Lecture 11

Context-Free Languages

COT 4420
Theory of Computation

Context-Free Languages

$$\{a^n b^n : n \ge 0\} \qquad \{ww^R\}$$

Regular Languages

$$a*b*$$
 $(a+b)*$

Example 1

G = ({S}, {a, b}, S, P)
S
$$\rightarrow$$
 aSb
S \rightarrow λ

Derivations:

```
S => aSb => aaSbb => aabb
S => aSb => aaSbb => aaaSbbb => aaabbbb
```

Notation

We write: $S \stackrel{*}{=} > aaabbb$

for zero or more derivation steps

Instead of:

S => aSb => aaSbb => aaaSbbb => aaabbb

Example

Grammar:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Possible Derivations:

$$S \stackrel{*}{=} > \lambda$$

Language of a Grammar

For a grammar G with start variable S

$$L(G) = \{ w: S \stackrel{*}{=} > w, w \in T^* \}$$

Example

Grammar:

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Language of the grammar:

$$L = \{a^n b^n : n \ge 0\}$$

Context-Free Grammar

 A grammar G=(V, T, S, P) is context-free if all productions in P have the form:

```
Sequence of terminals and variables A \rightarrow x where A \in V and x \in (V \cup T)^*
```

 A language L is a context-free language iff there is a context-free grammar G such that L = L(G)

Context-Free Language

 $L = \{a^nb^n : n \ge 0\}$ is a context-free language since context-free grammar:

 $S \rightarrow aSb \mid \lambda$ generates L(G) = L

Another Example

Context-free grammar G:

$$S \rightarrow aSa \mid bSb \mid \lambda$$

A derivation: S => aSa => abSba => abba

 $L(G) = \{ ww^{R} : w \in \{a,b\}^{*} \}$

Another Example

Context-free grammar G:

$$S \rightarrow (S) \mid SS \mid \lambda$$

A derivation:

$$S => SS => (S)S => ((S))S => (())(S) => (())(S)$$

L(G): balanced parentheses

Example 2

$$L = \{ a^n b^m : n \neq m \}$$

n > m

aaaaaaabbbbb

$$S \rightarrow AS_1$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$A \rightarrow aA|a$$

aaaaabbbbbbbbb

$$S \rightarrow S_1 B$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$B \rightarrow bB|b$$

$$S \rightarrow AS_1 \mid S_1B$$

 $S_1 \rightarrow aS_1b \mid \lambda$
 $A \rightarrow aA \mid a$
 $B \rightarrow bB \mid b$

Example 3

Suppose I have this grammar:

```
S \rightarrow aB \mid bA
A \rightarrow aS \mid bAA \mid a
```

 $B \rightarrow bS \mid aBB \mid b$

Claim: L(G) is all words over $\{a, b\}$ that have an equal number of a's and b's (excluding λ).

Proof: by induction on the size of $w \in L(G)$.

Proof by induction

Induction hypothesis:

- 1. S =>* w iff w has an equal number of a's and b's
- 2. A = > * w iff w has one more a's than b's
- 3. B = > * w iff w has one more b's than a's

Basis: true for $|w| = 1 \checkmark$

Inductive step: assume it is true for $|w| \le k-1$

1. S =>* w iff w has an equal number of a's and b's

If S =>* w then w has an equal number of a's and b's

Suppose S=>* w, |w| = k. The first derivation must be S \rightarrow aB or S \rightarrow bA. Suppose it is S \rightarrow aB. Then w = aw₁ where B =>* w₁. Since $|w_1| = k-1$ by induction hypothesis (3) w₁ has one more b's than a's. Therefore w has equal number of a's and b's. We can prove similarly if the first step is using the

We can prove similarly if the first step is using the rule $S \rightarrow bA$.

1. S =>* w iff w has an equal number of a's and b's

If w has an equal number of a's and b's then S=>* w

Assume |w| = k and w has equal number of a's and b's. Suppose $w = aw_1$. So w_1 must have one more b's than a's. By induction hypothesis since $|w_1| = k-1$, $B = > w_1$. Thus $S = > aB = > w_1$.

Therefore, S = > * w

Similarly if $w = bw_1$.

2. A =>* w iff w has one more a's than b's

If A=>* w then w has one more a's than b's.

Suppose A=>* w and |w| = k>1. Then the first derivation step must be A \rightarrow aS or A \rightarrow bAA.

In the first case, $S = >^* w_1$ with w_1 having equal a's and b's. In the second case first rhs $A = >^* w_1$ and second rhs $A = >^* w_2$, with w_1 and w_2 having one more a's than b's. Thus, $A = >^* bw_1w_2$ has one more a's than b's overall.

2. A =>* w iff w has one more a's than b's

If w has one more a's than b's then A =>* w

Assume w has one more a's than b's and |w|=k.

Let $w = aw_1$. By induction $S = > * w_1$ therefore, $A = > aS = > * aw_1 = w$.

Let $w = bw_2$. Now w_2 has two more a's than b's and can be written as $w_2 = w_3w_4$ with w_3 having one more a's than b's and w_4 having one more a's than b's (Why this is true?), by induction

 $A=>^* w_3$ and $A=>^* w_4$ therefore:

 $A => bAA => *bw_3w_4 = w$

Derivations

Derivations

 When a sentential form has a number of variables, we can replace any one of them at any step.

 As a result, we have many different derivations of the same string of terminals.

Derivations

Example: 1.
$$S \rightarrow aAS$$
 2. $S \rightarrow a$

3.
$$A \rightarrow SbA$$
 4. $A \rightarrow SS$ 5. $A \rightarrow ba$

4.
$$A \rightarrow SS$$

5. A
$$\rightarrow$$
 ba

$$\underline{S} \stackrel{1}{=} aA\underline{S} \stackrel{2}{=} a\underline{A}a \stackrel{3}{=} aSb\underline{A}a \stackrel{4}{=} aSbS\underline{S}a \stackrel{2}{=} aSbS\underline{S}a$$

$$\underline{S} \stackrel{1}{=} > a\underline{A}S \stackrel{3}{=} > aSb\underline{A}S \stackrel{2}{=} > aSb\underline{A}a \stackrel{4}{=} > a\underline{S}bSSa \stackrel{2}{=} >$$

Leftmost Derivation

A derivation is said to be leftmost if in each step the leftmost variable in the sentential form is replaced.

Example:
$$S \rightarrow aAS \mid a$$

 $A \rightarrow SbA \mid SS \mid ba$

Leftmost

Rightmost Derivation

A derivation is said to be rightmost if in each step the rightmost variable is replaced.

Example: 1.
$$S \rightarrow aAS$$
 2. $S \rightarrow a$

3.
$$A \rightarrow SbA$$
 4. $A \rightarrow SS$ 5. $A \rightarrow ba$

$$S \stackrel{1}{=>} aAS \stackrel{2}{=>} aAa \stackrel{3}{=>} aSbAa \stackrel{4}{=>} aSbSSa \stackrel{2}{=>} aSbSaa$$

Rightmost

Leftmost and Rightmost Derivation

Example: 1.
$$S \rightarrow aAS$$
 2. $S \rightarrow a$

$$3. A \rightarrow SbA$$
 $4. A \rightarrow SS$

4.
$$A \rightarrow SS$$

5. A
$$\rightarrow$$
 ba

Neither

Derivation Trees

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \rightarrow Bb \mid \lambda$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

 $S \rightarrow AB$ $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \to AB$$
 $A \to aaA \mid \lambda$ $B \to Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Derivation Trees

- Derivation trees are trees whose nodes are labeled by symbols of a CFG.
- Root is labeled by S (start symbol).
- Leaves are labeled by terminals $T \cup \{\lambda\}$
- Interior nodes are labeled by non-terminals V.
- If a node has label $A \in V$, and there is a production rule $A \to \alpha_1 \alpha_2 ... \alpha_n$ then its children are labeled from left to right $\alpha_1, \alpha_2, ..., \alpha_n$.
- The string of symbols obtained by reading the leaves from left to right is said to be the yield.

Partial Derivation Tree

A partial derivation tree is a subset of the derivation tree (the leaves can be non-terminals or terminals.

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

Partial
$$S$$
 derivation tree B

Partial Derivation Tree

• Theorem:

- 1) If there is a derivation tree with root labeled A that yields w, then $A =>^*_{lm} w$.
- 2) If $A = >*_{lm} w$, then there is a derivation tree with root A that yields w.

\bigcirc

Proof - part 1

- Proof: by induction on the height of the tree
- Basis: if height is 1, A \rightarrow $a_1a_2...a_n$ must be a production rule. Therefore, A=>* $_{lm}$ $a_1a_2...a_n$

 Inductive step: Assume it is true for trees of height < h, and you want to prove for height h.

Since h > 1, the production used at root has at least one variable on its right side.

Proof - part 1

- Assume node A has children X₁, X₂, ..., X_n.
 Each of these X_i yield w_i in at most h-1 steps.
- Note that X_i might be a terminal, in that case X_i=w_i and nothing needs to be done.
- If X_i is a non-terminal, because of the induction hypothesis we know that there is a leftmost derivation $X_i = >^*_{lm} w_i$

 W_1

 W_n

• Thus, $A =>_{lm} X_1...X_n =>^*_{lm} w_1X_2...X_n =>^*_{lm} w_1w_2X_3...X_n$ =>*_{lm} ... =>*_{lm} w_1...w_n = w.

\bigcirc

Proof – part 2

- Proof: by induction on the length of the derivation
- Basis: if $A =>_{lm} a_1 a_2 ... a_n$ by a one step derivation then there must be a derivation tree

• Inductive step: Assume it is true for derivations of < k steps, and let A $=>*_{lm}$ w be a derivation of k steps. Since k>1, the first step must be A $=>_{lm}$ $X_1X_2 ... X_n$

Proof – part 2

- If X_i is a terminal, in that case $X_i = w_i$ and nothing needs to be done.
- If X_i is a nonterminal $X_i = >^*_{lm} w_i$ in at most k-1 steps. By the induction hypothesis there is a derivation tree with root X_i and yield w_i .
- So we create the derivation tree as follows:

Ambiguity

Ambiguous grammars Example

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow a \mid b$$

$$a*b+b+a$$

Two derivation trees

Example

$$E \rightarrow E + E$$
 $E \rightarrow E * E$ $E \rightarrow a \mid b$

$$\underline{E} \Rightarrow \underline{E} + \underline{E} \Rightarrow \underline{E} * \underline{E} + \underline{E} \Rightarrow a * \underline{E} + \underline{E} \Rightarrow a * \underline{b} + \underline{E}$$

$$a * b + \underline{E} + E => a * b + b + \underline{E} => a*$$
 Leftmost derivation

$$\underline{E} \Rightarrow \underline{E} * E \Rightarrow a * \underline{E} \Rightarrow a * \underline{E} + E \Rightarrow a * \underline{E} + \underline{E} \Rightarrow a * \underline{E$$

Ambiguous grammars

 A context-free grammar G is ambiguous if there exist some w ∈ L(G) that has at least two distinct derivation trees.

 Or if there exists two or more leftmost derivations (or rightmost).

Why do we care about ambiguity?

Grammar for mathematical expressions:

$$E \rightarrow E + E$$

$$E \rightarrow E * E \qquad E \rightarrow a$$

$$\mathsf{E} o \mathsf{a}$$

Why do we care about ambiguity?

Compute expressions result using the tree

Why do we care about ambiguity?

John saw the boy with a telescope.

Ambiguity

 In general, ambiguity is bad for programming languages and we want to remove it

 Sometimes it is possible to find a nonambiguous grammar for a language

But in general it is difficult to achieve this

Non-ambiguous Grammar Example

 Can we rewrite the previous grammar so that it is not ambiguous anymore?

Equivalent non-ambiguous grammar: (Generates the same language)

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * R \mid R$$

$$R \rightarrow a$$

Every string w in L(G) has a unique derivation tree

for a + a * a

Ambiguous Grammars

• If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous. If every grammar that generates L is ambiguous, then the language is called inherently ambiguous.

 In general it is very difficult to show whether or not a language is inherently ambiguous.

Parsing

Compiler

Lexical Analyzer

Recognizes the lexemes of the input program file:

```
Keywords (if, then, else, while,...),
Integers,
Identifiers (variables), etc
Removes white space and comments
```

Lexical Analyzer

• Examples: letter \rightarrow A | B | ... | Z | a | b | ... | z digit \rightarrow 0 | 1 | ... | 9

digit: [0-9]
letter: [a-zA-Z]
num: digit⁺ (. digit⁺)? (E (+ | -)? digit⁺)?
identifier: letter (letter | digit)*

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Parser

- Parsing = process of determining if a string of tokens can be generated by a grammar
- Knows the grammar of the programming language to be compiled
- Constructs derivation (and derivation tree) for input program file (input string)
- Converts derivation to machine code

Example Parser

```
stmt \rightarrow id := expr
| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| begin opt_stmts end
opt_stmts \rightarrow stmt ; opt_stmts
| \epsilon
```

Parser

Finds the derivation of a particular input

derivation

Derivation trees are used to build machine code

Parsing

 Parsing of a string w ∈ L(G) is to find a sequence of productions by which w is derived or to determine that w ∉ L(G).

Example: Find derivation of string *aabb* $S \rightarrow SS \mid aSb \mid bSa \mid \lambda$

• S
$$\rightarrow$$
 SS | aSb | bSa | λ

$$w = aabb$$

First derivation:

$$S => SS$$

$$S => aSb$$

$$S => bSa$$

$$S \Rightarrow \lambda$$

Cannot possibly produce aabb

All possible derivations of length 1

• S
$$\rightarrow$$
 SS | aSb | bSa | λ

$$w = aabb$$

First derivation:

$$S => aSb$$

 $S => \lambda$

Second derivation:

$$S \Rightarrow SS \Rightarrow aSbS \checkmark$$

$$S => SS => bSaS$$

$$S => aSb => aSSb \checkmark$$

$$S => aSb => aaSbb \checkmark$$

$$S => aSb => ab$$
 X

• S
$$\rightarrow$$
 SS | aSb | bSa | λ

$$w = aabb$$

Second derivation:

$$S => SS => aSbS$$

$$S => SS => bSaS$$
 X

Third derivation:

Explore all possible derivations

$$S => aSb => aSSb \checkmark$$

$$S => aSb => aaSbb \checkmark$$

$$S => aSb => ab$$
 X

A possible derivation found:

 This approach is called exhaustive search parsing or brute force parsing which is a form of top-down parsing.

 Can we use this approach as an algorithm for determining whether or not w ∈ L(G)? • Theorem: Suppose a CFG has no rules of the form $A \to \lambda$ and $A \to B$. Then the exhaustive search parsing method can be made into an algorithm to parse $w \in \Sigma^*$.

 Proof: In each derivation step, either the length of the sentential form or the number of terminals increases. Therefore, the maximum length of a derivation is 2|w|. If w is parsed by then, you have the parse. If not, w ∉ L(G).

Parsing algorithm

 The exhaustive search algorithm is not very efficient since it may grow exponentially with the length of the string.

❖For general context-free grammars there exists a parsing algorithm that parses a string w in time |w|³

Faster Parsers

 There exists faster parsing algorithms for specialized grammars.

A context-free grammar is said to be a simple grammar (s-grammar) if all its productions are of the form:

$$A \rightarrow ax$$
, $A \in V$, $a \in T$, $x \in V^*$

And any pair (A, a) occurs at most once.

Faster Parsers

S-grammar Example: $S \rightarrow aS \mid bSS \mid c$

 Looking at exhaustive search for this grammar, at each step there is only one choice to follow.

$$w = abcc$$

Total steps for parsing string w: |w|