
Simplification of Context-Free
Grammars and Normal Forms

COT 4420
Theory of Computation

Lecture 12

Chapter 6

Normal Forms for CFGs

1. Chomsky Normal Form CNF
Productions of form
A → BC A, B, C ∈ V
A → a a ∈ T

2. Greibach Normal Form GNF
Productions of form
A → aX A ∈ V, a ∈ T, X ∈ V*

λ-productions

• Any production of a CFG of the form
A →λ

is called a λ-production.

• Any variable A for which the derivation
A =>* λ

is possible is called nullable.

Removing λ-productions

• Theorem: Given a grammar G with λ not in
L(G) , the set of nullable variables VN can be
found using an algorithm.

• Proof:
1. For all productions A →λ, put A into VN.
2. Repeat the following until no new variables

are added to VN:
For all productions B → A1A2…An where
A1 , A2 , … , An are in VN, put B into VN.

Removing λ-productions

• Theorem: Let G be any CFG with λ not in L(G),
then there exists an equivalent G having no λ-
productions.

• Algorithm:
1. Find the set VN of all nullable variables.
2. For all productions of the form A → x1x2…xm,

m≥1 where xi ∈ V∪T:
We put this production in the new production set, as
well as all those generated by replacing nullable
variables with λ in all possible combinations.
Exception: If all xi’s are nullable, do not include A→λ

Removing λ-productions
Example

• Example:

S → ABaC
A → BC
B → b|λ
C → D|λ
D → d

Nullable variables VN: A, B, C

S → ABaC|BaC|AaC|ABa|
aC|Ba|Aa|a

A → BC|B|C
B → b
C → D
D → d

Removing λ-productions
Proof

Proof: We need to show that:
1. If w ≠ λ and A =>*old w, then A =>*new w.
2. If A =>*new w then w ≠ λ and A =>*old w.

Proof of (1): By induction on the number of steps by
which A derives w in the old grammar.

Basis: If in the old grammar, A derives w in one step,
then A → w must be a production. Since w ≠ λ , this
production must appear in the new grammar as
well. Therefore, A =>*new w.

Removing λ-productions
Proof – cont’d

Induction step: We assume the theorem is true
for derivation steps of fewer than k. We show it
for A =>*old w which has k steps.
Let the first step be A =>old X1…Xn, then w can be
broken into w = w1…wn, where Xi =>*old wi, for all
i, in fewer than k steps. Because of the induction
hypothesis we have: Xi =>*new wi

The new grammar has a production A →new
X1…Xn, therefore A derives w in the new grammar.

Removing unit productions

• A unit production is one whose right-hand side
has only one variable. A → B

• If E =>* F using only unit productions, whenever
F →α is a non-unit production, add E →α .

• Remove unit productions

Use a dependency graph: Whenever the
grammar has a unit-production C→D, create an

edge (C,D)

Removing unit productions
Example

S=>*B, S=>*A,
A=>*B, B=>*A

S

B A

Dependency Graph

S → Aa | B
B → A | bb
A → a | bc | B

Original Grammar

S → Aa | bb | bc | a
B → bb | bc | a
A → a | bc | bb

New Grammar

Remove useless productions

• Variable A is useful if there exist some w ∈ L(G)
such that:

S =>* xAy =>* w
Otherwise it is useless.

Example 1:
S → aSb | ab | A
A → bAa

Example 2:
S → aSb | ab
A → bAa | ba

A does not
derive terminal
strings

A is not
reachable

Useless productions

• To remove useless productions:(follow these
steps)
1. Eliminate variables that derive no terminal

S → aAb A → bAa
2. Eliminate unreachable variables

S → AC C → aAb B → Ab
B is not
reachable

A is useless

The order is
important!

Remove useless productions
Example

C is useless, so we remove variable C and its
productions.
After step (1), every remaining symbol derives
some terminal.

S → aS | A | C
A → a
B → aa
C → aCb

Construct a dependency graph and determine
the unreachable variables. (For every rule of the
form C → xDy, there is an edge from C to D.)

S → aS | A
A → a

Remove useless productions
Example

V = {S, A, B}

B is not reachable!

A

S

B

B → aa

Dependency Graph

Cleaning up the grammar

1. Eliminate λ-productions
2. Eliminate unit productions
3. Eliminate useless variables

Theorem: Let L be a CFL that does not contain λ.
Then there exist a context-free grammar that
generates L and does not have any useless
productions, λ-productions, or unit-productions.

The order is important
because removing λ-

productions, will
introduce new unit

productions or useless
variables.

Converting to CNF

• Theorem: Every context-free language L is
generated by a Chomsky Normal Form (CNF)
grammar.

• Proof: Let G be a CFG for generating L.
Step1: First clean the grammar G. (remove λ-productions
and unit-productions)
Step2: For every production A → x1x2…xn , if n = 1, x1 is a
terminal (since there is no unit productions).
If n ≥ 1, for every terminal a ∈ T, introduce a variable Ba.
Replace a with Ba and add Ba→ a to the set of productions.

A → BC
A → a

A, B, C ∈ V
a ∈ T

Step 2 - Example

A → GcDe

Bc → c
A → GBcDe

Step 2 - Example

A → GcDe

Bc → c
A → GBcDBe

Be → e

Converting to CNF – Cont’d

• Every production is of the form:
A → K1 K2 K3 … Kn A, Ki ∈ V

or
A → a a ∈ T
Step 3: Break right sides longer than 2 into chain of
productions:

A → K1 Z1

Z1 → K2 Z2 …

A -> BCDE is replaced by
A -> BF, F -> CG, and G -> DE.

Greibach Normal Form

GNF

Theorem: Every context-free language L is
generated by a Greibach Normal Form (GNF)
grammar.

A → aX

A ∈ V
a ∈ T
X ∈ V*

Lemma1 (theorem 6.1 in textbook): Let G=(V, T,
S, P) be a CFG. Suppose P contains a production
of the form A → x1B x2. Assume that A and B are
different variables and that B → y1 | y2 | … | yn
is the set of all productions in P which have B as
the left side.
We can then remove A → x1B x2 from P and add
A → x1y1x2 | x1y2x2 |…| x1ynx2

And have the same language.

A A

x1 B x2

y1

x1 y1 x2

These derive the same sentential forms

A→ ABa
B→ AA | b | ZC

A→ AAAa | Aba | AZCa

Lemma2, removing left recursion:
Let G=(V, T, S, P) be a CFG. A → Aα1|Aα2|…|Aαn
be the set of A-productions that have A as the
first symbol on the R.H.S. And let A →
β1|β2|…|βm be all the other A-productions.
We can remove the left recursive A-productions
and add:
A→βi 1≤i≤m Z→αi 1≤i≤n

A→βiZ Z→αiZ

A

A αi1

A αi2

A αip

Βj

A

Βj Z

αip
Z

αi2 Z

αi1

Converting to GNF

Theorem: Every context-free language L is generated by
a Greibach Normal Form (GNF) grammar.

Step1: Rewrite the grammar into Chomsky Normal Form.
Step2: Relabel all variables as A1, A2, … An

Step3: Transform all productions into form:
a. Ai→ Aj xj i < j and xj∈ V* or
b. Ai→ a xj or
c. Zi→ Aj xj

A → aX

A ∈ V
a ∈ T
X ∈ V*

Converting to GNF - Example

S → SS | BC
B → CB | a
C → SB | b S = A1 , B = A2, C =A3

A1 → A1A1 | A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b

Converting to GNF - Example

A1 → A1A1 apply lemma 2 to remove left recursion

A1 → A2A3 Z1→A1

A1 → A2A3Z1 Z1→A1Z1

✓ (a)

A1 → A1A1
A1→A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1

✓ (a)

✓ (a)

✓ (b)

✓ (b)

✓ (c)

✓ (c)

Converting to GNF - Example
A3 → A1A2 apply lemma 1 to replace A1

A3 →A2A3A2

A3 →A2A3Z1A2

✓ (a) A1→A2A3
A2 → A3A2
A3 → A1A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1

✓ (a)

✓ (a)

✓ (b)

✓ (b)

Apply lemma 1 again
A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

✓ (b)

✓ (b)

✓ (c)

✓ (c)

Converting to GNF - Example
A3 →A3A2A3A2 apply lemma2 to remove recursion
A3 →A3A2A3Z1A2

A3 → bZ2 | aA3A2Z2|aA3Z1A2Z2

Z2→ A2A3A2 | A2A3Z1A2

Z2→ A2A3A2Z2 | A2A3Z1A2Z2

✓ (a) A1→A2A3
A2 → A3A2
A2 → a
A3 → b
A1 → A2A3Z1
Z1→A1
Z1→A1Z1
A3 →A3A2A3A2
A3 →aA3A2
A3 →A3A2A3Z1A2
A3 →aA3Z1A2

✓ (a)

✓ (a)

✓ (b)

✓ (b)

✓ (b)

✓ (b)

✓ (c)

✓ (c)

A1→A2A3 | A2A3Z1
A2 → A3A2
A2 → a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✓ (a)

✓ (b)

✓ (b)

✓ (c)

✓ (c)

✓ (a)

Converting to GNF - Example

Now everything is in the form of step 3. Note
that An is in the form of GNF.

Converting to GNF

Step4: For every production of the form An-

1→Anxn use lemma 1 to convert to correct GNF
form. Continue to A1.
For all Z-productions, use lemma 1 to convert to
correct GNF form.

Example –Cont’d
A1→A2A3 | A2A3Z1
A2 → A3A2
A2 → a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

For A2 → A3A2
we write:
A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 |
aA3A2Z2A2 | aA3Z1A2Z2A2

A1→A2A3 | A2A3Z1
A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 |
aA3Z1A2Z2A2 | a
A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2
Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

For A1 → A2A3 | A2A3Z1
we write:
A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 |
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3
A1 →bA2A3Z1 | aA3A2A2A3Z1 | aA3Z1A2A2A3Z1
|bZ2A2A3Z1 | aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 |
aA3Z1

Example –Cont’d

A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 |
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 |
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 |
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 |
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d

A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 |
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 |
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 |
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 |
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d

A1 → bA2A3 | aA3A2A2A3 | aA3Z1A2A2A3 |bZ2A2A3 |
aA3A2Z2A2A3 | aA3Z1A2Z2A2A3 | aA3 | bA2A3Z1 |
aA3A2A2A3Z1 | aA3Z1A2A2A3Z1 |bZ2A2A3Z1 |
aA3A2Z2A2A3Z1 | aA3Z1A2Z2A2A3Z1 | aA3Z1

A2 → bA2 | aA3A2A2 | aA3Z1A2A2 |bZ2A2 | aA3A2Z2A2 |
aA3Z1A2Z2A2 | a

A3 → b | aA3A2 | aA3Z1A2 |bZ2 | aA3A2Z2 | aA3Z1A2Z2

Z1→A1 |A1Z1
Z2→ A2A3A2 | A2A3Z1A2 | A2A3A2Z2 | A2A3Z1A2Z2

✔

✔

✔

Example –Cont’d

Use lemma1 for all Z-productions

The CYK Parser

The CYK membership algorithm

Input:
Grammar G in Chomsky Normal Form
String w = a1a2….an

Output:
find if w ∈ L(G)

The Algorithm

Define:
wij : is a substring ai….aj

Vij : { A ∈ V : A =>* wij }

A ∈ Vii if and only if G contains A ai

A ∈ Vij if and only if G contains A BC, and
B ∈ Vik , and C ∈ Vk+1j , (k ∈ {i, i+1, …, j-1})

The Algorithm

1. Compute V11, V22, … ,Vnn

2. Compute V12, V23, … ,Vn-1,n

3. Compute V13, V24,…., Vn-2,n

4. And so on….

If S ∈ V1n then w ∈ L(G) , otherwise w ∉ L(G).

Example

Grammar G and string w is given:
S AB w = aabbb
A BB
A a
B AB
B b

Example

1. Compute V11, V22, … ,V55

Note that: A ∈ Vii if and only if G contains A ai

V11 = ? Is there a rule that directly derives a1 ?
V11 = {A}

V22 = ? Is there a rule that directly derives a2 ?
V22 = {A}
V33 = ? Is there a rule that directly derives a3 ?
V33 = {B}

V44 = {B} , V55 = {B}

Example
2. Compute V12, V23, … ,V45

Note that: A ∈ Vij if and only if G contains A
BC, and B ∈ Vik , and C ∈ Vk+1j for all k’s

V12 = {}

V23 = {S, B}

V34 = {A}

V45 = {A}

V34 = ? { A : A BC , B∈V33 , C ∈ V44 } Variable BB
?

V45 = ? { A : A BC , B∈V44 , C ∈ V55 } Variable BB
?

V23 = ? { A : A BC , B∈V22 , C ∈ V33 } Variable AB
?

V12 = ? { A : A BC , B∈V11 , C ∈ V22 } Variable AA
?

Example

3. Compute V13, V24,V35

V13 = ? { A : A BC , B∈V11 , C ∈ V23 } Variable AS, AB
{ A : A BC, B∈V12 , C ∈ V33 }

?

V13 = {S, B}
V24 = ? { A : A BC , B∈V22 , C ∈ V34 } Variable AA

{ A : A BC, B∈V23 , C ∈ V44 } Variable SB, BB

?

?

V24 = {A}
V35 = ? { A : A BC , B∈V33 , C ∈ V45 } Variable BA

{ A : A BC, B∈V34 , C ∈ V55 } Variable AB

?

?

V35 = {S, B}

Example
4. Compute V14, V25

V14 = {A}

V25 = {S, B}

V14 = ? { A : A BC , B∈V11 , C ∈ V24 } Variable AA
{ A : A BC, B∈V12 , C ∈ V34 }
{ A : A BC, B∈V13 , C ∈ V44 } Variable SB, BB

?

?

V25 = ? { A : A BC , B∈V22 , C ∈ V35 } Variable AS, AB
{ A : A BC, B∈V23 , C ∈ V45 } Variable SA, BA
{ A : A BC, B∈V24 , C ∈ V55 } Variable AB

?

?

?

Example
5. Compute V15

V15 = {S, B}

V15 = ? { A : A BC , B∈V11 , C ∈ V25 } Variable AS, AB
{ A : A BC, B∈V12 , C ∈ V35 }
{ A : A BC, B∈V13 , C ∈ V45 } Variable SA, BA
{ A : A BC, B∈V14 , C ∈ V55 } Variable AB

?

?

?

S ∈ V15 , therefore w = aabbb ∈ L(G)

1

a
2

a
3

b
4

b
5

b
1 {A}

2 {A}

3 {B}

4 {B}

5 {B}

1

a
2

a
3

b
4

b
5

b
1 {A} {}

2 {A} {S, B}

3 {B} {A}

4 {B} {A}

5 {B}

1

a
2

a
3

b
4

b
5

b
1 {A} {} {S, B}

2 {A} {S, B} {A}

3 {B} {A} {S, B}

4 {B} {A}

5 {B}

1

a
2

a
3

b
4

b
5

b
1 {A} {} {S, B} {A} {S, B}

2 {A} {S, B} {A} {S, B}

3 {B} {A} {S, B}

4 {B} {A}

5 {B}

Approximate time complexity:

)|(||)||(| 32 wOwwO =⋅

Number of
Vij’s to be
computed

Number of
evaluations in
each Vij

If |w| = n
n(n-1)/2

at most n

	Simplification of Context-Free Grammars and Normal Forms
	Normal Forms for CFGs
	-productions
	Removing -productions
	Removing -productions
	Removing -productions �Example
	Removing -productions �Proof
	Removing -productions �Proof – cont’d
	Removing unit productions
	Removing unit productions�Example
	Remove useless productions
	Useless productions
	Remove useless productions�Example
	Remove useless productions�Example
	Cleaning up the grammar
	Converting to CNF
	Step 2 - Example
	Step 2 - Example
	Converting to CNF – Cont’d
	Greibach Normal Form
	GNF
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Converting to GNF
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF - Example
	Converting to GNF
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	Example –Cont’d
	The CYK Parser
	The CYK membership algorithm
	The Algorithm
	The Algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

