Lecture 12
Simplification of Context-Free
Grammars and Normal Forms

COT 4420
Theory of Computation

Chapter 6

Normal Forms for CFGs

1. Chomsky Normal Form CNF

Productions of form
A — BC A B CeV
A—a acT

2. Greibach Normal Form GNF

Productions of form
A — aX AcV, aecTXeV*

A-productions

 Any production of a CFG of the form
A— A
is called a A-production.

* Any variable A for which the derivation
A=>%)
is possible is called nullable.

Removing A-productions

e Theorem: Given a grammar G with A not in
L(G) , the set of nullable variables V,, can be
found using an algorithm.

* Proof:
1. For all productions A — A, put A into V.

2. Repeat the following until no new variables
are added to V:

For all productions B — A/A,..A, where
A, A,, ..., A areinV,, put B into V.

Removing A-productions

e Theorem: Let G be any CFG with A not in L(G),
then there exists an equivalent G having no A-
productions.

e Algorithm:
1. Find the set V|, of all nullable variables.
2. For all productions of the form A — x;x,...X,,

m=>1 where x, € VUT:

We put this production in the new production set, as
well as all those generated by replacing nullable
variables with A in all possible combinations.

Exception: If all xs are nullable, do not include A— A

Removing A-productions

Example
e Example: Nullable variables V: A, B, C
S — ABaC
A — BC S — ABaC|BaC|AaC|ABal|
B—b|A aC|Ba|Aala
C—DJ|A A — BC|B|C
D—d B—>b

C—o>D

D—>d

Removing A-productions
Proof

Proof: We need to show that:
If w=Aand A=>*_,w, then A=>* w.
2. IfA=>* _ wthenw=AandA=>*_,w.

Proof of By induction on the number of steps by
which A dérives w in the old grammar.

Basis: If in the old grammar, A derives w in one step,
then A — w must be a production. Since w # A , this
production must appear in the new grammar as
well. Therefore, A =>* _ w.

Removing A-productions
Proof — cont’d

Induction step: We assume the theorem is true
for derivation steps of fewer than k. We show it
for A=>*_ ,w which has k steps.

Let the first step be A =>_, X,...X,, then w can be
broken into w = w,...w_, where X. =>* . w,, for all
|, in fewer than k steps. Because of the induction
hypothesis we have: X, =>* _ w,

The new grammar has a production A —__,
X,...X,, therefore A derives w in the new grammar.

Removing unit productions

 Aunit production is one whose right-hand side

has only one variable. A— B
s

Use a dependency graph: Whenever the

grammar has a unit-production C—D, create an
L edge (C,D))

e |f E=>*F using only unit productions, whenever
- — oL is a non-unit production, add E — o .

e Remove unit productions

Removing unit productions

Example
Original Grammar
B—>A|bb /@>
A—al|bc|B @
New Grammar S=>*B, S=>*A,

S—>Aa|bb]| bc|a

A=>*B, B=>*A
B—>bb|bc|a
A—a|bc|bb

Remove useless productions

e Variable A is useful if there exist some w € L(G)
such that:

S =>* xAy =>* w

Otherwise it is useless.

Example 1: Example 2:
S— aSb|ab | A S— aSb | ab
A — bAa A — bAa | ba

A does not .

, , A Is not
derive terminal

. reachable
strings

Useless productions

The order is
important!

 To remove useless productions:(follow these
steps)

1. Eliminate variables that derive no terminal
S — aAb A — bAa A is useless

2. Eliminate unreachable variables B is not

S— AC C > aAb B— Ab reachable

Remove useless productions
Example

S— aS | A | &

A— a

B— aa

Cac
C is useless, so we remove variable C and its
productions.

After step (1), every remaining symbol derives
some terminal.

Remove useless productions
Example

S—aS|A L V=1{S, A, B}

A—a
B — aa
\

®

Construct a dependency graph and determine
the unreachable variables. (For every rule of the
form C — xDy, there is an edge from Cto D.)

B is not reachable!

Cleaning up the grammar

The order is important

1. Eliminate A-productions because removing A-
. . . . productions, will
2. Eliminate unit productions introduce new unit
- . . productions or useless
3. Eliminate useless variables variables.

Theorem: Let L be a CFL that does not contain A.
Then there exist a context-free grammar that
generates L and does not have any useless
productions, A-productions, or unit-productions.

A > BC
A—>a

Converting to CNF

A,B,CeV
aeT

e Theorem: Every context-free language L is

generated by a Chomsky Normal Form (CNF)
grammar.

* Proof: Let G be a CFG for generating L.

Stepl: First clean the grammar G. (remove A-productions
and unit-productions)

Step2: For every production A = x,X,..X,, ifn=1, x; is a
terminal (since there is no unit productlons)

If n>1, for every terminal a € T, introduce a variable B,.
Replace a with B, and add B,— a to the set of productions.

Step 2 - Example

A — GcDe

$

A — GB_De
B.—>¢c

Step 2 - Example

A — GcDe

$

A — GB_DB,
B.—>¢c

B, —>e

Converting to CNF — Cont’d

e Every production is of the form:

A— KK, Ky ... K A KeV
or
A—a aeT

Step 3: Break right sides longer than 2 into chain of
productions:
A—>K, Z, A -> BCDE is replaced by

Z, > K, Z, A -> BF, F-> CG, and G -> DE.

Greibach Normal Form

A - aX

GNF

aeT
X eV*

Theorem: Every context-free language L is
generated by a Greibach Normal Form (GNF)
grammar.

Lemmmal (theorem 6.1 in textbook): Let G=(V, T,
S, P) be a CFG. Suppose P contains a production
of the form A — x,B x,. Assume that A and B are

different variables andthat B—> vy, |y, | ... | v,
is the set of all productions in P which have B as

the left side.

We can then remove A — x,B x, from P and add
A — XY Xy | X1¥%5 || XY %5

And have the same language.

These derive the same sentential forms

A— ABa

A— AAAa | Aba | AZCa
B> AA | b | ZC — | |

Llemmaz2, removing left recursion:

et G=(V, T, S, P) be a CFG. A — Ao, |Aa, |...|Aa,
oe the set of A-productions that have A as the
first symbol on the R.H.S. And let A —>
B.IB,|...]1B,, be all the other A-productions.

We can remove the left recursive A-productions
and add:

A—B, 1<i<m /=0, 1<i<n
A—>B.Z —>a./

g

A, /y

A - aX

Converting to GNF A=V

aeT
X eV*

Theorem: Every context-free language L is generated by
a Greibach Normal Form (GNF) grammar.

Stepl: Rewrite the grammar into Chomsky Normal Form.
Step2: Relabel all variables as A, A,, ... A,
Step3: Transform all productions into form:
a. A—>Ax i<jandx e V* or
b. A—>ax or
C. Z—>AX

Converting to GNF - Example

S —>SS | BC
B—>CB]|a

C—>SB|b S=A,,B=A, C=A,

AL = AA | AA;
A, — AZA,

A; — A/A,

A, —a

A, —>Db

Converting to GNF - Example

A, — A;A; apply lemma 2 to remove left recursion

—Ar—Ahy
AL — AA, Z,—A, /@ AR,

v (@) Ay, => AjA,

v (b) A, —> a

V() A;—>Db

V(@) Ay > AAZ
Vi) Z—A,

Vi Zi—>A

Converting to GNF - Example

A; = A/A, apply lemma 1 to replace A,
V(@) A;—>AA

A; >AAA, V@ A, > AJA,
A; >AAZA, A=A
vb)A, —>a
v (b)A; —> b
V@A = AAZ,
: V() L;—>A;
Apply lemma 1 again 10 Z,—AZ,
Az >A3AAA, A, S>AAAA,

A; —aAZ A, vV () Ay >aAZ A,

Converting to GNF - Example

A; =>AAAA,
A; >AAAZA,

A, > bZ, [aAAZ,[aAZ,AZ,
Z,— AAA, | AAZA,
Z,— AAAZ | AAZAZ,

apply lemma?2 to remove recursion

V(@ A—>AA

V@A, = AA,

VA, — a

V) A; > b

V@A > AAZ,

Vi —>A,

v (c) Zl—>A121
A=Az Az Ay

v (b) A; —>aAjA,
Ag—rAghAgEA;

v (b) Ay —aA3Z A,

Converting to GNF - Example

TAASAA TAAZ

V@A, > AjA,

v (b)A, —> a

/A, = b | aAA, | aAZ,A, |bZ, | aAAZ, | aAZ,AZ,
V9 Z—A, |AZ,

V2= AAA; | AAZIA, | AASAZ, | AASZIAZ,

Now everything is in the form of step 3. Note
that A is in the form of GNF.

Converting to GNF

Step4: For every production of the form A,
,—>A, X, use lemma 1 to convert to correct GNF
form. Continue to A,.

For all Z-productions, use lemma 1 to convert to
correct GNF form.

Example —Cont’d
A —AA | AAZ
A, > AJA,
v A,—>a
v A;—> b | aAA, | aAZ/A, |bZ, | aAAZ, | aAZ,ALZ,
Z,—A; |AZ,
Z,—> AAA, | AAZA, | AAAZ, | AAZAZ,

For A, —> AjA,

we write:

A, = bA, | aA;AA, | aAZ,ALA, |bZA, |
aAAZA, | aAZ,AZA,

Example —Cont’d
A —>AA | AJAZ,
v A, > bA, | aAAA, | aAZ,AA, |BZA, | aAAZA, |
aA;Z,AZA, | a
v A;—> b | aAjA, | aAZ/A, |bZ, | aAAZ, | aAZ,ALZ,
Z,—A; |AZ,
Z,— AAA, | ALALZ A, | ALAAZ | ALAZAZ,
For A, > AA; | ALAZ,
we write:
A, — bAA; | aAAALAS | aAZ,ALALA; | BZ,AA,
aAAZAA; | AAZALZALA, | aA,
A, >bAAZ, | aAAAALZL | aAZAAAZ,
|bZ,A,AZ, | aAAZ,AAZ, | aAZALZ,AALZ, |
aA;Z,

Example —Cont’d

A, S bBAA, [aAAAA, TaAZAAA, [BZAA,]
aAAZAA, | aAZ,AZAA, | aA, | bAAZ, |
aAAAAZ, | aAZ,AAAZ, |bZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > bA, | aAALA, | aAZ,AA, |bZA, | aAAZA, |
aAZ,AZ,A, | a

v A, b | aAA, | aAZA, |bZ, | aAAZ, | aAZ,AZ,

Z,—>A; |AZ,
2, PASA; | AASZIA, | AAAZ, | AAZIAZ,

Example —Cont’d

A, S bBAA, [aAAAA, TaAZAAA, [BZAA,]
aAAZAA, | aAZ,AZAA, | aA, | bAAZ, |
aAAAAZ, | aAZ,AAAZ, |bZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > bA, | aAALA, | aAZ,AA, |bZA, | aAAZA, |
aAZ,AZ,A, | a

v A, b | aAA, | aAZA, |bZ, | aAAZ, | aAZ,AZ,

Z,—>A; |AZ,
2, PASA; | AASZIA, | AAAZ, | AAZIAZ,

Example —Cont’d

v AL DAA; [aAsAAA; | aAZ1AAA; [DZ,AA;
aAAZAA, | aAZ,AZAA, | aA, | bAALZ, |
aAAAAZ, | aAZAMAZ, |BZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > b | aAA, | aAZ,A, |bZ, | aAAZ, | aAZ,AZ,

Z,—A |AZ,
Z,— AAA, | ALALZ A, | AAAZ | AAZAZ,

The CYK Parser

The CYK membership algorithm

Input:
Grammar G in Chomsky Normal Form

String w = a,a,....a,

Output:
find if w € L(G)

The Algorithm

Define:
w;; : is @ substring a....a;
Vij:{Ae V:A=>*Wij

A € V. if and only if G contains A = a.
A € V; if and only if G contains A = BC, and
BeV,,andCeV,,,, (kefii+l, .., j-1})

The Algorithm

Compute V.1, V5, ... V..
Compute Vy,, Vo, .. V14
Compute Vi3, Voo, Vi s

W

And so on....

If S e V,, then w € L(G), otherwise w ¢ L(G).

Example

Grammar G and string w is given:
S—> AB w = aabbb

A - BB

A a

B> AB

B>b

Example

1. Compute V,;, Vo5, ... ,Vee
Note that: A € V. if and only if G contains A = a,

V., =7? Is there arule that directly derives a, ?
Vi, = 1A}

V,, =? Is there a rule that directly derives a, ?
Vy, = 1A

V35 =7 Is there a rule that directly derives a; ?
Vi3 = 1B}

Vg =1B}, Vs5=1B}

Example

2. Compute V,,, V3, ... Ve

Note that: A € V;;if and only if G contains A 2>
BC,and B € V,, , and C € V,,;for all k’s

V,=?{A:A>BC,BeV,;,CeV,} Variable?éAA
Vi, = {} 5
V,;=?{A:A> BC,BeV,,,CeV,;} Variable > AB
V., = {S, B} :
Vy,=?{A:A> BC,BeV,;,CeV,} Variable > BB
Vi, = 1A} ,
V,.=?{A:A>BC,BeV,,,CeV..} Variable > BB
Vis = 1A}

Example

3. Compute V5, V,,,Vse

?
V,,=?{A:A> BC,BeV,,,CeV,,} Variable > AS, AB
{A:A>B(CBeV,,CeVy}

Vy, = {S, B)

V,,=?{A:A> BC,BeV,,,CeV,,} Variable ?? AA
{A:A->BC BeV,;,CeV,} Variable > SB, BB

Vys = 1A} 3

Vis=? {A:A> BC,BeVy,, C €V, } Variable > BA
{A:A->BC,BeV,,,Ce V. } Variable > AB

Vs = {S, B}

Example

4. Compute V,,, V.

?
V,=?{A:A-> BC,BeV,,,CeV,,} Variable 2 AA
{A:A>>BCBeV,,CeV,,}
{A:A—>BC BeV,,CeV,} Variable 9 SB, BB

=1{A}

?

Vys=?{A:A> BC,BeV,,, C eV, } Variable > AS, AB

{A:A->BC,BeV,;,CeV,} Variable 2> SA, BA
{A:A—>BC BeV,,, Ce V. } Variable > AB

=1{S, B}

Example

5. Compute V.

V,.=?{A:A> BC,BeV,,,C eV, } Variable > AS, AB
{A:A>BC,BeV,,,CeV,}
{A:A—>BC BeV,,CeV,} Variable ? SA, BA
{A:A->BC, BeV,, Ce V. } Variable > AB

=1{S, B}

S € V., therefore w = aabbb € L(G)

(A}

1A}

1B}

1B}

1B}

a a b b b
{A} i
{A} | 1S, B}
Bl | 1A}
Bl | 1A}

1B}

a a b b b
{A} it | 1S B}
(A} | S, B | 1A}
B} | 1A} | 1S, B}
Bl | 1A}

1B}

a a b b b
{A} it |5 Br| 1A} | 1S, B}
(A} | {S, B} | 1A} | {5 B;
B} | 1A} | 1S, B}

Bl | 1A}

1B}

Approximate time complexity:

o(wl® - |wl)=0(w[)

Number of Number of
V;/'s to be evaluations in
computed each V;

If |[w| =n at most n

n(n-1)/2

	Simplification of Context-Free Grammars and Normal Forms
	Normal Forms for CFGs
	-productions
	Removing -productions
	Removing -productions
	Removing -productions �Example
	Removing -productions �Proof
	Removing -productions �Proof – cont’d
	Removing unit productions
	Removing unit productions�Example
	Remove useless productions
	Useless productions
	Remove useless productions�Example
	Remove useless productions�Example
	Cleaning up the grammar
	Converting to CNF
	Step 2 - Example
	Step 2 - Example
	Converting to CNF – Cont’d
	Greibach Normal Form
	GNF
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Converting to GNF
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	The CYK Parser
	The CYK membership algorithm
	The Algorithm
	The Algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

