Lecture 3

Deterministic Finite Accepters

COT 4420
Theory of Computation

Review Question

- What's the number of non-empty languages that contain only strings of a's and b's of length n?
 - a. $2^{n}-1$
 - b. 2ⁿ

 - c. 2^{2^n}

Answer: d. There are 2ⁿ strings of a's and b's of length n. Each of these strings can show up or not show up.

Finite Automaton

- Finite Automaton is a mathematical model that remembers only a finite amount of information.
- States
- States changes in response to inputs
- Rules that tell how the states change are called transitions.

Finite Automaton

 Used in design and verification of communication protocols.

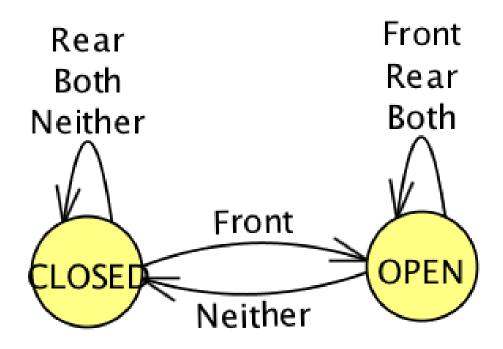
Used for text processing and in text searching algorithms

 Used in programming languages compilers for lexical analyzing and parsing.

Simple Example Automatic door

- The controller is in either of two states: OPEN, CLOSED
- There are four input possibilities: Front, Rear, Both, Neither
- The controller moves from state to state depending on the input it receives

Simple Example Automatic door



Deterministic Finite Accepter (DFA)

DFA is a 5-tuple M =
$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

- Q: a finite set of states
- Σ : a finite set of symbols called input alphabet
- δ : transition function (Q × $\Sigma \rightarrow$ Q)
- q_0 : the start state $(q_0 \in Q)$
- F: a set of final/accepting states (F ⊆ Q)

The way it works

- It starts in the start state, and with the leftmost symbol of the input.
- Each move consumes one input symbol, and based on the transition functions moves to a different state.
- When the end of the input string is reached, the string is accepted if the automaton is in one of the final states, otherwise it is rejected.

The transition function

 Takes a state (q) and an input symbol (a) and returns a state (q')

$$\delta(q, a) = q'$$

This means that if the automaton is in state q, and the current input symbol is a, the DFA will go into state q'.

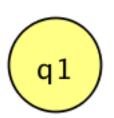
Example

$$M = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

$$\delta(q_0, 0) = q_0$$
 $\delta(q_1, 0) = q_0$ $\delta(q_2, 0) = q_2$ $\delta(q_0, 1) = q_1$ $\delta(q_1, 1) = q_2$ $\delta(q_2, 1) = q_2$

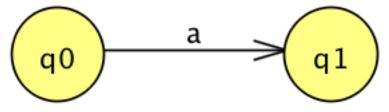
Graph representation

• States = nodes

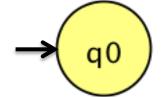


• Transition function = arc

$$\delta(q_0, a) = q_1$$

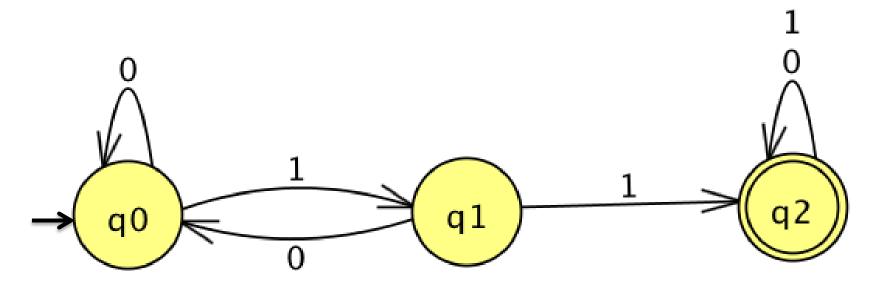


Start symbol = arrow



• Final state = double circle

Example: String with 11



$$M = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

$$\delta(q_0, 0) = q_0$$
 $\delta(q_1, 0) = q_0$ $\delta(q_2, 0) = q_2$ $\delta(q_0, 1) = q_1$ $\delta(q_1, 1) = q_2$ $\delta(q_2, 1) = q_2$

Alternative Representation: Transition Table

input	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_2

- Columns: current input symbol
- Rows: current state
- Entries: next state

Deterministic Finite Accepter (DFA)

• The transition function δ needs to be a total function. It needs to be defined for every input value in Σ .

 At each step, a unique move is defined for every input symbol. So in every state, upon reading the input symbol, the automaton jumps deterministically to another state.

Extended Transition Function

$$\delta^*: Q \times \Sigma^* \rightarrow Q$$
Example: $w = ab$

$$\delta(q_0, a) = q_1 \qquad , \quad \delta(q_1, b) = q_2$$

$$\delta^*(q_0, ab) = q_2$$

Formally δ^* is defined recursively by:

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a) \qquad w \in \Sigma^* \ , \ a \in \Sigma$$

Extended Transition Function

	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_2

$$\delta^*(q, \lambda)=q$$

 $\delta^*(q, wa)=\delta(\delta^*(q, w),a)$
 $w \in \Sigma^*, a \in \Sigma$

$$\delta^*(q_1, 011) = \delta(\delta^*(q_1, 01), 1) = \delta(\delta(\delta^*(q_1, 0), 1), 1)$$

$$= \delta(\delta(\delta(\delta^*(q_1, \lambda), 0), 1), 1) = \delta(\delta(\delta(q_1, 0), 1), 1)$$

$$= \delta(\delta(q_0, 1), 1) = \delta(q_1, 1) = q_2$$

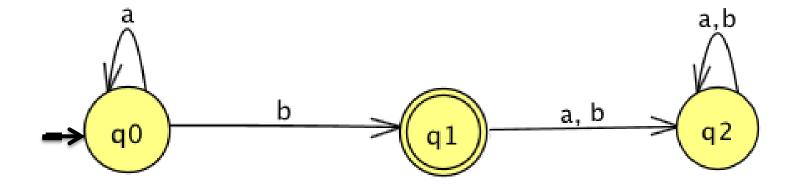
$$= q_1$$

Language of a DFA

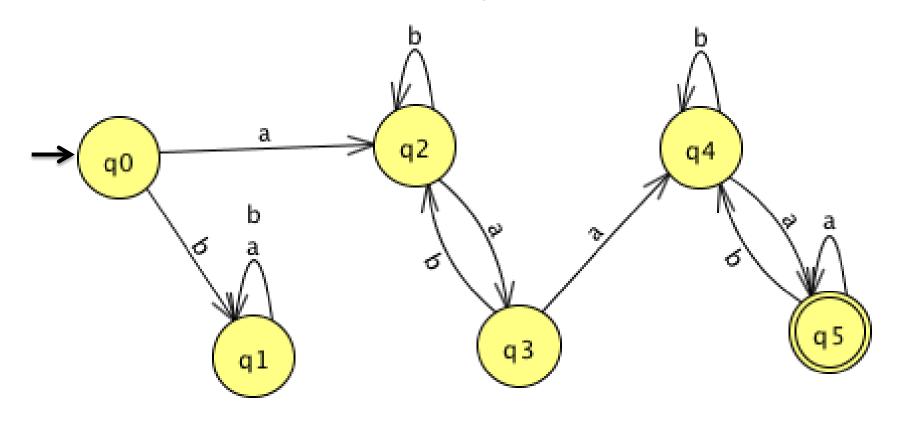
The language recognized by a dfa M =(Q, Σ , δ , q₀, F) is the set of all strings accepted by M.

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Find dfa for $L = \{ a^nb : n \ge 0 \}$



Example



aaababbbaaaa ✓
baabbaaaba X
abbabbaab X
abbaabba ✓

\bigcirc

Theorem

Theorem: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and G_M be its associated transition graph. For every q_i , $q_j \in Q$ and $w \in \Sigma^+$, $\delta^*(q_i, w) = q_j$ iff there is a walk with label w from q_i to q_i in G_M .

Induction on the length w

Base case: $|w| = 1 \delta^*(q_i, w) = q_j$ obviously there is an edge (q_i, q_i) with label w in G_M .

Induction: Assume it is true for all strings v with |v|≤n

We want to show it for a w with length n+1: w = va

Theorem (Cont'd)

Suppose now $\delta^*(q_i, v) = q_k$ since |v| = n there must be a walk in G_M labeled v from q_i to q_k . If $\delta^*(q_i, va) = q_j$ then M must have a transition $\delta(q_k, a) = q_j$ so by construction G_M has an edge (q_k, q_j) with label a.

Regular Languages

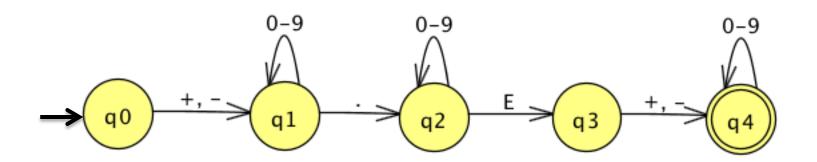
 A language L is called regular if and only if there exists some deterministic finite accepter M such that

$$L = L(M)$$

So in order to show that a language is *regular* we can find a dfa for it. (Note: soon we will see other ways to describe the regular languages such as <u>regular expressions</u> and <u>nondeterministic automata</u>)

Regular Languages

- Regular languages are common and appear in many context.
- Example: the set of strings that represent some floating-point number is a regular language.



Non-regular Languages

• Example: $L = \{ 0^n 1^n : n \ge 1 \}$

$$L = \{ 01, 0011, 000111, ... \}$$

 Example: L = { w | w in {(,)}* and w is balanced}

$$L = \{ (), (()), ()()(()()), ... \}$$