = nodes

• Transition function = arc δ(q0, a) = q1

• Start symbol = arrow

• Final state = double circle

Example: String with 11

M = < {q0, q1, q2}, {0, 1}, δ, q0, {q2} >

δ(q0, 0) = q0 δ(q1, 0) = q0 δ(q2, 0) = q2
δ(q0, 1) = q1 δ(q1, 1) = q2 δ(q2, 1) = q2

Alternative Representation: Transition
Table

input

state

0 1

q0 q0 q1

q1 q0 q2

q2 q2 q2

• Columns: current input
symbol

• Rows: current state
• Entries: next state

Deterministic Finite Accepter (DFA)

• The transition function δ needs to be a total
function. It needs to be defined for every
input value in Σ.

• At each step, a unique move is defined for
every input symbol. So in every state, upon
reading the input symbol, the automaton
jumps deterministically to another state.

Extended Transition Function

δ*: Q × Σ*  Q
Example: w = ab

δ(q0, a)=q1 , δ(q1, b)=q2

δ* (q0, ab) = q2

Formally δ* is defined recursively by:
δ*(q, λ)=q
δ*(q, wa)= δ(δ*(q, w),a) w ∈ Σ* , a ∈ Σ

Presenter
Presentation Notes
The second argument of delta* is a string rather than a single symbol

Extended Transition Function

0 1
q0 q0 q1
q1 q0 q2
q2 q2 q2

δ*(q, λ)=q
δ*(q, wa)= δ(δ*(q, w),a)

w ∈ Σ* , a ∈ Σ

δ*(q1, 011) = δ(δ*(q1,01), 1) = δ(δ(δ*(q1, 0),1),1)

=δ(δ(δ(δ*(q1, λ),0),1),1) = δ(δ(δ(q1,0),1),1)

δ(δ(q0,1),1) = δ(q1,1) = q2

q1 q0

q1

Language of a DFA

The language recognized by a dfa M =(Q, Σ, δ, q0, F)
is the set of all strings accepted by M.

L(M) = { w ∈ Σ*: δ*(q0, w) ∈ F}

Find dfa for L ={ anb : n ≥ 0 }

Presenter
Presentation Notes
How do we start?
We want to have as many a’s and we want to end with one b.

So this works now, but in order to have a correct dfa defined we need to have a total transition function
So for every input string we need to make sure we have defined a transition function
Even for the ones that are not accepted by the language

Example

aaababbbaaaa
baabbaaaba
abbabbaab
abbaabba

✔
✗
✗

✔

Presenter
Presentation Notes
See which one of the strings is accepted by this DFA?

Theorem

Theorem: Let M = (Q, Σ, δ, q0, F) be a DFA and GM be
its associated transition graph. For every qi, qj ∈ Q and
w ∈ Σ+, δ*(qi,w) = qj iff there is a walk with label w
from qi to qj in GM.

Induction on the length w
Base case: |w| = 1 δ*(qi,w) = qj obviously there is an
edge (qi, qj) with label w in GM.
Induction: Assume it is true for all strings v with |v|≤n
We want to show it for a w with length n+1: w = va

Presenter
Presentation Notes
We want to show that this graph representation which is more convenient, is not misleading and it’s as valid as the delta transition
For base case |w|=1 if the DFA says there is this tranisiton function, based on the definition of graph construction there is a edge with label w
We want to show it for w with length n+1, consider w = va

Theorem (Cont’d)

Suppose now δ*(qi, v) = qk since |v|=n there
must be a walk in GM labeled v from qi to qk. If
δ*(qi, va) = qj then M must have a transition
δ(qk, a) = qj so by construction GM has an edge
(qk,qj) with label a.

Presenter
Presentation Notes
If δ*(qi, va) = qj based on the definition of extended transition fucntion there must be a transition delta(qk , a) = qj -> because of the construction there must be an edge qk , qj with label a.

Regular Languages

• A language L is called regular if and only if there
exists some deterministic finite accepter M
such that

L = L(M)

So in order to show that a language is regular
we can find a dfa for it. (Note: soon we will see
other ways to describe the regular languages such as
regular expressions and nondeterministic automata)

Presenter
Presentation Notes
We define a class of languages called regular language

Regular Languages

• Regular languages are common and appear in
many context.

• Example: the set of strings that represent
some floating-point number is a regular
language.

Presenter
Presentation Notes
This is one simple example
It may not consider all different variation but it shows how it can be done

Non-regular Languages

• Example: L = { 0n1n : n ≥ 1 }

L = { 01, 0011, 000111, … }

• Example: L = { w | w in {(,)}* and w is
balanced}

L = { (), (()), ()()(()()), … }

Presenter
Presentation Notes
There are also many languages that are not regular
Finite automata cannot count beyond some fixed number. Thus, they cannot do things like check whether they have seen the same number of 0’s as 1’s on their input, or check that parentheses are balanced in an arithmetic expression. For those tasks, we need more powerful mechanisms, such as context-free grammars which we shall meet soon enough.

We will show later how to prove that these languages are not regular

If extra time solve question 2 of section 2.1 page 47

	Deterministic Finite Accepters	
	Review Question
	Finite Automaton
	Finite Automaton
	Simple Example�Automatic door
	Simple Example�Automatic door
	Deterministic Finite Accepter (DFA)
	The way it works
	The transition function
	Example
	Graph representation
	Example: String with 11
	Alternative Representation: Transition Table
	Deterministic Finite Accepter (DFA)
	Extended Transition Function
	Extended Transition Function
	Language of a DFA
	Find dfa for L ={ anb : n ≥ 0 }
	Example
	Theorem
	Theorem (Cont’d)
	Regular Languages
	Regular Languages
	Non-regular Languages

