Lecture 2 Languages, Grammars, and Automata

COT 4420

Theory of Computation

Languages Definitions

Any finite, nonempty set of symbols is an alphabet or vocabulary.

```
\Sigma = \{A, B, C, D, ..., Z\}

\Sigma = \{0, 1\}

\Sigma = \{ \Box, \text{ if, then, else} \}
```

 A finite sequence of symbols from the alphabet is called a string or a word or a sentence.

```
w = ALPHA
w = 0100011101
```

Languages Definitions

 Two strings can be concatenated to form another string:

```
v = ALPHA, w = BETA
Concat(v, w) = vw = ALPHABETA
```

 The length of a string w, denoted by |w| is the number of symbols in the string.

$$|ALPHA| = 5$$

• The empty string is denoted by λ or ϵ and its length is 0.

$$|\lambda| = 0$$

\bigcirc

Languages Definitions

- If Σ is the alphabet, Σ^* is the set of all strings over Σ , including the empty string.
- Σ^* is obtained by concatenating zero or more symbols from Σ .

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

Let $\Sigma = \{a, b, c, d\}$, what is Σ^* ? Can you specify a procedure to generate Σ^* ? What is $|\Sigma^*|$?

Languages Definitions

• A language over Σ is a subset of Σ^* .

$$L \subseteq \Sigma^*$$

```
Example: \Sigma = \{a, b\}
L_1 = \{a, aa, aba\} a finite language L_2 = \{a^nb^n : n \ge 1\} an infinite language
```


- 1. Recognition point of view
 - Give a <u>procedure</u> which
 says Yes for sentences in the language, and
 either does not terminate or says No for
 sentences NOT in the language.
 - The procedure recognizes the language

- 2. Generation point of view
 - Systematically generate (enumerate) all sentences of the language

 What's the relationship between these two points of view?

Given a procedure to recognize L, we can give a procedure for generating L.

	,		Ste	ps		
		1	2	3	4	•••
Х	1	1	3	6	10	15
X	2	2	5	9	14	
X	3	4	8	13		
X	4	7	12			
		11				

Given a procedure for generating L, we can give a procedure for recognizing L. what is it?

Definitions

- A language L that can be generated by a procedure is said to be a recursively enumerable set or RE.
 - It accepts w ∈ L, but we do not know what happens for w ∉ L. (It may halt or goes into an infinite loop)

- A language L that can be recognized by an algorithm is said to be recursive or R.
 - Halts on every $w \in \Sigma^+$.

- Recursive sets are a subset of RE.
- Suppose L is recursive, how about \overline{L} ?

Automata

- An automaton is an abstract model of a digital computer.
- Reads the input (string over the alphabet)
- Has a control unit which can be in any of the finite number of internal states and can change state in some defined manner.
- Given an input string, it outputs yes or no meaning that it either accepts the string or rejects it.

Grammars Definitions

- A grammar is a method to describe and generate the sentences of a language.
- A grammar G is defined as a quadruple

$$G = (V, T, S, P)$$

V is a finite set of variables

T is a finite set of terminal symbols

S ∈ V is a special variable called **start symbol**

P is a finite set of production rules of the form

$$x \rightarrow y$$
 where $x \in (V \cup T)^+$, $y \in (V \cup T)^*$

```
S → <noun phrase> <verb phrase> <noun phrase> → <article> <noun> <article> → the <noun> → dog <verb phrase> → is <adjective> <adjective> → happy
```

S => <noun phrase><verb phrase> => <article><noun><verb phrase> => the <noun> is <adjective> => the dog is happy

Grammars Definitions

• We say that w derives z if w = uxv, and z = uyv and $x \rightarrow y \in P$

$$W => Z$$

- If $w_1 => w_2 => ... => w_n$ we say $w_1 =>^* w_n$ (derives in zero or more steps)
- The set of sentential forms is

$$S(G) = \{\alpha \in (V \cup T)^* \mid S = >^* \alpha\}$$

The language generated by grammar G is

$$L(G) = \{ w \in T^* \mid S = >^* w \}$$

$$G = (V, T, P, S)$$
 $V = \{S, B, C\}$ $T = \{a, b, c\}$

$$V = \{S, B, C\}$$

$$T = \{a, b, c\}$$

P:

 $S \rightarrow aSBC$

 $bB \rightarrow bb$

 $S \rightarrow aBC$

 $bC \rightarrow bc$

 $CB \rightarrow BC$

 $cC \rightarrow cc$

 $aB \rightarrow ab$

S =>* aaBCBC sentential form

What is L(G) ? L(G) = { $a^nb^nc^n | n \ge 1$ }

$$G = (\{S\}, \{a, b\}, S, P)$$

Productions:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$L = \{a^nb^n : n \ge 0\}$$

Find a grammar that generates

$$L = \{ a^n b^{2n} : n \ge 0 \}$$

$$S \rightarrow aSbb \mid \lambda$$

Summary

- An automaton recognizes (or accepts) a language
- A grammar generates a language
- For some grammars, it is possible to build an automaton M_G from the grammar G so that M_G recognizes the language L(G) generated by the grammar G.