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Normal Forms for CFGs

1. Chomsky Normal Form      CNF
Productions of form 
A → BC A, B, C ∈ V
A → a a ∈ T

2. Greibach Normal Form GNF
Productions of form 
A → aX A ∈ V,   a ∈ T, X ∈ V*



λ-productions

• Any production of a CFG of the form 
A →λ

is called a λ-production. 

• Any variable A for which the derivation 
A =>* λ

is possible is called nullable. 



Removing λ-productions

• Theorem: Given a grammar G with λ not in 
L(G) , the set of nullable variables VN can be 
found using an algorithm.

• Proof: 
1. For all productions A →λ, put A into VN.
2. Repeat the following until no new variables 

are added to VN:
For all productions    B → A1A2…An where
A1 , A2 , … , An are in VN, put B into VN. 



Removing λ-productions

• Theorem: Let G be any CFG with λ not in L(G), 
then there exists an equivalent G having no λ-
productions.

• Algorithm: 
1. Find the set VN of all nullable variables.
2. For all productions of the form A → x1x2…xm, 

m≥1 where xi ∈ V∪T:
We put this production in the new production set, as 
well as all those generated by replacing nullable 
variables with λ in all possible combinations.
Exception: If all xi’s are nullable, do not include A→λ



Removing λ-productions
Example

• Example: 

S → ABaC
A → BC
B → b|λ
C → D|λ
D → d

Nullable variables VN: A, B, C

S → ABaC|BaC|AaC|ABa|
aC|Ba|Aa|a

A → BC|B|C
B → b
C → D
D → d



Removing λ-productions
Proof

Proof: We need to show that:
1. If w ≠ λ and A =>*old w, then A =>*new w.
2. If A =>*new w then w ≠ λ and A =>*old w.

Proof of (1): By induction on the number of steps by 
which A derives w in the old grammar.

Basis: If in the old grammar, A derives w in one step, 
then A → w must be a production. Since w ≠ λ , this 
production must appear in the new grammar as 
well. Therefore, A =>*new w. 



Removing λ-productions
Proof – cont’d

Induction step: We assume the theorem is true 
for derivation steps of fewer than k. We show it 
for A =>*old w which has k steps.
Let the first step be A =>old X1…Xn, then w can be 
broken into w = w1…wn, where Xi =>*old wi, for all 
i, in fewer than k steps. Because of the induction 
hypothesis we have: Xi =>*new wi

The new grammar has a production A →new
X1…Xn, therefore A derives w in the new grammar.



Removing unit productions

• A unit production is one whose right-hand side 
has only one variable.        A → B

• If E =>* F using only unit productions, whenever  
F →α is a non-unit production, add E →α .

• Remove unit productions 

Use a dependency graph: Whenever the 
grammar has a unit-production C→D, create an 

edge (C,D)



Removing unit productions
Example 

S=>*B,    S=>*A,   
A=>*B,   B=>*A

S

B A

Dependency Graph

S → Aa | B
B → A | bb
A → a | bc | B

Original Grammar

S → Aa | bb |  bc | a
B → bb | bc | a
A → a | bc | bb

New Grammar



Remove useless productions

• Variable A is useful if there exist some w ∈ L(G) 
such that:

S =>* xAy =>* w
Otherwise it is useless.

Example 1: 
S → aSb | ab | A
A → bAa

Example 2: 
S → aSb | ab
A → bAa | ba

A does not 
derive terminal 
strings 

A is not 
reachable



Useless productions

• To remove useless productions:(follow these 
steps)
1. Eliminate variables that derive no terminal 

S → aAb A → bAa
2. Eliminate unreachable variables

S → AC           C → aAb B → Ab
B is not 
reachable

A is useless

The order is 
important!



Remove useless productions
Example

C is useless, so we remove variable C and its 
productions.
After step (1), every remaining symbol derives 
some terminal.

S → aS | A | C 
A → a
B → aa
C → aCb



Construct a dependency graph and determine 
the unreachable variables.  (For every rule of the 
form C → xDy, there is an edge from C to D. )

S → aS | A
A → a

Remove useless productions
Example

V = {S, A, B}

B is not reachable!

A

S

B

B → aa

Dependency Graph



Cleaning up the grammar

1. Eliminate λ-productions
2. Eliminate unit productions
3. Eliminate useless variables

Theorem: Let L be a CFL that does not contain λ. 
Then there exist a context-free grammar that 
generates L and does not have any useless 
productions, λ-productions, or unit-productions.

The order is important 
because removing λ-

productions, will 
introduce new unit 

productions or useless 
variables.



Converting to CNF

• Theorem: Every context-free language L is 
generated by a Chomsky Normal Form (CNF) 
grammar. 

• Proof: Let G be a CFG for generating L. 
Step1: First clean the grammar G. (remove λ-productions 
and unit-productions)
Step2: For every production A → x1x2…xn , if n = 1, x1 is a 
terminal (since there is no unit productions). 
If n ≥ 1, for every terminal a ∈ T, introduce a variable Ba. 
Replace a with Ba and add Ba→ a to the set of productions.  

A → BC
A → a

A, B, C ∈ V
a ∈ T



Step 2 - Example

A → GcDe

Bc → c
A → GBcDe



Step 2 - Example

A → GcDe

Bc → c
A → GBcDBe

Be → e



Converting to CNF – Cont’d

• Every production is of the form: 
A → K1 K2 K3 … Kn A, Ki ∈ V

or
A → a a ∈ T
Step 3: Break right sides longer than 2 into chain of 
productions: 

A → K1 Z1

Z1 → K2 Z2 …

A -> BCDE is replaced by  
A -> BF, F -> CG, and G -> DE.



Greibach Normal Form 



GNF

Theorem: Every context-free language L is 
generated by a Greibach Normal Form (GNF) 
grammar.

A → aX

A ∈ V
a ∈ T
X ∈ V*



Lemma1 (theorem 6.1 in textbook): Let G=(V, T, 
S, P) be a CFG. Suppose P contains a production 
of the form A → x1B x2. Assume that A and B are 
different variables and that  B → y1 | y2 | … | yn
is the set of all productions in P which have B as 
the left side. 
We can then remove A → x1B x2 from P and add 
A → x1y1x2 | x1y2x2 |…| x1ynx2

And have the same language.



A A

x1 B x2

y1

x1 y1 x2

These derive the same sentential forms

A→ ABa
B→ AA | b | ZC

A→ AAAa | Aba | AZCa



Lemma2, removing left recursion:
Let G=(V, T, S, P) be a CFG. A → Aα1|Aα2|…|Aαn
be the set of A-productions that have A as the 
first symbol on the R.H.S. And let A →
β1|β2|…|βm be all the other A-productions. 
We can remove the left recursive A-productions 
and add:
A→βi 1≤i≤m Z→αi 1≤i≤n

A→βiZ Z→αiZ



A

A αi1

A αi2

A αip

Βj

A

Βj Z

αip
Z

αi2 Z

αi1



Converting to GNF

Theorem: Every context-free language L is generated by 
a Greibach Normal Form (GNF) grammar.

Step1: Rewrite the grammar into Chomsky Normal Form.
Step2: Relabel all variables as A1, A2, … An

Step3: Transform all productions into form: 
a. Ai→ Aj xj i < j and xj∈ V* or
b. Ai→ a xj or
c. Zi→ Aj xj

A → aX

A ∈ V
a ∈ T
X ∈ V*



Converting to GNF - Example

S → SS | BC
B → CB | a
C → SB | b S = A1 , B = A2, C =A3

A1 → A1A1 | A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b



Converting to GNF - Example

A1 → A1A1 apply lemma 2 to remove left recursion

A1 → A2A3 Z1→A1

A1 → A2A3Z1 Z1→A1Z1

✓ (a)

A1 → A1A1
A1→A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1

✓ (a)

✓ (a)

✓ (b)

✓ (b)

✓ (c)

✓ (c)



Converting to GNF - Example
A3 → A1A2 apply lemma 1 to replace A1

A3 →A2A3A2

A3 →A2A3Z1A2

✓ (a) A1→A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1

✓ (a)

✓ (a)

✓ (b)

✓ (b)

Apply lemma 1 again
A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

✓ (b)

✓ (b)

✓ (c)

✓ (c)



Converting to GNF - Example
A3 →A3A2A3A2 apply lemma2 to remove recursion
A3 →A3A2A3Z1A2

A3 → bZ2 | aA3A2Z2|aA3Z1A2Z2

Z2→ A2A3A2 | A2A3Z1A2

Z2→ A2A3A2Z2 | A2A3Z1A2Z2

✓ (a) A1→A2A3
A2 → A3A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1
A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

✓ (a)

✓ (a)

✓ (b)

✓ (b)

✓ (b)

✓ (b)

✓ (c)

✓ (c)



A1→A2A3 | A2A3Z1
A2 → A3A2
A2 → a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✓ (a)

✓ (b)

✓ (b)

✓ (c)

✓ (c)

✓ (a)

Converting to GNF - Example

Now everything is in the form of step 3. Note 
that An is in the form of GNF. 



Converting to GNF

Step4: For every production of the form An-

1→Anxn use lemma 1 to convert to correct GNF 
form. Continue to A1.
For all Z-productions, use lemma 1 to convert to 
correct GNF form. 



Example –Cont’d
A1→A2A3 | A2A3Z1
A2 → A3A2
A2 → a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

For A2 → A3A2
we write:
A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | 
aA3A2Z2A2 | aA3Z1A2Z2A2



A1→A2A3 | A2A3Z1
A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 | 
aA3Z1A2Z2A2 | a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

For A1 → A2A3 | A2A3Z1
we write:
A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 | 
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3
A1 →bA2A3Z1 | aA3A2A2A3Z1 | aA3Z1A2A2A3Z1
|bZ2A2A3Z1 | aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | 
aA3Z1

Example –Cont’d



A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 | 
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 | 
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 | 
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 | 
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d



A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 | 
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 | 
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 | 
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 | 
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d



A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 | 
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 | 
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 | 
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 | 
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d

Use lemma1 for all Z-productions



The CYK Parser



The CYK membership algorithm

Input: 
Grammar G in Chomsky Normal Form
String w = a1a2….an

Output:
find if w ∈ L(G) 



The Algorithm

Define:
wij : is a substring ai….aj

Vij : { A ∈ V : A =>* wij } 

A ∈ Vii if and only if G contains A  ai

A ∈ Vij if and only if G contains A  BC, and 
B ∈ Vik , and C ∈ Vk+1j ,  (k ∈ {i, i+1, …, j-1})



The Algorithm

1. Compute V11, V22, … ,Vnn

2. Compute V12, V23, … ,Vn-1,n

3. Compute V13, V24,…., Vn-2,n

4. And so on….

If S ∈ V1n then w ∈ L(G) , otherwise w ∉ L(G).



Example

Grammar G  and string w is given: 
S  AB w = aabbb
A  BB
A  a
B  AB 
B  b



Example

1. Compute V11, V22, … ,V55

Note that: A ∈ Vii if and only if G contains A  ai

V11 = ?  Is there a rule that directly derives a1 ?   
V11 = {A} 

V22 = ?  Is there a rule that directly derives a2 ?   
V22 = {A} 
V33 = ?  Is there a rule that directly derives a3 ?   
V33 = {B} 

V44 = {B} ,     V55 = {B}



Example
2. Compute V12, V23, … ,V45

Note that: A ∈ Vij if and only if G contains A 
BC, and B ∈ Vik , and C ∈ Vk+1j for all k’s

V12 = {} 

V23 = {S, B} 

V34 = {A} 

V45 = {A} 

V34 = ? { A : A BC , B∈V33 , C ∈ V44 }      Variable  BB  
?

V45 = ? { A : A BC , B∈V44 , C ∈ V55 }      Variable  BB 
?

V23 = ? { A : A BC , B∈V22 , C ∈ V33 }      Variable  AB 
?

V12 = ? { A : A BC , B∈V11 , C ∈ V22 }      Variable  AA 
?



Example

3. Compute V13, V24,V35

V13 = ? { A : A BC , B∈V11 , C ∈ V23 }  Variable  AS, AB
{ A : A  BC, B∈V12 , C ∈ V33 }

?

V13 = {S, B} 
V24 = ? { A : A BC , B∈V22 , C ∈ V34 }  Variable  AA

{ A : A  BC, B∈V23 , C ∈ V44 } Variable  SB, BB

?

?

V24 = {A} 
V35 = ? { A : A BC , B∈V33 , C ∈ V45 }  Variable  BA 

{ A : A  BC, B∈V34 , C ∈ V55 } Variable  AB 

?

?

V35 = {S, B} 



Example
4. Compute V14, V25

V14 = {A} 

V25 = {S, B} 

V14 = ? { A : A BC , B∈V11 , C ∈ V24 }  Variable  AA 
{ A : A  BC, B∈V12 , C ∈ V34 }
{ A : A  BC, B∈V13 , C ∈ V44 } Variable  SB, BB 

?

?

V25 = ? { A : A BC , B∈V22 , C ∈ V35 }  Variable  AS, AB 
{ A : A  BC, B∈V23 , C ∈ V45 } Variable  SA, BA
{ A : A  BC, B∈V24 , C ∈ V55 }  Variable  AB

?

?

?



Example
5. Compute V15

V15 = {S, B} 

V15 = ? { A : A BC , B∈V11 , C ∈ V25 }  Variable  AS, AB
{ A : A  BC, B∈V12 , C ∈ V35 }
{ A : A  BC, B∈V13 , C ∈ V45 } Variable  SA, BA
{ A : A  BC, B∈V14 , C ∈ V55 }  Variable  AB

?

?

?

S ∈ V15 , therefore w = aabbb ∈ L(G) 



1

a
2

a
3

b
4

b
5

b
1 {A}

2 {A}

3 {B}

4 {B}

5 {B}



1

a
2

a
3

b
4

b
5

b
1 {A} {}

2 {A} {S, B}

3 {B} {A}

4 {B} {A}

5 {B}



1

a
2

a
3

b
4

b
5

b
1 {A} {} {S, B}

2 {A} {S, B} {A}

3 {B} {A} {S, B}

4 {B} {A}

5 {B}



1

a
2

a
3

b
4

b
5

b
1 {A} {} {S, B} {A} {S, B}

2 {A} {S, B} {A} {S, B}

3 {B} {A} {S, B}

4 {B} {A}

5 {B}



Approximate time complexity:

)|(||)||(| 32 wOwwO =⋅

Number of 
Vij’s to be 
computed

Number of 
evaluations in 
each Vij

If |w| = n
n(n-1)/2

at most n


	Simplification of Context-Free Grammars and Normal Forms
	Normal Forms for CFGs
	-productions 
	Removing -productions 
	Removing -productions 
	Removing -productions �Example
	Removing -productions �Proof
	Removing -productions �Proof – cont’d
	Removing unit productions
	Removing unit productions�Example 
	Remove useless productions
	Useless productions
	Remove useless productions�Example
	Remove useless productions�Example
	Cleaning up the grammar
	Converting to CNF
	Step 2 - Example
	Step 2 - Example
	Converting to CNF – Cont’d
	Greibach Normal Form 
	GNF
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Converting to GNF
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	The CYK Parser
	The CYK membership algorithm
	The Algorithm
	The Algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

