Simplification of Context-Free Grammars and Normal Forms Lecture 12

COT 4420 Theory of Computation

Chapter 6

Normal Forms for CFGs

- 1. Chomsky Normal Form CNF Productions of form $A \rightarrow BC$ $A, B, C \in V$
	- $A \rightarrow a$ a $\in \mathsf{T}$

- 2. Greibach Normal Form GNF Productions of form
	- $A \rightarrow aX$ $A \in V$, $a \in T$, $X \in V^*$

λ-productions

• Any production of a CFG of the form

 $A \rightarrow \lambda$

is called a λ -production.

• Any variable A for which the derivation

$$
A \Rightarrow^* \lambda
$$

is possible is called nullable.

Removing λ-productions

- Theorem: Given a grammar G with λ not in $L(G)$, the set of nullable variables V_N can be found using an algorithm.
- Proof:
- 1. For all productions $A \rightarrow \lambda$, put A into V_{N} .
- 2. Repeat the following until no new variables are added to V_{N} :

For all productions $B \rightarrow A_1A_2...A_n$ where A_1 , A_2 , ..., A_n are in V_N , put B into V_N .

Removing λ-productions

- Theorem: Let G be any CFG with λ not in L(G), then there exists an equivalent G having no λ productions.
- Algorithm:
- 1. Find the set V_N of all nullable variables.
- 2. For all productions of the form $A \rightarrow x_1x_2...x_m$, m≥1 where x_i ∈ V∪T:

We put this production in the new production set, as well as all those generated by replacing nullable variables with λ in all possible combinations.

Exception: If all x_i 's are nullable, do not include $A \rightarrow \lambda$

Removing λ-productions Example

• Example: $S \rightarrow ABaC$ $A \rightarrow BC$ $B \rightarrow b/\lambda$ $C \rightarrow D|\lambda$ $D \rightarrow d$ Nullable variables V_{N} : A, B, C $S \rightarrow ABaC|BaC|AaC|ABa|$ aC|Ba|Aa|a $A \rightarrow BC|B|C$ $B \rightarrow b$ $C \rightarrow D$

 $D \rightarrow d$

Removing λ-productions Proof

Proof: We need to show that:

1. If
$$
w \neq \lambda
$$
 and $A = >^*_{old}$ w, then $A = >^*_{new}$ w.
2. If $A = >^*_{new}$ w then $w \neq \lambda$ and $A = >^*_{old}$ w.

Proof of (1) : By induction on the number of steps by which A derives w in the old grammar.

Basis: If in the old grammar, A derives w in one step, then A \rightarrow w must be a production. Since $w \neq \lambda$, this production must appear in the new grammar as well. Therefore, $A \Rightarrow^*_{new} w$.

Removing λ-productions Proof – cont'd

Induction step: We assume the theorem is true for derivation steps of fewer than k. We show it for $A \Rightarrow_{old}^* w$ which has k steps.

Let the first step be A => $_{old}$ X₁...X_n, then w can be broken into $w = w_1...w_n$, where $X_i \Rightarrow_{old}^* w_i$, for all i, in fewer than k steps. Because of the induction hypothesis we have: $X_i = >^*_{new} w_i$

The new grammar has a production $A \rightarrow_{new}$ $X_1...X_n$, therefore A derives w in the new grammar.

Removing unit productions

• A unit production is one whose right-hand side has only one variable. $A \rightarrow B$

> Use a **dependency graph**: Whenever the grammar has a unit-production C→D, create an edge (C,D)

- If E =>* F using only unit productions, whenever $F \to \alpha$ is a non-unit production, add $E \to \alpha$.
- Remove unit productions

Removing unit productions Example

New Grammar

 $S \rightarrow Aa$ | bb | bc | a $B \rightarrow bb \mid bc \mid a$ $A \rightarrow a \mid bc \mid bb$

$$
S = >^*B, \quad S = >^*A,
$$

$$
A = >^*B, \quad B = >^*A
$$

Remove useless productions

• Variable A is useful if there exist some $w \in L(G)$ such that:

$$
S \Rightarrow^* xAy \Rightarrow^* w
$$

Otherwise it is useless.

Example 2: $S \rightarrow aSb$ | ab $A \rightarrow bAa$ | ba A is not reachable

Useless productions

The order is important!

- To remove useless productions:(follow these steps)
	- 1. Eliminate variables that derive no terminal

Remove useless productions Example

C is useless, so we remove variable C and its productions.

After step (1), every remaining symbol derives some terminal.

Remove useless productions Example

Construct a **dependency graph** and determine the unreachable variables. (For every rule of the form $C \rightarrow xDy$, there is an edge from C to D.)

B is not reachable!

Cleaning up the grammar

- 1. Eliminate λ-productions
- 2. Eliminate unit productions
- 3. Eliminate useless variables

The order is important because removing λ productions, will introduce new unit productions or useless variables.

Theorem: Let L be a CFL that does not contain λ . Then there exist a context-free grammar that generates L and does not have any useless productions, λ -productions, or unit-productions.

Converting to CNF

- $A \rightarrow BC$ $A \rightarrow a$ $A, B, C \in V$ **a** ∈ **T**
- Theorem: Every context-free language L is generated by a Chomsky Normal Form (CNF) grammar.
- Proof: Let G be a CFG for generating L.

Step1: First clean the grammar G. (remove λ -productions and unit-productions)

Step2: For every production $A \rightarrow x_1x_2...x_n$, if $n = 1$, x_1 is a terminal (since there is no unit productions).

If $n \geq 1$, for every terminal a \in T, introduce a variable B_a. Replace a with B_a and add $B_a \rightarrow a$ to the set of productions.

Step 2 - Example

$A \rightarrow GcDe$ $B_c \rightarrow c$ $A \rightarrow GB_c$ De

Step 2 - Example

Converting to CNF – Cont'd

• Every production is of the form:

$$
A \rightarrow K_1 K_2 K_3 ... K_n
$$

or

$$
A \rightarrow a \hspace{1.5cm} a \in T
$$

Step 3: Break right sides longer than 2 into chain of productions:

$$
A \rightarrow K_1 Z_1
$$

\n
$$
A \rightarrow B C D E \text{ is replaced by}
$$

\n
$$
Z_1 \rightarrow K_2 Z_2
$$

\n
$$
A \rightarrow BF, F \rightarrow CG, \text{ and } G \rightarrow DE.
$$

Greibach Normal Form

GNF

 $A \rightarrow aX$ **A** ∈ **V a** ∈ **T X** ∈ **V***

Theorem: Every context-free language L is generated by a Greibach Normal Form (GNF) grammar.

Lemma1 (theorem 6.1 in textbook): Let G=(V, T, S, P) be a CFG. Suppose P contains a production of the form $A \rightarrow x_1B x_2$. Assume that A and B are different variables and that $B \rightarrow y_1 \mid y_2 \mid ... \mid y_n$ is the set of all productions in P which have B as the left side.

We can then remove $A \rightarrow x_1B x_2$ from P and add $A \rightarrow x_1y_1x_2$ | $x_1y_2x_2$ | ... | $x_1y_2x_2$

And have the same language.

These derive the same sentential forms

 $A \rightarrow ABa$ $B \rightarrow AA \mid b \mid ZC$ A→ AAAa | Aba | AZCa

Lemma2, removing left recursion:

Let G=(V, T, S, P) be a CFG. $A \rightarrow A\alpha_1 |A\alpha_2| ... |A\alpha_n$ be the set of A-productions that have A as the first symbol on the R.H.S. And let $A \rightarrow$ $\beta_1|\beta_2|...|\beta_m$ be all the other A-productions. We can remove the left recursive A-productions and add:

$$
\begin{array}{ll}\nA \rightarrow \beta_i & 1 \le i \le m \\
A \rightarrow \beta_i Z & Z \rightarrow \alpha_i & 1 \le i \le n \\
Z \rightarrow \alpha_i Z\n\end{array}
$$

Converting to GNF

$$
A \rightarrow aX
$$

$$
A \in V
$$

$$
a \in T
$$

$$
X \in V^*
$$

Theorem: Every context-free language L is generated by a Greibach Normal Form (GNF) grammar.

Step1: Rewrite the grammar into Chomsky Normal Form. Step2: Relabel all variables as A_1 , A_2 , ... A_n Step3: Transform all productions into form:

a. $A_i \rightarrow A_j x_j$ i < j and $x_j \in V^*$ or b. $A_i \rightarrow a x_j$ or c. $Z_i \rightarrow A_j x_j$

 $S \rightarrow SS \mid BC$ $B \rightarrow CB \mid a$ $C \rightarrow SB \mid b$

$$
S = A_1
$$
, $B = A_2$, $C = A_3$

$$
A_1 \rightarrow A_1 A_1 \mid A_2 A_3
$$

\n
$$
A_2 \rightarrow A_3 A_2
$$

\n
$$
A_3 \rightarrow A_1 A_2
$$

\n
$$
A_2 \rightarrow a
$$

\n
$$
A_3 \rightarrow b
$$

 $A_1 \rightarrow A_1A_1$ apply lemma 2 to remove left recursion

$$
\begin{array}{ccc}\nA_1 \rightarrow A_2 A_3 & & Z_1 \rightarrow A_1 \\
A_1 \rightarrow A_2 A_3 Z_1 & & Z_1 \rightarrow A_1 Z_1\n\end{array}
$$

$$
Z_1 \rightarrow A_1
$$

$$
Z_1 \rightarrow A_1 Z_1
$$

$$
\begin{array}{c}\n\begin{array}{c}\n\nearrow \text{ (a) } A_1 \rightarrow A_2A_3 \\
\searrow \text{ (a) } A_1 \rightarrow A_2A_3 \\
\searrow \text{ (b) } A_2 \rightarrow A_3A_2 \\
\searrow \text{ (b) } A_2 \rightarrow a \\
\searrow \text{ (b) } A_3 \rightarrow b \\
\searrow \text{ (a) } A_1 \rightarrow A_2A_3Z_1 \\
\searrow \text{ (c) } Z_1 \rightarrow A_1 \\
\searrow \text{ (c) } Z_1 \rightarrow A_1Z_1\n\end{array}\n\end{array}
$$

 $A_3 \rightarrow A_1A_2$ apply lemma 1 to replace A_1

$$
A_3 \rightarrow A_2 A_3 A_2
$$

$$
A_3 \rightarrow A_2 A_3 Z_1 A_2
$$

Apply lemma 1 again $A_3 \rightarrow A_3A_2A_3A_2$ $A_3 \rightarrow aA_3A_2$ $A_3 \rightarrow A_3A_2A_3Z_1A_2$ $A_3 \rightarrow aA_3Z_1A_2$

$$
\begin{array}{l}\n\sqrt{(a) A_1 \rightarrow A_2 A_3} \\
\sqrt{(a) A_2 \rightarrow A_3 A_2} \\
\rightarrow A_3 \rightarrow A_1 A_2 \\
\sqrt{(b) A_2 \rightarrow a} \\
\sqrt{(b) A_3 \rightarrow b} \\
\sqrt{(a) A_1 \rightarrow A_2 A_3 Z_1} \\
\sqrt{(c) Z_1 \rightarrow A_1} \\
\sqrt{(c) Z_1 \rightarrow A_1 Z_1} \\
\rightarrow A_3 \rightarrow A_3 A_2 A_3 A_2 \\
\sqrt{(b) A_3 \rightarrow a A_3 A_2} \\
\sqrt{(b) A_3 \rightarrow a A_3 A_2 A_3 Z_1 A_2} \\
\sqrt{(b) A_3 \rightarrow a A_3 Z_1 A_2}\n\end{array}
$$

 $A_3 \rightarrow A_3A_2A_3A_2$ apply lemma2 to remove recursion $A_3 \rightarrow A_3A_2A_3Z_1A_2$ $\sqrt{}$ (a) $A_1^-\rightarrow A_2^-\rightarrow A_3^+$

$$
A_3 \rightarrow bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2
$$

\n
$$
Z_2 \rightarrow A_2A_3A_2 \mid A_2A_3Z_1A_2
$$

\n
$$
Z_2 \rightarrow A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2
$$

$$
\sqrt{\frac{(a)A_1 \rightarrow A_2A_3}{(a)A_2 \rightarrow A_3A_2}}
$$
\n
$$
\sqrt{\frac{(b)A_2 \rightarrow a}{(b)A_3 \rightarrow b}}
$$
\n
$$
\sqrt{\frac{(a)A_1 \rightarrow A_2A_3Z_1}{(c)Z_1 \rightarrow A_1}}
$$
\n
$$
\sqrt{\frac{(c)Z_1 \rightarrow A_1Z_1}{(c)Z_1 \rightarrow A_1Z_1}}
$$
\n
$$
\sqrt{\frac{(b)A_3 \rightarrow A_3A_2A_3Z_2}{(b)A_3 \rightarrow aA_3A_2}}
$$
\n
$$
\sqrt{\frac{(b)A_3 \rightarrow A_3A_2A_3Z_1A_2}{(b)A_3 \rightarrow aA_3Z_1A_2}}
$$

$$
\begin{array}{l}\n\sqrt{(a)A_{1} + A_{2}A_{3} + A_{2}A_{3}Z_{1}} \\
\sqrt{(a)A_{2} + A_{3}A_{2}} \\
\sqrt{(b)A_{2} + a} \\
\sqrt{(b)A_{3} + b} + a_{3}A_{2} + a_{3}A_{2}A_{3}Z_{1}A_{2} + b_{2}A_{3}A_{2}Z_{2} + a_{3}A_{3}Z_{1}A_{2}Z_{2} \\
\sqrt{(c)Z_{1} + A_{1} + A_{1}Z_{1}} \\
\sqrt{(c)Z_{2} + A_{2}A_{3}A_{2} + A_{2}A_{3}Z_{1}A_{2} + A_{2}A_{3}A_{2}Z_{2} + A_{2}A_{3}Z_{1}A_{2}Z_{2}\n\end{array}
$$

Now everything is in the form of step 3. Note that A_n is in the form of GNF.

Converting to GNF

Step4: For every production of the form A_{n-} $1\rightarrow A_n$ x_n use lemma 1 to convert to correct GNF form. Continue to A_1 .

For all Z-productions, use lemma 1 to convert to correct GNF form.

$$
A_{1} \rightarrow A_{2}A_{3} | A_{2}A_{3}Z_{1}
$$
\n
$$
A_{2} \rightarrow A_{3}A_{2}
$$
\n
$$
\check{A}_{3} \rightarrow b | aA_{3}A_{2} | aA_{3}Z_{1}A_{2} | bZ_{2} | aA_{3}A_{2}Z_{2} | aA_{3}Z_{1}A_{2}Z_{2}
$$
\n
$$
Z_{1} \rightarrow A_{1} | A_{1}Z_{1}
$$
\n
$$
Z_{2} \rightarrow A_{2}A_{3}A_{2} | A_{2}A_{3}Z_{1}A_{2} | A_{2}A_{3}A_{2}Z_{2} | A_{2}A_{3}Z_{1}A_{2}Z_{2}
$$

For
$$
A_2 \rightarrow A_3A_2
$$

we write:
 $A_2 \rightarrow bA_2 \mid aA_3A_2A_2 \mid aA_3Z_1A_2A_2 \mid bZ_2A_2 \mid aA_3A_2Z_2A_2 \mid aA_3Z_1A_2Z_2A_2$

 $A_1 \rightarrow A_2 A_3$ | $A_2 A_3 Z_1$ $\sqrt{A_2} \rightarrow bA_2$ | a $A_3A_2A_2$ | a $A_3Z_1A_2A_2$ | bZ_2A_2 | a $A_3A_2Z_2A_2$ | $aA_3Z_1A_2Z_2A_2$ | a √ $A_3 \rightarrow b$ | a A_3A_2 | a $A_3Z_1A_2$ | b Z_2 | a $A_3A_2Z_2$ | a $A_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1$ | $A_1 Z_1$ $Z_2 \rightarrow A_2A_3A_2$ | $A_2A_3Z_1A_2$ | $A_2A_3A_2Z_2$ | $A_2A_3Z_1A_2Z_2$

For $A_1 \rightarrow A_2A_3 \mid A_2A_3Z_1$ we write:

 $A_1 \rightarrow bA_2A_3$ | $aA_3A_2A_3A_3$ | $aA_3Z_1A_2A_3A_3$ | $bZ_2A_2A_3$ | $aA_3A_2Z_2A_3A_3 \mid aA_3Z_1A_2Z_2A_3A_3 \mid aA_3$ $A_1 \rightarrow bA_2A_3Z_1$ | $aA_3A_2A_3A_3Z_1$ | $aA_3Z_1A_2A_3Z_1$ $|bZ_2A_2A_3Z_1|$ a $A_3A_2Z_2A_2A_3Z_1|$ a $A_3Z_1A_2Z_2A_3A_3Z_1|$ aA_3Z_1

- $\lambda_1 \rightarrow bA_2A_3$ | $aA_3A_2A_2A_3$ | $aA_3Z_1A_2A_2A_3$ | $bZ_2A_2A_3$ | $aA_3A_2A_3A_3$ | $aA_3Z_1A_2Z_3A_3A_3$ | aA_3 | $bA_3A_3Z_1$ | $a_{3}A_{3}A_{2}A_{3}A_{3}A_{1}$ | $a_{4}A_{3}A_{2}A_{3}A_{3}A_{1}$ | $b_{4}A_{2}A_{3}A_{3}A_{3}A_{3}A_{3}A_{3}$ | $aA_3A_2A_3A_3A_3Z_1$ | $aA_3Z_1A_2Z_2A_3A_3Z_1$ | aA_3Z_1
- ✓ A_2 → bA_2 | $aA_3A_2A_2$ | $aA_3Z_1A_2A_2$ | bZ_2A_2 | $aA_3A_2Z_2A_2$ | $aA_3Z_1A_2Z_2A_2$ | a
- √ $A_3 \rightarrow b$ | a A_3A_2 | a $A_3Z_1A_2$ | bZ₂ | a $A_3A_2Z_2$ | a $A_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1$ | A_1Z_1 $Z_2 \rightarrow A_2A_3A_2$ | $A_2A_3Z_1A_2$ | $A_2A_3A_2Z_2$ | $A_2A_3Z_1A_2Z_2$

- $\lambda_1 \rightarrow bA_2A_3$ | $aA_3A_2A_2A_3$ | $aA_3Z_1A_2A_2A_3$ | $bZ_2A_2A_3$ | $aA_3A_2A_3A_3$ | $aA_3Z_1A_2Z_3A_3A_3$ | aA_3 | $bA_3A_3Z_1$ | $a_{3}A_{3}A_{2}A_{3}A_{3}A_{1}$ | $a_{4}A_{3}A_{2}A_{3}A_{3}A_{1}$ | $b_{4}A_{2}A_{3}A_{3}A_{3}A_{3}A_{3}A_{3}$ | $aA_3A_2A_3A_3A_3Z_1$ | $aA_3Z_1A_2Z_2A_3A_3Z_1$ | aA_3Z_1
- ✓ A_2 → bA_2 | $aA_3A_2A_2$ | $aA_3Z_1A_2A_2$ | bZ_2A_2 | $aA_3A_2Z_2A_2$ | $aA_3Z_1A_2Z_2A_2$ | a
- √ $A_3 \rightarrow b$ | a A_3A_2 | a $A_3Z_1A_2$ | bZ₂ | a $A_3A_2Z_2$ | a $A_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1$ | A_1Z_1 $Z_2 \rightarrow A_2A_3A_2$ | $A_2A_3Z_1A_2$ | $A_2A_3A_2Z_2$ | $A_2A_3Z_1A_2Z_2$

$$
\begin{array}{c}\n\downarrow A_1 \rightarrow bA_2A_3 \mid aA_3A_2A_2A_3 \mid aA_3Z_1A_2A_2A_3 \mid bZ_2A_2A_3 \mid \\
\text{aA}_3A_2Z_2A_2A_3 \mid aA_3Z_1A_2Z_2A_2A_3 \mid aA_3 \mid bA_2A_3Z_1 \mid \\
\text{aA}_3A_2A_2A_3Z_1 \mid aA_3Z_1A_2A_2A_3Z_1 \mid bZ_2A_2A_3Z_1 \mid \\
\text{aA}_3A_2Z_2A_2A_3Z_1 \mid aA_3Z_1A_2Z_2A_2A_3Z_1 \mid aA_3Z_1\n\end{array}
$$
\n
$$
\begin{array}{c}\n\downarrow A_2 \\
\downarrow A_3\n\end{array}\n\begin{array}{c}\n\downarrow 1 \\
\downarrow 1 \\
\downarrow 2\n\end{array}
$$
\nUse lemma1 for all Z-productions\n
$$
\begin{array}{c}\n\downarrow 2A_2 \mid \\
\downarrow 2A_2 \mid \\
\downarrow 2A_3 \mid A_2Z_1 \mid A_2Z_1 \\
\downarrow 2A_2A_3A_2 \mid aA_3Z_1A_2 \mid bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2\n\end{array}
$$
\n
$$
\begin{array}{c}\n\downarrow 2A_1 \mid A_1Z_1 \\
\downarrow 2A_2 \mid A_2A_3Z_1A_2 \mid A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2\n\end{array}
$$

The CYK Parser

The CYK membership algorithm

Input:

Grammar G in Chomsky Normal Form String $w = a_1a_2...a_n$

Output: find if $w \in L(G)$

The Algorithm

Define:

$$
w_{ij} : is a substring a_{j}...a_{j}
$$

$$
V_{ij} : \{ A \in V : A \Rightarrow^* w_{ij} \}
$$

 $A \in V_{ii}$ if and only if G contains $A \rightarrow a_i$ $A \in V_{ij}$ if and only if G contains $A \rightarrow BC$, and $B \in V_{ik}$, and $C \in V_{k+1i}$, $(k \in \{i, i+1, ..., j-1\})$

The Algorithm

- 1. Compute V_{11} , V_{22} , ..., V_{nn}
- 2. Compute V_{12} , V_{23} , ... , $V_{n-1,n}$
- 3. Compute V_{13} , V_{24} ,...., $V_{n-2,n}$
- 4. And so on….

If $S \in V_{1n}$ then $w \in L(G)$, otherwise $w \notin L(G)$.

- Grammar G and string w is given:
- $S \rightarrow AB$ w = aabbb
- $A \rightarrow BB$
- $A \rightarrow a$
- $B \rightarrow AB$
- $B \rightarrow b$

1. Compute V_{11} , V_{22} , ..., V_{55} Note that: $A \in V_{ii}$ if and only if G contains $A \rightarrow a_{ii}$

 V_{11} = ? Is there a rule that directly derives a_1 ? $V_{11} = {A}$

 V_{22} = ? Is there a rule that directly derives a₂ ? $V_{22} = {A}$

 V_{33} = ? Is there a rule that directly derives a_3 ? $V_{33} = {B}$

 $V_{AA} = \{B\}$, $V_{55} = \{B\}$

2. Compute V_{12} , V_{23} , ... V_{45} Note that: $A \in V_{ii}$ if and only if G contains $A \rightarrow$ BC, and $B \in V_{ik}$, and $C \in V_{k+1i}$ for all k's $V_{12} = \{\}$ $V_{23} = \{S, B\}$ $V_{34} = \{A\}$ $V_{45} = \{A\}$ V_{34} = ? { A : A \rightarrow BC, B $\in V_{33}$, C $\in V_{44}$ } Variable \rightarrow BB V_{45} = ? { A : A \rightarrow BC, B \in V₄₄, C \in V₅₅ } Variable $\stackrel{?}{\rightarrow}$ BB $V_{23} = ?$ { $A : A \rightarrow BC$, $B \in V_{22}$, $C \in V_{33}$ } Variable $\stackrel{?}{\rightarrow}$ AB $V_{12} = ?$ { $A: A \rightarrow BC$, $B \in V_{11}$, $C \in V_{22}$ } Variable \rightarrow AA

- 3. Compute V_{13} , V_{24} , V_{35}
- $V_{13} = ?$ { A : A \rightarrow BC, B $\in V_{11}$, C $\in V_{23}$ } Variable \rightarrow AS, AB $\{A: A \rightarrow BC, BEV_{12}, C \in V_{33}\}$?

?

?

?

 $V_{13} = \{S, B\}$ $V_{24} = ?$ { A : A \rightarrow BC, B $\in V_{22}$, C $\in V_{34}$ } Variable $\frac{1}{2}$ AA ${A : A \rightarrow BC, BEV_{23}, C \in V_{44}}$ Variable \rightarrow SB, BB $V_{24} = \{A\}$ $V_{35} = ?$ { A : A \rightarrow BC, B $\in V_{33}$, C $\in V_{45}$ } Variable \rightarrow BA

 ${A : A \rightarrow BC, B \in V_{34}, C \in V_{55}}$ Variable $\rightarrow AB$? $V_{35} = \{S, B\}$

4. Compute V_{14} , V_{25}

 $V_{14} = \{A\}$ $V_{14} = ?$ { A : A \rightarrow BC, B $\in V_{11}$, C $\in V_{24}$ } Variable \rightarrow AA $\{A: A \rightarrow BC, BEV_{12}, C \in V_{34}\}$ ${A : A \rightarrow BC, BEV_{13}, C \in V_{44}}$ Variable \rightarrow SB, BB ? ?

 $V_{25} = ?$ { A : A \rightarrow BC, B $\in V_{22}$, C $\in V_{35}$ } Variable \rightarrow AS, AB ${A : A \rightarrow BC, B \in V_{23}, C \in V_{45}}$ Variable \Rightarrow SA, BA ${A : A \rightarrow BC, BEV_{24}, C \in V_{55}}$ Variable $\rightarrow AB$? ? ?

 $V_{25} = \{S, B\}$

5. Compute V_{15}

 $V_{15} = ?$ { A : A \rightarrow BC, B \in V₁₁, C \in V₂₅ } Variable \rightarrow AS, AB $\{A: A \rightarrow BC, BEV_{12}, C \in V_{35}\}$ ${A : A \rightarrow BC, B \in V_{13}, C \in V_{45}}$ Variable \Rightarrow SA, BA ${ A : A \rightarrow BC, BEV_{1A}, C \in V_{55} }$ Variable $\rightarrow AB$? ? <u>م</u>

 $V_{15} = \{S, B\}$

 $S \in V_{15}$, therefore w = aabbb $\in L(G)$

Approximate time complexity:

 $n(n-1)/2$

 $O(|w|^2 + |w|) = O(|w|^3)$ Number of V_{ii} 's to be computed Number of evaluations in each V_{ii} If $|w| = n$ at most n