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Example 1

G = ({S} , {a, b} , S, P)
S  aSb
S  λ

S => aSb => aaSbb => aaaSbbb => aaaabbbb
S => aSb => aaSbb => aabb
Derivations:

Presenter
Presentation Notes
Let’s look at some derivation: 



We write:      S => aaabbb

Instead of:
S => aSb => aaSbb => aaaSbbb => aaabbb

for zero or more derivation steps

Notation
*



Example 

Grammar: Possible Derivations:
S  aSb S => λ
S  λ S => ab

S => aaaSbbb => aaaaabbbbb

*

*

* *



Language of a Grammar

• For a grammar G with start variable S

L(G) = { w: S => w,  w ∈ T*}*



Example

Grammar:
S  aSb
S  λ

Language of the grammar:
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Context-Free Grammar

• A grammar G=(V, T, S, P) is context-free if all 
productions in P have the form:

where               and    

• A language L is a context-free language iff there 
is a context-free grammar G such that L = L(G)

Sequence of 
terminals and variables



Context-Free Language

L = {anbn : n ≥ 0} is a context-free language since 
context-free grammar:  

S  aSb | λ generates L(G) = L 



Another Example

Context-free grammar G: 
S  aSa |  bSb | λ

A derivation:  S => aSa => abSba => abba
L(G) = { wwR : w ∈ {a,b}* } 



Another Example

Context-free grammar G: 
S  (S) | SS | λ

A derivation:  
S => SS => (S)S => ((S))S => (())(S) => (())()

L(G) : balanced parentheses



Example 2

L = { an bm : n ≠ m}

S1 → aS1b | λ
S   → AS1

A → aA|a

n > m

aaaaaaaabbbbb

n < m

aaaaabbbbbbbbb

S1 → aS1b | λ
S   → S1B

B  → bB|bS  → AS1 | S1B
S1 → aS1b | λ
A → aA|a
B  → bB|b

Presenter
Presentation Notes
How can we create a context free grammar? We know how to create in the case that n=m. 



Example 3

Suppose I have this grammar:
S → aB | bA
A → aS | bAA | a
B → bS | aBB | b

Claim: L(G) is all words over {a, b} that have an 
equal number of a’s and b’s (excluding λ).

Proof: by induction on the size of w ∈ L(G).



Proof by induction

Induction hypothesis:
1. S =>* w iff w has an equal number of a’s and 

b’s
2. A =>* w iff w has one more a’s than b’s
3. B =>* w iff w has one more b’s than a’s

Basis: true for |w| = 1 ✓
Inductive step: assume it is true for |w| ≤ k-1



1. S =>* w iff w has an equal number of 
a’s and b’s

If S =>* w then w has an equal number of a’s and 
b’s
Suppose S=>* w, |w| = k. The first derivation must 
be S → aB or S → bA. Suppose it is S → aB. Then w 
= aw1 where B =>* w1. Since |w1| = k-1 by 
induction hypothesis (3) w1 has one more b’s  than 
a’s. Therefore w has equal number of a’s and b’s. 
We can prove similarly if the first step is using the 
rule S → bA. 



1. S =>* w iff w has an equal number 
of a’s and b’s

If w has an equal number of a’s and b’s then 
S=>* w
Assume |w| = k and w has equal number of a’s 
and b’s. Suppose w = aw1. So w1 must have one 
more b’s than a’s. By induction hypothesis since 
|w1|= k-1, B =>* w1. Thus S => aB =>* aw1 = w.
Therefore, S =>* w
Similarly if w = bw1.



2. A =>* w iff w has one more a’s than 
b’s

If A=>* w  then w has one more a’s than b’s. 
Suppose A=>* w and |w| = k>1. Then the first 
derivation step must be A → aS or A → bAA.
In the first case, S =>* w1 with w1 having equal 
a’s and b’s. In the second case first rhs A=>* w1
and second rhs A=>* w2, with w1 and w2 having 
one more a’s than b’s. Thus, A =>* bw1w2 has 
one more a’s than b’s overall. 



2. A =>* w iff w has one more a’s than 
b’s

If w has one more a’s than b’s then A =>* w
Assume w has one more a’s than b’s and |w|=k.
Let w= aw1. By induction S =>* w1 therefore, A=> aS
=>* aw1=w. 
Let w = bw2. Now w2 has two more a’s than b’s and 
can be written as w2 = w3w4 with w3 having one more 
a’s than b’s and w4 having one more a’s than b’s (Why 
this is true?), by induction
A=>* w3 and   A =>* w4 therefore:
A=> bAA =>* bw3w4 = w



Derivations



Derivations

• When a sentential form has a number of 
variables, we can replace any one of them at 
any step. 

• As a result, we have many different 
derivations of the same string of terminals. 



Derivations

Example: 1.  S → aAS 2. S → a
3. A → SbA 4.  A → SS     5. A → ba

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2

S => aAS => aSbAS => aSbAa => aSbSSa => 

aabSSa => aabSaa => aabaaa

1 3 2 4 2

2 2



Leftmost Derivation

A derivation is said to be leftmost if in each step 
the leftmost variable in the sentential form is 
replaced. 
Example: S → aAS |  a

A → SbA | SS | ba

S => aAS => aSbAS => aabAS => aabSSS => 
aabaSS => aabaaS => aabaaa Leftmost



Rightmost Derivation

A derivation is said to be rightmost if in each step the 
rightmost variable is replaced.
Example: 1.  S → aAS 2. S → a

3. A → SbA 4.  A → SS        5. A → ba

Rightmost

S => aAS => aAa => aSbAa => aSbSSa => aSbSaa

=> aSbaaa => aabaaa

1 2 3 4 2

2 2



S => aAS => aSbAS => aSbAa => aSbSSa => 
aabSSa => aabSaa => aabaaa

Neither

Leftmost and Rightmost Derivation

Example: 1.  S → aAS 2. S → a
3. A → SbA 4.  A → SS         5. A → ba



Derivation Trees



Prof. Busch - LSU

ABS ⇒
S

BA

ABS → λ|aaAA→ λ|BbB →



Prof. Busch - LSU

aaABABS ⇒⇒

a a A

S

BA

ABS → λ|aaAA→ λ|BbB →



aaABbaaABABS ⇒⇒⇒
S

BA

a a A B b

ABS → λ|aaAA→ λ|BbB →
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aaBbaaABbaaABABS ⇒⇒⇒⇒
S

BA

a a A B b

λ

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU



aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒

yield
aaλλb = aab

S

BA

a a A B b

λ λ

Derivation Tree
(parse tree)

ABS → λ|aaAA→ λ|BbB →

Prof. Busch - LSU



• Derivation trees are trees whose nodes are labeled 
by symbols of a CFG. 

• Root is labeled by S (start symbol).
• Leaves are labeled by terminals T ∪ {λ}
• Interior nodes are labeled by non-terminals V.
• If a node has label A ∈ V, and there is a production 

rule A →α1α2…αn then its children are labeled 
from left to right α1, α2, … ,αn.

• The string of symbols obtained by reading the 
leaves from left to right is said to be the yield. 

Derivation Trees

Presenter
Presentation Notes
Draw it on the board



Partial Derivation Tree

A partial derivation tree is a subset of the 
derivation tree (the leaves can be non-terminals 
or terminals.

ABS → λ|aaAA→ λ|BbB →

S

BA

Partial 
derivation tree



Partial Derivation Tree

aaABABS ⇒⇒

a a A

S

BA

yield aaAB

sentential formPartial 
derivation tree



• Theorem:
1) If there is a derivation tree with root labeled 
A that yields w, then A =>*lm w.
2) If A =>*lm w, then there is a derivation tree 
with root A that yields w. 



Proof - part 1

• Proof: by induction on the height of the tree 
• Basis: if height is 1, A → a1a2…an must be a 

production rule. Therefore, A=>*lm a1a2…an

• Inductive step: Assume it is true for trees of 
height < h, and you want to prove for height h.

Since h > 1, the production used at root has at least 
one variable on its right side.   

A

a1 an
. . .

Presenter
Presentation Notes
The tree consists of root A and one or more children 



Proof - part 1

• Assume node A has children X1, X2, …, Xn. 
Each of these Xi yield wi in at most h-1 steps. 

• Note that Xi might be a terminal, in that 
case Xi=wi and nothing needs to be done.

• If Xi is a non-terminal, because of the induction 
hypothesis we know that there is a leftmost derivation 
Xi =>*lm wi

• Thus, A =>lm X1…Xn =>*lm w1X2…Xn =>*lm w1w2X3…Xn
=>*lm … =>*lm w1…wn = w.

A

X1 Xn
. . .

w1 wn



Proof – part 2
• Proof: by induction on the length of the 

derivation
• Basis: if A =>lm a1a2…an by a one step derivation 

then there must be a derivation tree

• Inductive step: Assume it is true for derivations 
of < k steps, and let A =>*lm w be a derivation of 
k steps. Since k>1, the first step must be A =>lm
X1X2 … Xn

A

a1 an
. . .

Presenter
Presentation Notes
Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.



Proof – part 2

• If Xi is a terminal, in that case Xi= wi and 
nothing needs to be done.

• If Xi is a nonterminal Xi =>*lm wi in at most k-1 
steps. By the induction hypothesis there is a 
derivation tree with root Xi and yield wi. 

• So we create the derivation tree as follows:
A

X1 Xn. . .

w1 wn

Presenter
Presentation Notes
So if there is leftmost derivation of w from A, then there is a parse tree with root A that yields w. 
in fact, any derivation, even one that isn’t leftmost or rightmost, of terminal string w from variable A implies that there is a parse tree with root A and yield w.




Ambiguity



E → E + E
E → E * E a * b + b + a
E → a | b

Ambiguous grammars
Example

E

E E+

E * E E + E

a b b a

E

E E*

+ Ea

a

E

E + E

b b

Two derivation trees

Presenter
Presentation Notes
So these two trees trivially are not the same and so the grammar is ambiguous
Arithmatic expressions for programming languages

It is not trivial to figure out if a grammar is ambiguous or not 



Example

E → E + E               E → E * E E → a | b

E => E + E => E * E + E  => a * E + E => a * b + E
=>
a * b + E + E => a * b + b + E => a* b + b + a

E => E * E => a * E => a * E + E => a *  E + E + E 
=> a * b + E + E => a * b + b + E => a* b + b + a

Leftmost derivation

Leftmost derivation



Ambiguous grammars

• A context-free grammar G is ambiguous if 
there exist some w ∈ L(G) that has at least 
two distinct derivation trees. 

• Or if there exists two or more leftmost 
derivations (or rightmost).



Why do we care about ambiguity?

Grammar for mathematical expressions:
E → E + E               E → E * E E → a

E

E E+

a E * E

a a

E

E E*

a

a

a + a * a

+ EE

a



Why do we care about ambiguity?

Compute expressions result using the tree

E

E E+

3 E * E

3 3

E

E E*

3

3

3 + 3 * 3 =?

+ EE

3

93

12

36

18



Why do we care about ambiguity?

John saw the boy with a telescope.



Ambiguity

• In general, ambiguity is bad for programming 
languages and we want to remove it

• Sometimes it is possible to find a non-
ambiguous grammar for a language

• But in general it is difficult to achieve this



Non-ambiguous Grammar
Example

• Can we rewrite the previous grammar so that 
it is not ambiguous anymore? 

Equivalent non-ambiguous grammar: 
(Generates the same language)

E → E +  T | T
T → T * R | R
R → a

E

E T+

T T * R

a

R R

a

a

Unique derivation tree 
for a + a * a

 Every string w in L(G) has a unique 
derivation tree



Ambiguous Grammars

• If L is a context-free language for which there 
exists an unambiguous grammar, then L is said 
to be unambiguous. If every grammar that 
generates L is ambiguous, then the language is 
called inherently ambiguous. 

• In general it is very difficult to show whether 
or not a language is inherently ambiguous. 



Parsing



Prof. Busch - LSU

Lexical
analyzer Parser

Program
file

machine
code

Input String Output

Compiler



• Recognizes the lexemes of the input program 
file:

Keywords (if, then, else, while,…), 
Integers,
Identifiers (variables), etc
Removes white space and comments

Lexical Analyzer



Lexical Analyzer

• Examples:
letter → AB…Zab…z
digit → 01…9

• digit:  [0-9]
letter: [a-zA-Z] 
num: digit+ (. digit+)? ( E (+-)? digit+ )?
identifier: letter ( letter | digit)*



Design of a Lexical Analyzer Generator

• Translate regular expressions to NFA
• Translate NFA to an efficient DFA

regular
expressions NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

Optional



• Parsing = process of determining if a string 
of tokens can be generated by a grammar

• Knows the grammar of the programming 
language to be compiled

• Constructs derivation (and derivation tree) 
for input program file (input string)

• Converts derivation to machine code

Parser



Example Parser

stmt → id := expr
| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| begin opt_stmts end

opt_stmts → stmt ; opt_stmts
| ε



Parser

• Finds the derivation of a particular input 

Parser

10 * 5 + 2

derivation
E => E + T 

=> T + T
=> T * R + T
=> R * R + T
=> 10 * R + T
=> 10 * 5 + R
=> 10 * 5 + 2

E → E +  T | T
T → T * R | R
R → INT



Prof. Busch - LSU

mult a, 2, 5
add b, 10, a 

machine codeDerivation trees
are used to build
machine code

derivation
E => E + T 

=> T + T
=> T * R + T
=> R * R + T
=> 10 * R + T
=> 10 * 5 + R
=> 10 * 5 + 2

E

E T+

T

10

*

R

5

2T R

R



Parsing

• Parsing of a string w ∈ L(G) is to find a sequence 
of productions by which w is derived or to 
determine that w ∉ L(G). 

Example: Find derivation of string aabb
S → SS | aSb | bSa | λ

Parser

aabb
derivation

?
S → SS 
S →aSb
S → bSa
S →λ



Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
First derivation: 
S => SS
S => aSb
S => bSa
S => λ

✓

✗

✓
✗

All possible derivations of length 1

Cannot possibly produce aabb



Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
First derivation: 
S => SS ✓
S => aSb ✓
S => bSa ✗
S => λ ✗

Second derivation:
S => SS =>  SSS
S => SS => aSbS
S => SS => bSaS
S => SS => S

S => aSb => aSSb
S => aSb => aaSbb
S => aSb => abSab
S => aSb => ab

✓
✓

✓

✓
✓

✗

✗
✗



Exhaustive search / Brute force

• S → SS | aSb | bSa | λ w = aabb
Second derivation:
S => SS =>  SSS
S => SS => aSbS
S => SS => bSaS
S => SS => S

S => aSb => aSSb
S => aSb => aaSbb
S => aSb => abSab
S => aSb => ab

✓
✓

✓

✓
✓

✗

✗
✗

Third derivation:

Explore all possible 
derivations

A possible derivation found:
S => aSb = aaSbb => aabb



Exhaustive search / Brute force

• This approach is called exhaustive search 
parsing or brute force parsing which is a form 
of top-down parsing. 

• Can we use this approach as an algorithm for 
determining whether or not w ∈ L(G) ?



• Theorem: Suppose a CFG has no rules of the 
form A →λ and A → B. Then the exhaustive 
search parsing method can be made into an 
algorithm to parse w ∈ Σ*.

• Proof: In each derivation step, either the length 
of the sentential form or the number of 
terminals increases. Therefore, the maximum 
length of a derivation is 2|w|. If w is parsed by 
then, you have the parse. If not, w ∉ L(G).



Parsing algorithm

• The exhaustive search algorithm is not very 
efficient since it may grow exponentially with 
the length of the string. 

For general context-free grammars there 
exists a parsing algorithm that parses a string 
w in time |w|3



Faster Parsers

• There exists faster parsing algorithms for 
specialized grammars. 

A context-free grammar is said to be a simple 
grammar (s-grammar) if all its productions are of 
the form: 

A → ax ,         A ∈ V,  a ∈ T, x ∈ V*
And any pair (A, a) occurs at most once.



Faster Parsers

S-grammar Example:   S → aS | bSS | c

• Looking at exhaustive search for this grammar, 
at each step there is only one choice to follow. 

w = abcc
S => aS => abSS => abcS => abcc

• Total steps for parsing string w:   |w| 
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