
Context-Free Languages

COT 4420
Theory of Computation

Lecture 11

Chapter 5

Regular Languages

}0:{ ≥nba nn }{ Rww

**ba *)(ba +

Context-Free Languages

Example 1

G = ({S} , {a, b} , S, P)
S  aSb
S  λ

S => aSb => aaSbb => aaaSbbb => aaaabbbb
S => aSb => aaSbb => aabb
Derivations:

Presenter
Presentation Notes
Let’s look at some derivation:

We write: S => aaabbb

Instead of:
S => aSb => aaSbb => aaaSbbb => aaabbb

for zero or more derivation steps

Notation
*

Example

Grammar: Possible Derivations:
S  aSb S => λ
S  λ S => ab

S => aaaSbbb => aaaaabbbbb

*

*

* *

Language of a Grammar

• For a grammar G with start variable S

L(G) = { w: S => w, w ∈ T*}*

Example

Grammar:
S  aSb
S  λ

Language of the grammar:

}0:{ ≥= nbaL nn

Context-Free Grammar

• A grammar G=(V, T, S, P) is context-free if all
productions in P have the form:

where and

• A language L is a context-free language iff there
is a context-free grammar G such that L = L(G)

Sequence of
terminals and variables

Context-Free Language

L = {anbn : n ≥ 0} is a context-free language since
context-free grammar:

S  aSb | λ generates L(G) = L

Another Example

Context-free grammar G:
S  aSa | bSb | λ

A derivation: S => aSa => abSba => abba
L(G) = { wwR : w ∈ {a,b}* }

Another Example

Context-free grammar G:
S  (S) | SS | λ

A derivation:
S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses

Example 2

L = { an bm : n ≠ m}

S1 → aS1b | λ
S → AS1

A → aA|a

n > m

aaaaaaaabbbbb

n < m

aaaaabbbbbbbbb

S1 → aS1b | λ
S → S1B

B → bB|bS → AS1 | S1B
S1 → aS1b | λ
A → aA|a
B → bB|b

Presenter
Presentation Notes
How can we create a context free grammar? We know how to create in the case that n=m.

Example 3

Suppose I have this grammar:
S → aB | bA
A → aS | bAA | a
B → bS | aBB | b

Claim: L(G) is all words over {a, b} that have an
equal number of a’s and b’s (excluding λ).

Proof: by induction on the size of w ∈ L(G).

Proof by induction

Induction hypothesis:
1. S =>* w iff w has an equal number of a’s and

b’s
2. A =>* w iff w has one more a’s than b’s
3. B =>* w iff w has one more b’s than a’s

Basis: true for |w| = 1 ✓
Inductive step: assume it is true for |w| ≤ k-1

1. S =>* w iff w has an equal number of
a’s and b’s

If S =>* w then w has an equal number of a’s and
b’s
Suppose S=>* w, |w| = k. The first derivation must
be S → aB or S → bA. Suppose it is S → aB. Then w
= aw1 where B =>* w1. Since |w1| = k-1 by
induction hypothesis (3) w1 has one more b’s than
a’s. Therefore w has equal number of a’s and b’s.
We can prove similarly if the first step is using the
rule S → bA.

1. S =>* w iff w has an equal number
of a’s and b’s

If w has an equal number of a’s and b’s then
S=>* w
Assume |w| = k and w has equal number of a’s
and b’s. Suppose w = aw1. So w1 must have one
more b’s than a’s. By induction hypothesis since
|w1|= k-1, B =>* w1. Thus S => aB =>* aw1 = w.
Therefore, S =>* w
Similarly if w = bw1.

2. A =>* w iff w has one more a’s than
b’s

If A=>* w then w has one more a’s than b’s.
Suppose A=>* w and |w| = k>1. Then the first
derivation step must be A → aS or A → bAA.
In the first case, S =>* w1 with w1 having equal
a’s and b’s. In the second case first rhs A=>* w1
and second rhs A=>* w2, with w1 and w2 having
one more a’s than b’s. Thus, A =>* bw1w2 has
one more a’s than b’s overall.

2. A =>* w iff w has one more a’s than
b’s

If w has one more a’s than b’s then A =>* w
Assume w has one more a’s than b’s and |w|=k.
Let w= aw1. By induction S =>* w1 therefore, A=> aS
=>* aw1=w.
Let w = bw2. Now w2 has two more a’s than b’s and
can be written as w2 = w3w4 with w3 having one more
a’s than b’s and w4 having one more a’s than b’s (Why
this is true?), by induction
A=>* w3 and A =>* w4 therefore:
A=> bAA =>* bw3w4 = w

Derivations

Derivations

• When a sentential form has a number of
variables, we can replace any one of them at
any step.

• As a result, we have many different
derivations of the same string of terminals.

Derivations

Example: 1. S → aAS 2. S → a
3. A → SbA 4. A → SS 5. A → ba

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

S => aAS => aSbAS => aSbAa => aSbSSa =>

aabSSa => aabSaa => aabaaa

1 3 2 4 2

2 2

Leftmost Derivation

A derivation is said to be leftmost if in each step
the leftmost variable in the sentential form is
replaced.
Example: S → aAS | a

A → SbA | SS | ba

S => aAS => aSbAS => aabAS => aabSSS =>
aabaSS => aabaaS => aabaaa Leftmost

Rightmost Derivation

A derivation is said to be rightmost if in each step the
rightmost variable is replaced.
Example: 1. S → aAS 2. S → a

3. A → SbA 4. A → SS 5. A → ba

Rightmost

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

S => aAS => aSbAS => aSbAa => aSbSSa =>
aabSSa => aabSaa => aabaaa

Neither

Leftmost and Rightmost Derivation

Example: 1. S → aAS 2. S → a
3. A → SbA 4. A → SS 5. A → ba

Derivation Trees

Prof. Busch - LSU

ABS ⇒
S

BA

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU

aaABABS ⇒⇒

a a A

S

BA

ABS → λ|aaAA→ λ|BbB →

aaABbaaABABS ⇒⇒⇒
S

BA

a a A B b

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU

aaBbaaABbaaABABS ⇒⇒⇒⇒
S

BA

a a A B b

λ

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU

aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

yield
aaλλb = aab

S

BA

a a A B b

λ λ

Derivation Tree
(parse tree)

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU

• Derivation trees are trees whose nodes are labeled
by symbols of a CFG.

• Root is labeled by S (start symbol).
• Leaves are labeled by terminals T ∪ {λ}
• Interior nodes are labeled by non-terminals V.
• If a node has label A ∈ V, and there is a production

rule A →α1α2…αn then its children are labeled
from left to right α1, α2, … ,αn.

• The string of symbols obtained by reading the
leaves from left to right is said to be the yield.

Derivation Trees

Presenter
Presentation Notes
Draw it on the board

Partial Derivation Tree

A partial derivation tree is a subset of the
derivation tree (the leaves can be non-terminals
or terminals.

ABS → λ|aaAA→ λ|BbB →

S

BA

Partial
derivation tree

Partial Derivation Tree

aaABABS ⇒⇒

a a A

S

BA

yield aaAB

sentential formPartial
derivation tree

• Theorem:
1) If there is a derivation tree with root labeled
A that yields w, then A =>*lm w.
2) If A =>*lm w, then there is a derivation tree
with root A that yields w.

Proof - part 1

• Proof: by induction on the height of the tree
• Basis: if height is 1, A → a1a2…an must be a

production rule. Therefore, A=>*lm a1a2…an

• Inductive step: Assume it is true for trees of
height < h, and you want to prove for height h.

Since h > 1, the production used at root has at least
one variable on its right side.

A

a1 an
. . .

Presenter
Presentation Notes
The tree consists of root A and one or more children

Proof - part 1

• Assume node A has children X1, X2, …, Xn.
Each of these Xi yield wi in at most h-1 steps.

• Note that Xi might be a terminal, in that
case Xi=wi and nothing needs to be done.

• If Xi is a non-terminal, because of the induction
hypothesis we know that there is a leftmost derivation
Xi =>*lm wi

• Thus, A =>lm X1…Xn =>*lm w1X2…Xn =>*lm w1w2X3…Xn
=>*lm … =>*lm w1…wn = w.

A

X1 Xn
. . .

w1 wn

Proof – part 2
• Proof: by induction on the length of the

derivation
• Basis: if A =>lm a1a2…an by a one step derivation

then there must be a derivation tree

• Inductive step: Assume it is true for derivations
of < k steps, and let A =>*lm w be a derivation of
k steps. Since k>1, the first step must be A =>lm
X1X2 … Xn

A

a1 an
. . .

Presenter
Presentation Notes
Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.

Proof – part 2

• If Xi is a terminal, in that case Xi= wi and
nothing needs to be done.

• If Xi is a nonterminal Xi =>*lm wi in at most k-1
steps. By the induction hypothesis there is a
derivation tree with root Xi and yield wi.

• So we create the derivation tree as follows:
A

X1 Xn. . .

w1 wn

Presenter
Presentation Notes
So if there is leftmost derivation of w from A, then there is a parse tree with root A that yields w.
in fact, any derivation, even one that isn’t leftmost or rightmost, of terminal string w from variable A implies that there is a parse tree with root A and yield w.

Ambiguity

E → E + E
E → E * E a * b + b + a
E → a | b

Ambiguous grammars
Example

E

E E+

E * E E + E

a b b a

E

E E*

+ Ea

a

E

E + E

b b

Two derivation trees

Presenter
Presentation Notes
So these two trees trivially are not the same and so the grammar is ambiguous
Arithmatic expressions for programming languages

It is not trivial to figure out if a grammar is ambiguous or not

Example

E → E + E E → E * E E → a | b

E => E + E => E * E + E => a * E + E => a * b + E
=>
a * b + E + E => a * b + b + E => a* b + b + a

E => E * E => a * E => a * E + E => a * E + E + E
=> a * b + E + E => a * b + b + E => a* b + b + a

Leftmost derivation

Leftmost derivation

Ambiguous grammars

• A context-free grammar G is ambiguous if
there exist some w ∈ L(G) that has at least
two distinct derivation trees.

• Or if there exists two or more leftmost
derivations (or rightmost).

Why do we care about ambiguity?

Grammar for mathematical expressions:
E → E + E E → E * E E → a

E

E E+

a E * E

a a

E

E E*

a

a

a + a * a

+ EE

a

Why do we care about ambiguity?

Compute expressions result using the tree

E

E E+

3 E * E

3 3

E

E E*

3

3

3 + 3 * 3 =?

+ EE

3

93

12

36

18

Why do we care about ambiguity?

John saw the boy with a telescope.

Ambiguity

• In general, ambiguity is bad for programming
languages and we want to remove it

• Sometimes it is possible to find a non-
ambiguous grammar for a language

• But in general it is difficult to achieve this

Non-ambiguous Grammar
Example

• Can we rewrite the previous grammar so that
it is not ambiguous anymore?

Equivalent non-ambiguous grammar:
(Generates the same language)

E → E + T | T
T → T * R | R
R → a

E

E T+

T T * R

a

R R

a

a

Unique derivation tree
for a + a * a

 Every string w in L(G) has a unique
derivation tree

Ambiguous Grammars

• If L is a context-free language for which there
exists an unambiguous grammar, then L is said
to be unambiguous. If every grammar that
generates L is ambiguous, then the language is
called inherently ambiguous.

• In general it is very difficult to show whether
or not a language is inherently ambiguous.

Parsing

Prof. Busch - LSU

Lexical
analyzer Parser

Program
file

machine
code

Input String Output

Compiler

• Recognizes the lexemes of the input program
file:

Keywords (if, then, else, while,…),
Integers,
Identifiers (variables), etc
Removes white space and comments

Lexical Analyzer

Lexical Analyzer

• Examples:
letter → AB…Zab…z
digit → 01…9

• digit: [0-9]
letter: [a-zA-Z]
num: digit+ (. digit+)? (E (+-)? digit+)?
identifier: letter (letter | digit)*

Design of a Lexical Analyzer Generator

• Translate regular expressions to NFA
• Translate NFA to an efficient DFA

regular
expressions NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

Optional

• Parsing = process of determining if a string
of tokens can be generated by a grammar

• Knows the grammar of the programming
language to be compiled

• Constructs derivation (and derivation tree)
for input program file (input string)

• Converts derivation to machine code

Parser

Example Parser

stmt → id := expr
| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| begin opt_stmts end

opt_stmts → stmt ; opt_stmts
| ε

Parser

• Finds the derivation of a particular input

Parser

10 * 5 + 2

derivation
E => E + T

=> T + T
=> T * R + T
=> R * R + T
=> 10 * R + T
=> 10 * 5 + R
=> 10 * 5 + 2

E → E + T | T
T → T * R | R
R → INT

Prof. Busch - LSU

mult a, 2, 5
add b, 10, a

machine codeDerivation trees
are used to build
machine code

derivation
E => E + T

=> T + T
=> T * R + T
=> R * R + T
=> 10 * R + T
=> 10 * 5 + R
=> 10 * 5 + 2

E

E T+

T

10

*

R

5

2T R

R

Parsing

• Parsing of a string w ∈ L(G) is to find a sequence
of productions by which w is derived or to
determine that w ∉ L(G).

Example: Find derivation of string aabb
S → SS | aSb | bSa | λ

Parser

aabb
derivation

?
S → SS
S →aSb
S → bSa
S →λ

Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
First derivation:
S => SS
S => aSb
S => bSa
S => λ

✓

✗

✓
✗

All possible derivations of length 1

Cannot possibly produce aabb

Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
First derivation:
S => SS ✓
S => aSb ✓
S => bSa ✗
S => λ ✗

Second derivation:
S => SS => SSS
S => SS => aSbS
S => SS => bSaS
S => SS => S

S => aSb => aSSb
S => aSb => aaSbb
S => aSb => abSab
S => aSb => ab

✓
✓

✓

✓
✓

✗

✗
✗

Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
Second derivation:
S => SS => SSS
S => SS => aSbS
S => SS => bSaS
S => SS => S

S => aSb => aSSb
S => aSb => aaSbb
S => aSb => abSab
S => aSb => ab

✓
✓

✓

✓
✓

✗

✗
✗

Third derivation:

Explore all possible
derivations

A possible derivation found:
S => aSb = aaSbb => aabb

Exhaustive search / Brute force

• This approach is called exhaustive search
parsing or brute force parsing which is a form
of top-down parsing.

• Can we use this approach as an algorithm for
determining whether or not w ∈ L(G) ?

• Theorem: Suppose a CFG has no rules of the
form A →λ and A → B. Then the exhaustive
search parsing method can be made into an
algorithm to parse w ∈ Σ*.

• Proof: In each derivation step, either the length
of the sentential form or the number of
terminals increases. Therefore, the maximum
length of a derivation is 2|w|. If w is parsed by
then, you have the parse. If not, w ∉ L(G).

Parsing algorithm

• The exhaustive search algorithm is not very
efficient since it may grow exponentially with
the length of the string.

For general context-free grammars there
exists a parsing algorithm that parses a string
w in time |w|3

Faster Parsers

• There exists faster parsing algorithms for
specialized grammars.

A context-free grammar is said to be a simple
grammar (s-grammar) if all its productions are of
the form:

A → ax , A ∈ V, a ∈ T, x ∈ V*
And any pair (A, a) occurs at most once.

Faster Parsers

S-grammar Example: S → aS | bSS | c

• Looking at exhaustive search for this grammar,
at each step there is only one choice to follow.

w = abcc
S => aS => abSS => abcS => abcc

• Total steps for parsing string w: |w|

	Context-Free Languages	
	Slide Number 2
	Example 1
	 Notation
	Example
	Language of a Grammar
	Example
	Context-Free Grammar
	Context-Free Language
	Another Example
	Another Example
	Example 2
	Example 3
	Proof by induction
	�1. S =>* w iff w has an equal number of a’s and b’s�
	�1. S =>* w iff w has an equal number of a’s and b’s�
	�2. A =>* w iff w has one more a’s than b’s�
	�2. A =>* w iff w has one more a’s than b’s�
	Derivations
	Derivations
	Derivations
	Leftmost Derivation
	Rightmost Derivation
	Leftmost and Rightmost Derivation
	Derivation Trees
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Derivation Trees
	Partial Derivation Tree
	Partial Derivation Tree
	Slide Number 34
	Proof - part 1
	Proof - part 1
	Proof – part 2
	Proof – part 2
	Ambiguity
	Ambiguous grammars�Example
	Example
	Ambiguous grammars
	Why do we care about ambiguity?
	Why do we care about ambiguity?
	Why do we care about ambiguity?
	Ambiguity
	Non-ambiguous Grammar�Example
	Ambiguous Grammars
	Parsing
	Slide Number 50
	Slide Number 51
	Lexical Analyzer
	Design of a Lexical Analyzer Generator
	Slide Number 54
	Example Parser
	Parser
	Slide Number 57
	Parsing
	Exhaustive search / Brute force
	Exhaustive search / Brute force
	Exhaustive search / Brute force
	Exhaustive search / Brute force
	Slide Number 63
	Parsing algorithm
	Faster Parsers
	Faster Parsers

