Lecture 11

Context-Free Languages

COT 4420 Theory of Computation

Chapter 5

Example 1

$G = (\{S\}, \{a, b\}, S, P)$ $S \rightarrow aSb$ $S \rightarrow \lambda$

Derivations:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow b \Rightarrow aaaSbbb \Rightarrow aaaabbbb$ $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Notation

We write: $S \stackrel{*}{\Rightarrow}$ aaabbb

for zero or more derivation steps

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow b \Rightarrow aaaSbbb \Rightarrow aaaabbb$

Example

 $S \rightarrow aSb$

Grammar: Possible Derivations: $S \rightarrow \lambda$ $S \stackrel{*}{\Rightarrow} ab$ $S \stackrel{*}{\Rightarrow} a$ aa S bbb $\stackrel{*}{\Rightarrow} a$ aaaabbbbb $S \xrightarrow{*} \lambda$

Language of a Grammar

• For a grammar G with start variable S

$$
L(G) = \{ w: S \xrightarrow{*} w, w \in T^* \}
$$

Example

Grammar:

$$
S \to aSb
$$

$$
S \to \lambda
$$

Language of the grammar:

$$
L = \{a^n b^n : n \ge 0\}
$$

Context-Free Grammar

• A grammar G=(V, T, S, P) is context-free if all productions in P have the form:

$A \rightarrow \overbrace{x}^{\sim}$ where $A \in V$ and $x \in (V \cup T)^{*}$ Sequence of terminals and variables

• A language L is a context-free language iff there is a context-free grammar G such that $L = L(G)$

Context-Free Language

L = $\{a^n b^n : n \ge 0\}$ is a context-free language since context-free grammar:

 $S \rightarrow aSb \mid \lambda$ generates $L(G) = L$

Another Example

Context-free grammar G: $S \rightarrow aSa \mid bSb \mid \lambda$

A derivation: $S \Rightarrow$ aSa => abSba => abba $L(G) = \{ WW^{R} : W \in \{a,b\}^{\ast} \}$

Another Example

Context-free grammar G: $S \rightarrow (S)$ | SS | λ

A derivation:

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((())(S) \Rightarrow (())()$

L(G) : balanced parentheses

Example 2 L = { $a^n b^m : n \neq m$ } $S_1 \rightarrow aS_1b \mid \lambda$ $S \rightarrow AS_1$ $A \rightarrow aA/a$ n > m aaaaaaaabbbbb n < m aaaaabbbbbbbbb $S_1 \rightarrow aS_1b \mid \lambda$ $S \rightarrow S_1B$ $S \longrightarrow AS_1 | S_1B | \longrightarrow bB|b$ $\mathsf{S}_1 \rightarrow \mathsf{a} \mathsf{S}_1 \mathsf{b} \mid \lambda$ $A \rightarrow aA/a$ $B \rightarrow bB/b$

Example 3

Suppose I have this grammar:

- $S \rightarrow aB \mid bA$
- $A \rightarrow aS$ | bAA | a
- $B \rightarrow bS$ | aBB | b

Claim: L(G) is all words over {a, b} that have an equal number of a's and b's (excluding λ).

Proof: by induction on the size of $w \in L(G)$.

Proof by induction

Induction hypothesis:

- 1. $S \Rightarrow^* w$ iff w has an equal number of a's and $b's$
- 2. $A \Rightarrow^* w$ iff w has one more a's than b's
- 3. $B \Rightarrow^* w$ iff w has one more b's than a's

Basis: true for $|w| = 1 \sqrt{2}$ Inductive step: assume it is true for $|w| \leq k-1$

1. $S \Rightarrow^* w$ iff w has an equal number of a's and b's

If $S \Rightarrow^* w$ then w has an equal number of a's and $b's$

Suppose $S \Rightarrow^* w$, $|w| = k$. The first derivation must be $S \rightarrow aB$ or $S \rightarrow bA$. Suppose it is $S \rightarrow aB$. Then w $=$ aw₁ where B =>* w₁. Since $|w_1|$ = k-1 by induction hypothesis (3) w_1 has one more b's than a's. Therefore w has equal number of a's and b's. We can prove similarly if the first step is using the rule $S \rightarrow bA$.

1. $S \Rightarrow^* w$ iff w has an equal number of a's and b's

If w has an equal number of a's and b's then $S = >^*$ w

Assume $|w| = k$ and w has equal number of a's and b's. Suppose $w = aw_1$. So w_1 must have one more b's than a's. By induction hypothesis since $|w_1| = k-1$, $B = >^* w_1$. Thus $S = > aB = >^* aw_1 = w$. Therefore, $S \Rightarrow^* w$ Similarly if $w = bw_1$.

2. $A \Rightarrow^* w$ iff w has one more a's than b's

If $A \Rightarrow^* w$ then w has one more a's than b's.

Suppose $A \Rightarrow^* w$ and $|w| = k > 1$. Then the first derivation step must be $A \rightarrow aS$ or $A \rightarrow bAA$.

In the first case, $S \Rightarrow^* w_1$ with w_1 having equal a's and b's. In the second case first rhs $A = >^* w_1$ and second rhs $A \Rightarrow^* w_2$, with w_1 and w_2 having one more a's than b's. Thus, $A \Rightarrow^* b w_1 w_2$ has one more a's than b's overall.

2. $A \Rightarrow^* w$ iff w has one more a's than b's

If w has one more a's than b's then $A \Rightarrow^* w$

Assume w has one more a's than b's and $|w|=k$. Let w= aw₁. By induction $S \Rightarrow^* w_1$ therefore, A=> aS

 $=$ $>$ $*$ aw₁ = w.

Let $w = bw_2$. Now w_2 has two more a's than b's and can be written as $w_2 = w_3w_4$ with w_3 having one more a's than b's and w_4 having one more a's than b's (Why this is true?), by induction

$$
A = >^* w_3 \quad \text{and} \quad A = >^* w_4 \text{ therefore:}
$$

$$
A = > bAA = >^* bw_3w_4 = w
$$

Derivations

Derivations

• When a sentential form has a number of variables, we can replace any one of them at any step.

• As a result, we have many different derivations of the same string of terminals.

Derivations

Example: 1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow SbA$ 4. $A \rightarrow SS$ 5. $A \rightarrow ba$ S => aAS => aAa => aSbAa => aSbSSa => aSbSaa $\stackrel{<}{=}$ > a $\underline{\text{S}}$ baaa $\stackrel{<}{=}$ > aabaaa $1 \t 1 \t 2 \t 3 \t 1 \t 4 \t 1 \t 2$ $2 \cdot 2$ $\underline{S} \stackrel{\doteq}{\Rightarrow} a\underline{AS} \stackrel{\doteq}{\Rightarrow} aSbA\underline{S} \stackrel{\doteq}{\Rightarrow} aSb\underline{A}a \stackrel{\doteq}{\Rightarrow} a\underline{S}bSSa \stackrel{\doteq}{\Rightarrow}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $2 \left(\begin{array}{ccc} 2 & 2 \end{array} \right)$

aabSSa => aabSaa => aabaaa

Leftmost Derivation

A derivation is said to be leftmost if in each step the leftmost variable in the sentential form is replaced.

Example: $S \rightarrow aAS$ a $A \rightarrow SbA$ | SS | ba

Rightmost Derivation

A derivation is said to be rightmost if in each step the rightmost variable is replaced.

Example: 1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow SbA$ 4. $A \rightarrow SS$ 5. $A \rightarrow ba$

Rightmost $S \Rightarrow aAS \Rightarrow aAa \Rightarrow aSbAa \Rightarrow aSbSSa \Rightarrow aSbSaa$ \equiv > aSbaaa $\stackrel{?}{=}$ > aabaaa $\frac{1}{1}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{2}$ $\sqrt{2}$ $\frac{2}{\sqrt{2}}$

Leftmost and Rightmost Derivation

Example: 1. $S \rightarrow aAS$ 2. $S \rightarrow a$ $3. A \rightarrow S\bar{b}A \rightarrow 4. A \rightarrow SS \rightarrow \bar{b}a$

S => aAS => aSbAS => aSbAa => aSbSSa => aabSSa => aabSaa => aabaaa

Neither

Derivation Trees

 $S \rightarrow AB$ $A \rightarrow a a A | \lambda$ $B \rightarrow B b | \lambda$

Prof. Busch - LSU

Derivation Trees

- Derivation trees are trees whose nodes are labeled by symbols of a CFG.
- Root is labeled by S (start symbol).
- Leaves are labeled by terminals $T \cup \{\lambda\}$
- Interior nodes are labeled by non-terminals V.
- If a node has label $A \in V$, and there is a production rule $A \rightarrow \alpha_1 \alpha_2 ... \alpha_n$ then its children are labeled from left to right α_1 , α_2 , ..., α_n .
- The string of symbols obtained by reading the leaves from left to right is said to be the yield.

Partial Derivation Tree

A partial derivation tree is a subset of the derivation tree (the leaves can be non-terminals or terminals.

Partial Derivation Tree

• Theorem:

1) If there is a derivation tree with root labeled A that yields w, then $A \Rightarrow^*_{lm} w$. 2) If $A \Rightarrow^*_{lm} w$, then there is a derivation tree with root A that yields w.

Proof - part 1

- Proof: by induction on the height of the tree
- Basis: if height is 1, A \rightarrow a₁a₂…a_n must be a production rule. Therefore, $A = >^*_{lm} a_1 a_2 ... a_n$

• Inductive step: Assume it is true for trees of height < h, and you want to prove for height h.

Since $h > 1$, the production used at root has at least one variable on its right side.

Proof - part 1

 X_1 \cdots $\left(\mathsf{X}_n\right)$

 W_1 w_n

- Assume node A has children $X_1, X_2, ..., X_n$. Each of these X_i yield w_i in at most h-1 steps. A
- Note that X_i might be a terminal, in that case $X_i = w_i$ and nothing needs to be done.
- If X_i is a non-terminal, because of the induction hypothesis we know that there is a leftmost derivation $X_i = >^*_{lm} w_i$
- Thus, $A = \sum_{lm} X_1...X_n = \sum_{lm} w_1X_2...X_n = \sum_{lm} w_1w_2X_3...X_n$ $=$ >*_{lm} ... $=$ >*_{lm} W₁...W_n = W.

Proof – part 2

- Proof: by induction on the length of the derivation
- Basis: if $A = \sum_{lm} a_1 a_2 ... a_n$ by a one step derivation then there must be a derivation tree

• Inductive step: Assume it is true for derivations of < k steps, and let $A \Rightarrow^*_{lm} w$ be a derivation of k steps. Since k>1, the first step must be $A \Rightarrow_{lm}$ $X_1X_2... X_n$

Proof – part 2

- If X_i is a terminal, in that case $X_i = w_i$ and nothing needs to be done.
- If X_i is a nonterminal $X_i = >^*_{lm} w_i$ in at most k-1 steps. By the induction hypothesis there is a derivation tree with root X_i and yield w_i.
- So we create the derivation tree as follows:

Ambiguity

Example

 $E \rightarrow E + E$ $E \rightarrow E^* E$ $E \rightarrow a \mid b$ $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * b + E$ => $a * b + E + E \Rightarrow a * b + b + E \Rightarrow a * \overline{b}$

 E => E $*$ E => a $*$ E => a $*$ E + E => a $*$ E + E + E $=$ > a $*$ b + <u>E</u> + E = > a $*$ b + b + E = > a Leftmost derivation

Ambiguous grammars

• A context-free grammar G is ambiguous if there exist some $w \in L(G)$ that has at least two distinct derivation trees.

• Or if there exists two or more leftmost derivations (or rightmost).

Why do we care about ambiguity?

Grammar for mathematical expressions:

 $E \rightarrow E + E$ $E \rightarrow E^* E$ $E \rightarrow a$

Why do we care about ambiguity?

Compute expressions result using the tree

Why do we care about ambiguity?

John saw the boy with a telescope.

Ambiguity

• In general, ambiguity is bad for programming languages and we want to remove it

• Sometimes it is possible to find a nonambiguous grammar for a language

• But in general it is difficult to achieve this

Non-ambiguous Grammar Example

• Can we rewrite the previous grammar so that it is not ambiguous anymore? E

Equivalent non-ambiguous grammar: (Generates the same language)

$$
E \rightarrow E + T | T
$$

$$
T \rightarrow T * R | R
$$

 $R \rightarrow a$

Every string w in L(G) has a unique derivation tree

Ambiguous Grammars

• If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous. If every grammar that generates L is ambiguous, then the language is called inherently ambiguous.

• In general it is very difficult to show whether or not a language is inherently ambiguous.

Parsing

Compiler

Lexical Analyzer

• Recognizes the lexemes of the input program file:

> Keywords (if, then, else, while,…), Integers, Identifiers (variables), etc Removes white space and comments

Lexical Analyzer

- Examples: $letter \rightarrow A \mid B \mid ... \mid Z \mid a \mid b \mid ... \mid z$ digit $\rightarrow 0$ | 1 | ... | 9
- digit: [0-9] letter: [a-zA-Z] num: digit⁺ (. digit⁺)? (E (+ | -)? digit⁺)? identifier: letter (letter | digit)*

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Parser

- Parsing = *process of determining if a string of tokens can be generated by a grammar*
- Knows the grammar of the programming language to be compiled
- Constructs derivation (and derivation tree) for input program file (input string)
- Converts derivation to machine code

Example Parser

$stmt \rightarrow id := expr$ | **if** *expr* **then** *stmt* | **if** *expr* **then** *stmt* **else** *stmt* | **while** *expr* **do** *stmt* | **begin** *opt_stmts* **end** *opt_stmts* → *stmt* **;** *opt_stmts* | ε

Parser

• Finds the derivation of a particular input

Parsing

• Parsing of a string $w \in L(G)$ is to find a sequence of productions by which w is derived or to determine that $w \notin L(G)$.

Example: Find derivation of string *aabb* $S \rightarrow SS \mid aSb \mid bSa \mid \lambda$

• $S \rightarrow SS$ | aSb | bSa | λ w = aabb

✗

First derivation:

- $S \Rightarrow SS$ ✓
- $S \Rightarrow aSb \quad \sqrt{\ }$
- $S \Rightarrow bSa \quad X$

 $S \Rightarrow \lambda$

Cannot possibly produce aabb

All possible derivations of length 1

• $S \rightarrow SS$ | aSb | bSa | λ w = aabb **First derivation:** $S \Rightarrow SS$ **Second derivation:**

 $S \Rightarrow aSb$

 $S \Rightarrow bSa \qquad X$

 $S \Rightarrow \lambda \qquad X$

- $S \Rightarrow SS \Rightarrow SSS$ $S \Rightarrow SS \Rightarrow aSbS \quad \sqrt{\ }$ $S \Rightarrow SS \Rightarrow bSaS \quad X$ $S \Rightarrow SS \Rightarrow S \quad \sqrt{ }$ ✓
- $S \Rightarrow aSb \Rightarrow aSSb \quad \sqrt{\ }$ $S \Rightarrow aSb \Rightarrow aaSbb \ \ \sqrt{\ }$ $S \Rightarrow aSb \Rightarrow abSab \times b$ $S \Rightarrow aSb \Rightarrow ab$ ✗

• $S \rightarrow SS$ | aSb | bSa | λ w = aabb

Second derivation: $S \Rightarrow SS \Rightarrow SSS$ $S \Rightarrow SS \Rightarrow aSbS$ $S \Rightarrow SS \Rightarrow bSaS \quad X$ $S \Rightarrow SS \Rightarrow S \quad \sqrt{ }$ ✓ ✓

Third derivation:

Explore all possible derivations

 $S \Rightarrow aSb \Rightarrow aSSb$ $S \Rightarrow aSb \Rightarrow aaSbb \ \ \sqrt{\ }$ $S \Rightarrow aSb \Rightarrow abSab \quad X$ $S \Rightarrow aSb \Rightarrow ab \quad X$ ✓

A possible derivation found: $S \Rightarrow aSb = aaSbb \Rightarrow aabb$

• This approach is called exhaustive search parsing or brute force parsing which is a form of top-down parsing.

• Can we use this approach as an algorithm for determining whether or not $w \in L(G)$?

- Theorem: Suppose a CFG has no rules of the form $A \rightarrow \lambda$ and $A \rightarrow B$. Then the exhaustive search parsing method can be made into an algorithm to parse $w \in \Sigma^*$.
- Proof: In each derivation step, either the length of the sentential form or the number of terminals increases. Therefore, the maximum length of a derivation is 2|w|. If w is parsed by then, you have the parse. If not, $w \notin L(G)$.

Parsing algorithm

• The exhaustive search algorithm is not very efficient since it may grow exponentially with the length of the string.

 \triangle **For general context-free grammars there** exists a parsing algorithm that parses a string w in time $|w|^3$

Faster Parsers

• There exists faster parsing algorithms for specialized grammars.

A context-free grammar is said to be a simple grammar (s-grammar) if all its productions are of the form:

$$
A \rightarrow ax, \qquad A \in V, \ a \in T, x \in V^*
$$

And any pair (A, a) occurs at most once.

Faster Parsers

S-grammar Example: $S \rightarrow aS$ | bSS | c

- Looking at exhaustive search for this grammar, at each step there is only one choice to follow. $w = abcc$
	- $S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcC$
- Total steps for parsing string w: $|w|$