Lecture 12 Simplification of Context-Free Grammars and Normal Forms

COT 4420

Theory of Computation

Normal Forms for CFGs

1. Chomsky Normal Form CNF

Productions of form

$$A \rightarrow BC$$

$$A \rightarrow BC$$
 A, B, C $\in V$

$$A \rightarrow a$$

$$a \in T$$

2. Greibach Normal Form **GNF**

Productions of form

$$A \rightarrow aX$$

$$A \rightarrow aX$$
 $A \in V$, $a \in T$, $X \in V^*$

λ -productions

Any production of a CFG of the form

$$A \rightarrow \lambda$$

is called a λ -production.

Any variable A for which the derivation

$$A = > * \lambda$$

is possible is called nullable.

Removing λ -productions

- Theorem: Given a grammar G with λ not in L(G), the set of nullable variables V_N can be found using an algorithm.
- Proof:
- 1. For all productions A $\rightarrow \lambda$, put A into V_N .
- 2. Repeat the following until no new variables are added to V_N :

For all productions $B \rightarrow A_1 A_2 ... A_n$ where $A_1, A_2, ..., A_n$ are in V_N , put B into V_N .

Removing λ -productions

- Theorem: Let G be any CFG with λ not in L(G), then there exists an equivalent G having no λ -productions.
- Algorithm:
- 1. Find the set V_N of all nullable variables.
- 2. For all productions of the form $A \rightarrow x_1x_2...x_m$, $m \ge 1$ where $x_i \in V \cup T$:

We put this production in the new production set, as well as all those generated by replacing nullable variables with λ in all possible combinations.

Exception: If all x_i 's are nullable, do not include $A \rightarrow \lambda$

Removing λ -productions Example

• Example: Nullable variables V_N : A, B, C

 $D \rightarrow d$

$$S \rightarrow ABaC$$
 $A \rightarrow BC$
 $B \rightarrow b | \lambda$
 $C \rightarrow D | \lambda$

 $D \rightarrow d$

$$S \rightarrow ABaC|BaC|AaC|ABa|$$
 $aC|Ba|Aa|a$
 $A \rightarrow BC|B|C$
 $B \rightarrow b$
 $C \rightarrow D$

Removing λ -productions **Proof**

Proof: We need to show that:

- 1. If $w \neq \lambda$ and $A =>^*_{old} w$, then $A =>^*_{new} w$. 2. If $A =>^*_{new} w$ then $w \neq \lambda$ and $A =>^*_{old} w$.

Proof of (1): By induction on the number of steps by which A derives w in the old grammar.

Basis: If in the old grammar, A derives w in one step, then A \rightarrow w must be a production. Since w $\neq \lambda$, this production must appear in the new grammar as well. Therefore, $A = >*_{new} w$.

Removing λ -productions Proof – cont'd

Induction step: We assume the theorem is true for derivation steps of fewer than k. We show it for $A = >*_{old} w$ which has k steps.

Let the first step be $A =>_{old} X_1...X_n$, then w can be broken into $w = w_1...w_n$, where $X_i =>^*_{old} w_i$, for all i, in fewer than k steps. Because of the induction hypothesis we have: $X_i =>^*_{new} w_i$

The new grammar has a production $A \rightarrow_{new} X_1...X_n$, therefore A derives w in the new grammar.

Removing unit productions

 A unit production is one whose right-hand side has only one variable. A → B

Use a **dependency graph**: Whenever the grammar has a unit-production C→D, create an edge (C,D)

- If E = > * F using only unit productions, whenever $F \to \alpha$ is a non-unit production, add $E \to \alpha$.
- Remove unit productions

Removing unit productions Example

Original Grammar

$$S \rightarrow Aa \mid B$$

 $B \rightarrow A \mid bb$
 $A \rightarrow a \mid bc \mid B$

S \rightarrow Aa | bb | bc | a B \rightarrow bb | bc | a A \rightarrow a | bc | bb

Remove useless productions

 Variable A is useful if there exist some w ∈ L(G) such that:

$$S => * xAy => * w$$

Otherwise it is useless.

Example 1:

 $S \rightarrow aSb \mid ab \mid A$

 $A \rightarrow bAa$

A does not derive terminal strings

Example 2:

 $S \rightarrow aSb \mid ab$

 $A \rightarrow bAa \mid ba$

A is not reachable

Useless productions

The order is important!

- To remove useless productions:(follow these steps)
 - 1. Eliminate variables that derive no terminal

$$S \rightarrow aAb \qquad A \rightarrow bAa$$

$$\mathsf{A} o \mathsf{b}\mathsf{A}$$
a

A is useless

2. Eliminate unreachable variables

$$\mathsf{S} o \mathsf{AC}$$

$$S \rightarrow AC \qquad C \rightarrow aAb$$

$$B \rightarrow Ab$$

B is not reachable

Remove useless productions Example

$$S \rightarrow aS \mid A \mid \mathscr{E}$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

C is useless, so we remove variable C and its productions.

After step (1), every remaining symbol derives some terminal.

Remove useless productions Example

$$S \rightarrow aS \mid A$$

 $A \rightarrow a$
 $B \rightarrow aa$

Construct a dependency graph and determine the unreachable variables. (For every rule of the form $C \rightarrow xDy$, there is an edge from C to D.)

B is not reachable!

Cleaning up the grammar

- 1. Eliminate λ -productions
- 2. Eliminate unit productions
- 3. Eliminate useless variables

The order is important because removing λ -productions, will introduce new unit productions or useless variables.

Theorem: Let L be a CFL that does not contain λ . Then there exist a context-free grammar that generates L and does not have any useless productions, λ -productions, or unit-productions.

Converting to CNF

```
A \rightarrow BC
A \rightarrow a

A, B, C \in V
a \in T
```

- Theorem: Every context-free language L is generated by a Chomsky Normal Form (CNF) grammar.
- Proof: Let G be a CFG for generating L.

Step1: First clean the grammar G. (remove λ -productions and unit-productions)

Step2: For every production $A \rightarrow x_1x_2...x_n$, if n = 1, x_1 is a terminal (since there is no unit productions).

If $n \ge 1$, for every terminal $a \in T$, introduce a variable B_a . Replace a with B_a and add $B_a \rightarrow a$ to the set of productions.

Step 2 - Example

 $A \rightarrow GcDe$

 $A \rightarrow GB_cDe$

$$B_c \rightarrow c$$

Step 2 - Example

 $A \rightarrow GcDe$

 $A \rightarrow GB_cDB_e$

 $B_c \rightarrow c$ $B_e \rightarrow e$

Converting to CNF – Cont'd

• Every production is of the form:

$$A \rightarrow a$$
 $a \in T$

Step 3: Break right sides longer than 2 into chain of productions:

$$A \rightarrow K_1 Z_1$$
 A -> BCDE is replaced by $A \rightarrow K_2 Z_2$... A -> BF, F -> CG, and G -> DE.

Greibach Normal Form

GNF

 $A \rightarrow aX$ $A \in V$ $a \in T$ $X \in V^*$

Theorem: Every context-free language L is generated by a Greibach Normal Form (GNF) grammar.

Lemma1 (theorem 6.1 in textbook): Let G=(V, T, S, P) be a CFG. Suppose P contains a production of the form $A \rightarrow x_1B x_2$. Assume that A and B are different variables and that $B \rightarrow y_1 \mid y_2 \mid ... \mid y_n$ is the set of all productions in P which have B as the left side.

We can then remove $A \rightarrow x_1B x_2$ from P and add $A \rightarrow x_1y_1x_2 \mid x_1y_2x_2 \mid ... \mid x_1y_nx_2$ And have the same language.

These derive the same sentential forms

$$A \rightarrow ABa$$

 $B \rightarrow AA \mid b \mid ZC$

$$A \rightarrow AAAa \mid Aba \mid AZCa$$

Lemma2, removing left recursion:

Let G=(V, T, S, P) be a CFG. A \rightarrow A α_1 |A α_2 |...|A α_n be the set of A-productions that have A as the first symbol on the R.H.S. And let A \rightarrow β_1 | β_2 |...| β_m be all the other A-productions.

We can remove the left recursive A-productions and add:

Converting to GNF

 $A \rightarrow aX$ $A \in V$ $a \in T$ $X \in V^*$

Theorem: Every context-free language L is generated by a Greibach Normal Form (GNF) grammar.

Step1: Rewrite the grammar into Chomsky Normal Form.

Step2: Relabel all variables as A₁, A₂, ... A_n

Step3: Transform all productions into form:

- a. $A_i \rightarrow A_i x_i$ i < j and $x_i \in V^*$ or
- b. $A_i \rightarrow a x_i$ or
- c. $Z_i \rightarrow A_i x_i$

$$S \rightarrow SS \mid BC$$

$$B \rightarrow CB \mid a$$

$$C \rightarrow SB \mid b$$

$$S = A_1$$
, $B = A_2$, $C = A_3$

$$A_1 \rightarrow A_1 A_1 \mid A_2 A_3$$

$$A_2 \rightarrow A_3 A_2$$

$$A_3 \rightarrow A_1 A_2$$

$$A_2 \rightarrow a$$

$$A_3 \rightarrow b$$

 $A_1 \rightarrow A_1 A_1$ apply lemma 2 to remove left recursion

$$A_1 \rightarrow A_2 A_3$$

$$A_1 \rightarrow A_2 A_3 Z_1$$

$$Z_1 \rightarrow A_1$$

 $Z_1 \rightarrow A_1 Z_1$

$$\begin{array}{ccc} & \xrightarrow{} A_1 & \xrightarrow{} A_1 A_1 \\ \checkmark \text{ (a)} & A_1 & \xrightarrow{} A_2 A_3 \\ \checkmark \text{ (a)} & A_2 & \xrightarrow{} A_3 A_2 \\ & A_3 & \xrightarrow{} A_1 A_2 \\ \checkmark \text{ (b)} & A_2 & \xrightarrow{} a \\ \checkmark \text{ (b)} & A_3 & \xrightarrow{} b \\ \checkmark \text{ (a)} & A_1 & \xrightarrow{} A_2 A_3 Z_1 \\ \checkmark \text{ (c)} & Z_1 & \xrightarrow{} A_1 Z_1 \\ \end{array}$$

 $A_3 \rightarrow A_1 A_2$ apply lemma 1 to replace A_1

$$A_3 \rightarrow A_2 A_3 A_2$$
 $A_3 \rightarrow A_2 A_3 Z_1 A_2$

Apply lemma 1 again
 $A_3 \rightarrow A_3 A_2 A_3 A_2$
 $A_3 \rightarrow a A_3 A_2$

 $A_3 \rightarrow A_3 A_2 A_3 Z_1 A_2$

 $A_3 \rightarrow aA_3Z_1A_2$

 $A_3 \rightarrow A_3 A_2 A_3 A_2$ apply lemma2 to remove recursion

$$A_3 \rightarrow A_3 A_2 A_3 Z_1 A_2$$

$$A_3 \rightarrow bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2$$

$$Z_2 \rightarrow A_2A_3A_2 \mid A_2A_3Z_1A_2$$

$$Z_2 \rightarrow A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2$$

Now everything is in the form of step 3. Note that A_n is in the form of GNF.

Converting to GNF

Step4: For every production of the form $A_{n-1} \rightarrow A_n x_n$ use lemma 1 to convert to correct GNF form. Continue to A_1 .

For all Z-productions, use lemma 1 to convert to correct GNF form.

$$A_1 \rightarrow A_2 A_3 \mid A_2 A_3 Z_1$$

 $A_2 \rightarrow A_3 A_2$
 $\checkmark A_2 \rightarrow a$
 $\checkmark A_3 \rightarrow b \mid aA_3 A_2 \mid aA_3 Z_1 A_2 \mid bZ_2 \mid aA_3 A_2 Z_2 \mid aA_3 Z_1 A_2 Z_2$
 $Z_1 \rightarrow A_1 \mid A_1 Z_1$
 $Z_2 \rightarrow A_2 A_3 A_2 \mid A_2 A_3 Z_1 A_2 \mid A_2 A_3 A_2 Z_2 \mid A_2 A_3 Z_1 A_2 Z_2$

```
A_1 \rightarrow A_2 A_3 \mid A_2 A_3 Z_1
```

- ✓ $A_2 \rightarrow bA_2 \mid aA_3A_2A_2 \mid aA_3Z_1A_2A_2 \mid bZ_2A_2 \mid aA_3A_2Z_2A_2 \mid aA_3Z_1A_2Z_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z$
- ✓ $A_3 \rightarrow b \mid aA_3A_2 \mid aA_3Z_1A_2 \mid bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1 \mid A_1Z_1$ $Z_2 \rightarrow A_2A_3A_2 \mid A_2A_3Z_1A_2 \mid A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2$

For $A_1 \rightarrow A_2A_3 \mid A_2A_3Z_1$ we write:

 $\begin{array}{l} A_{1} \rightarrow bA_{2}A_{3} \mid aA_{3}A_{2}A_{2}A_{3} \mid aA_{3}Z_{1}A_{2}A_{2}A_{3} \mid bZ_{2}A_{2}A_{3} \mid \\ aA_{3}A_{2}Z_{2}A_{2}A_{3} \mid aA_{3}Z_{1}A_{2}Z_{2}A_{2}A_{3} \mid aA_{3} \\ A_{1} \rightarrow bA_{2}A_{3}Z_{1} \mid aA_{3}A_{2}A_{2}A_{3}Z_{1} \mid aA_{3}Z_{1}A_{2}A_{2}A_{3}Z_{1} \\ \mid bZ_{2}A_{2}A_{3}Z_{1} \mid aA_{3}A_{2}Z_{2}A_{2}A_{3}Z_{1} \mid aA_{3}Z_{1}A_{2}Z_{2}A_{2}A_{3}Z_{1} \mid \\ aA_{3}Z_{1} \end{array}$

- ✓ $A_2 \rightarrow bA_2 \mid aA_3A_2A_2 \mid aA_3Z_1A_2A_2 \mid bZ_2A_2 \mid aA_3A_2Z_2A_2 \mid aA_3Z_1A_2Z_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z$
- ✓ $A_3 \rightarrow b \mid aA_3A_2 \mid aA_3Z_1A_2 \mid bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1 \mid A_1Z_1$ $Z_2 \rightarrow A_2A_3A_2 \mid A_2A_3Z_1A_2 \mid A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2$

- ✓ $A_2 \rightarrow bA_2 \mid aA_3A_2A_2 \mid aA_3Z_1A_2A_2 \mid bZ_2A_2 \mid aA_3A_2Z_2A_2 \mid aA_3Z_1A_2Z_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z_1A_2 \mid aA_3Z$
- ✓ $A_3 \rightarrow b \mid aA_3A_2 \mid aA_3Z_1A_2 \mid bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1 \mid A_1Z_1$ $Z_2 \rightarrow A_2A_3A_2 \mid A_2A_3Z_1A_2 \mid A_2A_3A_2Z_2 \mid A_2A_3Z_1A_2Z_2$

Example -Cont'd

 $A_1 \rightarrow bA_2A_3 \mid aA_3A_2A_2A_3 \mid aA_3Z_1A_2A_2A_3 \mid bZ_2A_2A_3 \mid$ $aA_{3}A_{2}Z_{2}A_{3}A_{3} | aA_{3}Z_{1}A_{2}Z_{2}A_{3}A_{3} | aA_{3} | bA_{2}A_{3}Z_{1} |$ $aA_{3}A_{2}A_{3}A_{3}Z_{1} \mid aA_{3}Z_{1}A_{2}A_{3}A_{3}Z_{1} \mid bZ_{2}A_{3}A_{3}Z_{1} \mid$ $aA_{3}A_{2}Z_{2}A_{3}A_{3}Z_{1} \mid aA_{3}Z_{1}A_{2}Z_{2}A_{3}A_{3}Z_{1} \mid aA_{3}Z_{1}$ $^{\prime}_{2}\mathsf{A}_{2}$ | Use lemma1 for all Z-productions $\checkmark A_3 \rightarrow b \mid aA_3A_2 \mid aA_3Z_1A_2 \mid bZ_2 \mid aA_3A_2Z_2 \mid aA_3Z_1A_2Z_2$ $Z_1 \rightarrow A_1 \mid A_1 Z_1$ $Z_2 \rightarrow A_2 A_3 A_2 \mid A_2 A_3 Z_1 A_2 \mid A_2 A_3 A_2 Z_2 \mid A_2 A_3 Z_1 A_2 Z_2$

The CYK Parser

The CYK membership algorithm

Input:

Grammar G in Chomsky Normal Form String $w = a_1 a_2 a_n$

Output:

find if $w \in L(G)$

The Algorithm

Define:

```
w_{ij}: is a substring a_i...a_j

V_{ij}: { A \in V : A => * w_{ij} }
```

 $A \in V_{ii}$ if and only if G contains $A \rightarrow a_i$ $A \in V_{ij}$ if and only if G contains $A \rightarrow BC$, and $B \in V_{ik}$, and $C \in V_{k+1i}$, $(k \in \{i, i+1, ..., j-1\})$

The Algorithm

- 1. Compute V₁₁, V₂₂, ..., V_{nn}
- 2. Compute V_{12} , V_{23} , ..., $V_{n-1,n}$
- 3. Compute V_{13} , V_{24} ,...., $V_{n-2,n}$
- 4. And so on....

If $S \in V_{1n}$ then $w \in L(G)$, otherwise $w \notin L(G)$.

Grammar G and string w is given:

$$S \rightarrow AB$$

w = aabbb

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

1. Compute V_{11} , V_{22} , ..., V_{55} Note that: $A \in V_{ii}$ if and only if G contains $A \rightarrow a_{i}$ $V_{11} = ?$ Is there a rule that directly derives $a_1 ?$ $V_{11} = \{A\}$ V_{22} = ? Is there a rule that directly derives a_2 ? $V_{22} = \{A\}$ V_{33} = ? Is there a rule that directly derives a_3 ? $V_{33} = \{B\}$ $V_{AA} = \{B\}, V_{55} = \{B\}$

2. Compute V_{12} , V_{23} , ..., V_{45} Note that: $A \in V_{ii}$ if and only if G contains $A \rightarrow$ BC, and B \in V_{ik} , and C \in V_{k+1i} for all k's Variable → AA $V_{12} = ? \{ A : A \rightarrow BC, B \in V_{11}, C \in V_{22} \}$ $V_{12} = \{\}$ Variable $\stackrel{?}{\rightarrow}$ AB $V_{23} = ? \{ A : A \rightarrow BC, B \in V_{22}, C \in V_{33} \}$ $V_{22} = \{S, B\}$ Variable → BB $V_{34} = ? \{ A : A \rightarrow BC, B \in V_{33}, C \in V_{44} \}$

$$V_{45} = ? \{ A : A \rightarrow BC, B \in V_{44}, C \in V_{55} \}$$
 Variable $\xrightarrow{?} BB$

$$V_{45} = \{A\}$$

 $V_{34} = \{A\}$

3. Compute V_{13} , V_{24} , V_{35}

```
V_{13} = ? \{ A : A \rightarrow BC, B \in V_{11}, C \in V_{23} \} \text{ Variable } \rightarrow AS, AB
            \{A:A \rightarrow BC, B \in V_{12}, C \in V_{33}\}
V_{13} = \{S, B\}
V_{24} = ? \{ A : A \rightarrow BC, B \in V_{22}, C \in V_{34} \} \text{ Variable } \xrightarrow{r} AA
            \{A: A \rightarrow BC, B \in V_{23}, C \in V_{44}\}\ Variable \stackrel{f}{\rightarrow} SB, BB
V_{24} = \{A\}
V_{35} = ? \{ A : A \rightarrow BC, B \in V_{33}, C \in V_{45} \} \text{ Variable } \xrightarrow{r} BA
            \{A: A \rightarrow BC, B \in V_{34}, C \in V_{55}\}\ Variable \rightarrow AB
V_{25} = \{S, B\}
```

4. Compute V_{14} , V_{25}

```
V_{14} = ? \{ A : A \rightarrow BC, B \in V_{11}, C \in V_{24} \} \text{ Variable } \rightarrow AA
            \{A:A \rightarrow BC, B \in V_{12}, C \in V_{34}\}
            \{A: A \rightarrow BC, B \in V_{13}, C \in V_{44}\}\ Variable \rightarrow SB, BB
V_{14} = \{A\}
V_{25} = ? \{ A : A \rightarrow BC, B \in V_{22}, C \in V_{35} \} \text{ Variable } \xrightarrow{r} AS, AB
            \{A: A \rightarrow BC, B \in V_{23}^{-1}, C \in V_{45}^{-1}\}\ Variable \xrightarrow{?} SA, BA
            \{A:A \rightarrow BC, B \in V_{24}, C \in V_{55}\}\ Variable \rightarrow AB
```

$$V_{25} = \{S, B\}$$

5. Compute V_{15}

```
V_{15} = ? \{A : A \rightarrow BC, B \in V_{11}, C \in V_{25} \} \text{ Variable } \xrightarrow{?} AS, AB 
\{A : A \rightarrow BC, B \in V_{12}, C \in V_{35} \} 
\{A : A \rightarrow BC, B \in V_{13}, C \in V_{45} \} \text{ Variable } \xrightarrow{?} SA, BA 
\{A : A \rightarrow BC, B \in V_{14}, C \in V_{55} \} \text{ Variable } \rightarrow AB
```

$$V_{15} = \{S, B\}$$

 $S \in V_{15}$, therefore $w = aabbb \in L(G)$

	1	2	3	4	5
	а	а	b	b	b
1	{A}				
2		{A}			
3			{B}		
4				{B}	
5					{B}

	1	2	3	4	5
	а	а	b	b	b
1	{A}	{}			
2		{A}	{S, B}		
3			{B}	{A}	
4				{B}	{A}
5					{B}

	1	2	3	4	5
	а	а	b	b	b
1	{A}	{}	{S, B}		
2		{A}	{S, B}	{A}	
3			{B}	{A}	{S, B}
4				{B}	{A}
5					{B}

	1	2	3	4	5
	а	а	b	b	b
1	{A}	{}	{S, B}	{A}	{S, B}
2		{A}	{S, B}	{A}	{S, B}
3			{B}	{A}	{S, B}
4				{B}	{A}
5					{B}

Approximate time complexity:

Number of V_{ij}'s to be computed

If
$$|w| = n$$

 $n(n-1)/2$

Number of evaluations in each V_{ij}

at most n