Lecture 12
Simplification of Context-Free
Grammars and Normal Forms

COT 4420
Theory of Computation

Chapter 6



Normal Forms for CFGs

1. Chomsky Normal Form  CNF

Productions of form
A — BC A B CeV
A—a acT

2. Greibach Normal Form GNF

Productions of form
A — aX AcV, aecTXeV*



A-productions

 Any production of a CFG of the form
A— A
is called a A-production.

* Any variable A for which the derivation
A=>% )
is possible is called nullable.



Removing A-productions

e Theorem: Given a grammar G with A not in
L(G) , the set of nullable variables V,, can be
found using an algorithm.

* Proof:
1. For all productions A — A, put A into V.

2. Repeat the following until no new variables
are added to V:

For all productions B — A/A,..A, where
A, A,, ..., A areinV,, put B into V.



Removing A-productions

e Theorem: Let G be any CFG with A not in L(G),
then there exists an equivalent G having no A-
productions.

e Algorithm:
1. Find the set V|, of all nullable variables.
2. For all productions of the form A — x;x,...X,,

m=>1 where x, € VUT:

We put this production in the new production set, as
well as all those generated by replacing nullable
variables with A in all possible combinations.

Exception: If all xs are nullable, do not include A— A




Removing A-productions

Example
e Example: Nullable variables V: A, B, C
S — ABaC
A — BC S — ABaC|BaC|AaC|ABal|
B—b|A aC|Ba|Aala
C—DJ|A A — BC|B|C
D—d B—>b

C—o>D

D—>d



Removing A-productions
Proof

Proof: We need to show that:
If w=Aand A=>*_,w, then A=>*  w.
2. IfA=>* _ wthenw=AandA=>*_,w.

Proof of By induction on the number of steps by
which A dérives w in the old grammar.

Basis: If in the old grammar, A derives w in one step,
then A — w must be a production. Since w # A , this
production must appear in the new grammar as
well. Therefore, A =>* _ w.



Removing A-productions
Proof — cont’d

Induction step: We assume the theorem is true
for derivation steps of fewer than k. We show it
for A=>*_ ,w which has k steps.

Let the first step be A =>_, X,...X,, then w can be
broken into w = w,...w_, where X. =>* . w,, for all
|, in fewer than k steps. Because of the induction
hypothesis we have: X, =>* _ w,

The new grammar has a production A —__,
X,...X,, therefore A derives w in the new grammar.



Removing unit productions

 Aunit production is one whose right-hand side

has only one variable. A— B
s

Use a dependency graph: Whenever the

grammar has a unit-production C—D, create an
L edge (C,D) )

e |f E=>*F using only unit productions, whenever
- — oL is a non-unit production, add E — o .

e Remove unit productions



Removing unit productions

Example
Original Grammar
B—>A|bb /@>
A—al|bc|B @
New Grammar S=>*B, S=>*A,

S—>Aa|bb]| bc|a

A=>*B, B=>*A
B—>bb|bc|a
A—a|bc|bb




Remove useless productions

e Variable A is useful if there exist some w € L(G)
such that:

S =>* xAy =>* w

Otherwise it is useless.

Example 1: Example 2:
S— aSb|ab | A S— aSb | ab
A — bAa A — bAa | ba

A does not .

, , A Is not
derive terminal

. reachable
strings




Useless productions

The order is
important!

 To remove useless productions:(follow these
steps)

1. Eliminate variables that derive no terminal
S — aAb A — bAa A is useless

2. Eliminate unreachable variables B is not

S— AC C > aAb B— Ab reachable



Remove useless productions
Example

S— aS | A | &

A— a

B— aa

Cac
C is useless, so we remove variable C and its
productions.

After step (1), every remaining symbol derives
some terminal.



Remove useless productions
Example

S—aS|A L V=1{S, A, B}

A—a
B — aa
\

®

Construct a dependency graph and determine
the unreachable variables. (For every rule of the
form C — xDy, there is an edge from Cto D. )

B is not reachable!



Cleaning up the grammar

The order is important

1. Eliminate A-productions because removing A-
. . . . productions, will
2. Eliminate unit productions introduce new unit
- . . productions or useless
3. Eliminate useless variables variables.

Theorem: Let L be a CFL that does not contain A.
Then there exist a context-free grammar that
generates L and does not have any useless
productions, A-productions, or unit-productions.



A > BC
A—>a

Converting to CNF

A,B,CeV
aeT

e Theorem: Every context-free language L is

generated by a Chomsky Normal Form (CNF)
grammar.

* Proof: Let G be a CFG for generating L.

Stepl: First clean the grammar G. (remove A-productions
and unit-productions)

Step2: For every production A = x,X,..X,, ifn=1, x; is a
terminal (since there is no unit productlons)

If n>1, for every terminal a € T, introduce a variable B,.
Replace a with B, and add B,— a to the set of productions.



Step 2 - Example

A — GcDe

$

A — GB_De
B.—>¢c




Step 2 - Example

A — GcDe

$

A — GB_DB,
B.—>¢c

B, —>e



Converting to CNF — Cont’d

e Every production is of the form:

A— KK, Ky ... K A KeV
or
A—a aeT

Step 3: Break right sides longer than 2 into chain of
productions:
A—>K, Z, A -> BCDE is replaced by

Z, > K, Z, A -> BF, F-> CG, and G -> DE.



Greibach Normal Form



A - aX

GNF

aeT
X eV*

Theorem: Every context-free language L is
generated by a Greibach Normal Form (GNF)
grammar.



Lemmmal (theorem 6.1 in textbook): Let G=(V, T,
S, P) be a CFG. Suppose P contains a production
of the form A — x,B x,. Assume that A and B are

different variables andthat B—> vy, |y, | ... | v,
is the set of all productions in P which have B as

the left side.

We can then remove A — x,B x, from P and add
A — XY Xy | X1¥%5 || XY %5

And have the same language.



These derive the same sentential forms

A— ABa

A— AAAa | Aba | AZCa
B> AA | b | ZC — | |



Llemmaz2, removing left recursion:

et G=(V, T, S, P) be a CFG. A — Ao, |Aa, |...|Aa,
oe the set of A-productions that have A as the
first symbol on the R.H.S. And let A —>
B.IB,|...]1B,, be all the other A-productions.

We can remove the left recursive A-productions
and add:

A—B,  1<i<m /=0, 1<i<n
A—>B.Z —>a./




g

A, /y




A - aX

Converting to GNF A=V

aeT
X eV*

Theorem: Every context-free language L is generated by
a Greibach Normal Form (GNF) grammar.

Stepl: Rewrite the grammar into Chomsky Normal Form.
Step2: Relabel all variables as A, A,, ... A,
Step3: Transform all productions into form:
a. A—>Ax i<jandx e V* or
b. A—>ax or
C. Z—>AX



Converting to GNF - Example

S —>SS | BC
B—>CB]|a

C—>SB|b S=A,,B=A, C=A,

AL = AA | AA;
A, — AZA,

A; — A/A,

A, —a

A, —>Db



Converting to GNF - Example

A, — A;A; apply lemma 2 to remove left recursion

—Ar—Ahy
AL — AA, Z,—A, /@ AR,

v (@) Ay, => AjA,

v (b) A, —> a

V() A;—>Db

V(@) Ay > AAZ
Vi) Z—A,

Vi Zi—>A



Converting to GNF - Example

A; = A/A, apply lemma 1 to replace A,
V(@) A;—>AA

A; >AAA, V@ A, > AJA,
A; >AAZA, A=A
vb)A, —>a
v (b)A; —> b
V@A = AAZ,
: V() L;—>A;
Apply lemma 1 again 10 Z,—AZ,
Az >A3AAA, A, S>AAAA,

A; —aAZ A, vV () Ay >aAZ A,



Converting to GNF - Example

A; =>AAAA,
A; >AAAZA,

A, > bZ, [ aAAZ,[aAZ,AZ,
Z,— AAA, | AAZA,
Z,— AAAZ | AAZAZ,

apply lemma?2 to remove recursion

V(@ A—>AA

V@A, = AA,

VA, — a

V) A; > b

V@A > AAZ,

Vi —>A,

v (c) Zl—>A121
A=Az Az Ay

v (b) A; —>aAjA,
Ag—rAghAgEA;

v (b) Ay —aA3Z A,



Converting to GNF - Example

TAASAA TAAZ

V@A, > AjA,

v (b)A, —> a

/A, = b | aAA, | aAZ,A, |bZ, | aAAZ, | aAZ,AZ,
V9 Z—A, |AZ,

V2= AAA; | AAZIA, | AASAZ, | AASZIAZ,

Now everything is in the form of step 3. Note
that A is in the form of GNF.



Converting to GNF

Step4: For every production of the form A,
,—>A, X, use lemma 1 to convert to correct GNF
form. Continue to A,.

For all Z-productions, use lemma 1 to convert to
correct GNF form.



Example —Cont’d
A —AA | AAZ
A, > AJA,
v A,—>a
v A;—> b | aAA, | aAZ/A, |bZ, | aAAZ, | aAZ,ALZ,
Z,—A; |AZ,
Z,—> AAA, | AAZA, | AAAZ, | AAZAZ,

For A, —> AjA,

we write:

A, = bA, | aA;AA, | aAZ,ALA, |bZA, |
aAAZA, | aAZ,AZA,



Example —Cont’d
A —>AA | AJAZ,
v A, > bA, | aAAA, | aAZ,AA, |BZA, | aAAZA, |
aA;Z,AZA, | a
v A;—> b | aAjA, | aAZ/A, |bZ, | aAAZ, | aAZ,ALZ,
Z,—A; |AZ,
Z,— AAA, | ALALZ A, | ALAAZ | ALAZAZ,
For A, > AA; | ALAZ,
we write:
A, — bAA; | aAAALAS | aAZ,ALALA; | BZ,AA,
aAAZAA; | AAZALZALA, | aA,
A, >bAAZ, | aAAAALZL | aAZAAAZ,
|bZ,A,AZ, | aAAZ,AAZ, | aAZALZ,AALZ, |
aA;Z,



Example —Cont’d

A, S bBAA, [aAAAA, TaAZAAA, [BZAA, ]
aAAZAA, | aAZ,AZAA, | aA, | bAAZ, |
aAAAAZ, | aAZ,AAAZ, |bZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > bA, | aAALA, | aAZ,AA, |bZA, | aAAZA, |
aAZ,AZ,A, | a

v A, b | aAA, | aAZA, |bZ, | aAAZ, | aAZ,AZ,

Z,—>A; |AZ,
2, PASA; | AASZIA, | AAAZ, | AAZIAZ,



Example —Cont’d

A, S bBAA, [aAAAA, TaAZAAA, [BZAA, ]
aAAZAA, | aAZ,AZAA, | aA, | bAAZ, |
aAAAAZ, | aAZ,AAAZ, |bZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > bA, | aAALA, | aAZ,AA, |bZA, | aAAZA, |
aAZ,AZ,A, | a

v A, b | aAA, | aAZA, |bZ, | aAAZ, | aAZ,AZ,

Z,—>A; |AZ,
2, PASA; | AASZIA, | AAAZ, | AAZIAZ,



Example —Cont’d

v AL DAA; [ aAsAAA; | aAZ1AAA; [DZ,AA;
aAAZAA, | aAZ,AZAA, | aA, | bAALZ, |
aAAAAZ, | aAZAMAZ, |BZ,AAZ, |
aAAZAAZ, | aAZAZAAZ, | aAZ,

v A, > b | aAA, | aAZ,A, |bZ, | aAAZ, | aAZ,AZ,

Z,—A |AZ,
Z,— AAA, | ALALZ A, | AAAZ | AAZAZ,




The CYK Parser



The CYK membership algorithm

Input:
Grammar G in Chomsky Normal Form

String w = a,a,....a,

Output:
find if w € L(G)



The Algorithm

Define:
w;; : is @ substring a....a;
Vij:{Ae V:A=>*Wij

A € V. if and only if G contains A = a.
A € V; if and only if G contains A = BC, and
BeV,,andCeV,,,, (kefii+l, .., j-1})



The Algorithm

Compute V.1, V5, ... V..
Compute Vy,, Vo, .. V14
Compute Vi3, Voo, Vi s

W

And so on....

If S e V,, then w € L(G), otherwise w ¢ L(G).



Example

Grammar G and string w is given:
S—> AB w = aabbb

A - BB

A a

B> AB

B>b



Example

1. Compute V,;, Vo5, ... ,Vee
Note that: A € V. if and only if G contains A = a,

V., =7? Is there arule that directly derives a, ?
Vi, = 1A}

V,, =? Is there a rule that directly derives a, ?
Vy, = 1A

V35 =7 Is there a rule that directly derives a; ?
Vi3 = 1B}

Vg =1B}, Vs5=1B}



Example

2. Compute V,,, V3, ... Ve

Note that: A € V;;if and only if G contains A 2>
BC,and B € V,, , and C € V,,;for all k’s

V,=?{A:A>BC,BeV,;,CeV,} Variable?éAA
Vi, = {} 5
V,;=?{A:A> BC,BeV,,,CeV,;} Variable > AB
V., = {S, B} :
Vy,=?{A:A> BC,BeV,;,CeV,} Variable > BB
Vi, = 1A} ,
V,.=?{A:A>BC,BeV,,,CeV..} Variable > BB
Vis = 1A}



Example

3. Compute V5, V,,,Vse

?
V,,=?{A:A> BC,BeV,,,CeV,,} Variable > AS, AB
{A:A>B(CBeV,,CeVy}

Vy, = {S, B)

V,,=?{A:A> BC,BeV,,,CeV,,} Variable ?? AA
{A:A->BC BeV,;,CeV,} Variable > SB, BB

Vys = 1A} 3

Vis=? {A:A> BC,BeVy,, C €V, } Variable > BA
{A:A->BC,BeV,,,Ce V. } Variable > AB

Vs = {S, B}



Example

4. Compute V,,, V.

?
V,=?{A:A-> BC,BeV,,,CeV,,} Variable 2 AA
{A:A>>BCBeV,,CeV,,}
{A:A—>BC BeV,,CeV,} Variable 9 SB, BB

=1{A}

?

Vys=?{A:A> BC,BeV,,, C eV, } Variable > AS, AB

{A:A->BC,BeV,;,CeV,} Variable 2> SA, BA
{A:A—>BC BeV,,, Ce V. } Variable > AB

=1{S, B}



Example

5. Compute V.

V,.=?{A:A> BC,BeV,,,C eV, } Variable > AS, AB
{A:A>BC,BeV,,,CeV,}
{A:A—>BC BeV,,CeV,} Variable ? SA, BA
{A:A->BC, BeV,, Ce V. } Variable > AB

=1{S, B}

S € V., therefore w = aabbb € L(G)



(A}

1A}

1B}

1B}

1B}




a a b b b
{A} i
{A} | 1S, B}
Bl | 1A}
Bl | 1A}

1B}




a a b b b
{A} it | 1S B}
(A} | S, B | 1A}
B} | 1A} | 1S, B}
Bl | 1A}

1B}




a a b b b
{A} it |5 Br| 1A} | 1S, B}
(A} | {S, B} | 1A} | {5 B;
B} | 1A} | 1S, B}

Bl | 1A}

1B}




Approximate time complexity:

o(wl® - |wl)=0(w[)

Number of Number of
V;/'s to be evaluations in
computed each V;

If |[w| =n at most n

n(n-1)/2
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