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Overview

• Understanding computation & computability 
• Study finitary representations for languages 

and machines
• Understanding capabilities of abstract 

machines



Algorithms and Procedures

• Procedure: finite sequence of instructions that 
can be carried out mechanically, say by a 
computer program.

• Algorithm: a procedure that always halts is an 
algorithm.



Example1

1. Set j=2
2. If j >= i then halt; i is a prime
3. If i/j is an integer then halt; i is not a prime
4. j = j + 1
5. Go to 2

Example1:  Determine if i>1 is a prime number



Example1

This is an algorithm: always halts and answers 
yes or no!

i
Prime

Not prime

input
output



Example2

1. j = i + 1
2. If j is perfect, halt.
3. j = j + 1
4. Go to 2

Example2: Determine if a perfect number > i exist

Note: A perfect number is a number that is equal to sum 
of its divisors (except for itself).

This is a procedure: It 
may never halt

Presenter
Presentation Notes
Examples of perfect number:
6 = 1 + 2 + 3
8 != 1 + 2 + 4

So what is this? This works, and it is certainly a procedure. But is it an algorithm?
If there is no perfect number beyond i, it may never halt. Keeps going/ so it MAY go forever.
As far as we know it may not say no in the box. 
If I prove there are infinite number of perfect numbers, then it would halt eventually. 
But actually we don’t know if there infinite number of perfect numbers ( There are 48 known ones)
Obviously any algorithm is a procedure. The procedure just says that if it is true it will say it and will halt. But it may not halt. It does not say that it doesn’t halt. So algorthms are subsets of procedures





Mathematical preliminaries
Sets

{a, b, c},   { 1, 2, 3, ..},      { i: i>0, i is even}

A set S1 is a subset of set S if every element of S1
is also an element of S.    



• How many elements are in a set?
The cardinality of a set is a measure of the size of 
the set and is denoted by |S|. 
For finite sets:                                           |S|=3     

• How about the number of elements in ℕ or ℝ?
|ℕ| = ℵ0     (aleph-null)

Mathematical preliminaries
Cardinality



• Is the set of even numbers the same size as 
the set of natural numbers?
|Even|=?

Mathematical preliminaries
Cardinality

1  2
2  4
3  6
4  8

5  10
…

We mapped n to 2n

|Even| = ℵ0

Presenter
Presentation Notes
Do we have more natural numbers than just even numbers ? Or is their cardinalities the same? 
It actually turns out that they are the same numbers. 
How do we show this?
If two sets have the same number of elements, each element needs to be paired up with one element from the other set 

Mapping: do we pair every natural number to a unique even number? Does every even number have some natural number that maps to it? (have we covered the whole even number set?) 



• What about |ℤ|=?

…, -4,   -3,   -2,   -1,   0,   1,   2,   3,   4, …

Mathematical preliminaries
Cardinality

0 12 34 56 78

Do all infinite sets have the same cardinality?

• A set S is called countably infinite iff |S| = |ℕ|

Presenter
Presentation Notes


Keep this question in mind
We will see later




The powerset is a set of all subsets:

Cardinality (size) of a set 
|S| = 3
|2S| = 2|S| = 23 = 8

Mathematical preliminaries
Sets

Why?

Presenter
Presentation Notes
You either choose an element or not choose it (2)   2x2x2x2x ….



A function is a rule that for every element of a set 
(domain) assigns an element of another set 
(range). 

If the domain of f is all of S1, we say f is a total function on 
S1. Otherwise, f is said to be a partial function. 

Mathematical preliminaries
Functions



In a function, each element from the domain 
(input) is assigned to exactly one element from the 
range (output).

{(1,2), (2,4), (3,6)}

In a relation,  there may be several elements from 
the range that is associated to one element in the 
domain. 

{(1,2), (1,3), (2,4), (3,5)}

A relation is a subset of S1 × S2 

Mathematical preliminaries
Relations

Presenter
Presentation Notes
A relation is actually a subset of the Cartesian product of S1 and S2
cartesian product:
Example: S1= {2,4} , S2={2,3,5}
S1xS2 = {(2,2), (2,3), (2,5), (4,2), (4,3,), (4,5)}
Is  the set of (x,y) paris such that x is an alement of S1 and y is an element of S2



• A function is said to be one-to-one, if every 
element of the range corresponds to exactly 
one element of the domain.

Mathematical preliminaries
Functions

Image reference: http://www.regentsprep.org/Regents/math/algtrig/ATP5/OntoFunctions.htm



Mathematical preliminaries
Functions

• A function is said to be onto, if it covers all 
elements in the range.

• For all elements of the range, there is an 
element in the domain. 

Image reference: http://www.regentsprep.org/Regents/math/algtrig/ATP5/OntoFunctions.htm



1. Base case: We need to show that the given 
statement is true for the first natural number.

1. Inductive step: We need to prove that if the 
given statement is true for any number ≤ n, it 
is also true for n+1. 

Proof Techniques
Proof by induction



Proof by Induction

Example1: 
prove that: 

Base case:    n=1                                   trivially true

Inductive step: Assume it is true for ≤ n, prove 
true for n+1.



Proof by Induction
Example1



Example2: Show that postages of ≥ 4 can be 
achieved by using only 2-cent and 5-cent 
stamps. 

Base case: n = 4 is true since you can use two 2-
cent stamps. 
Inductive step: Assume it is true for n. So n cent 
postage can be formed using only 2-cent and 5-
cent stamps. Need to prove true for n + 1.

Proof by Induction
Example2



Note that for the case of n, either at least one 5-
cent stamp must have been used or all 2-cent 
stamps were used.. 

Case1: if there is at least one 5-cent stamps, we can 
remove that stamp and replace it with three 2-cent 
stamps to form n+1.

Case2: If only 2-cent stamps were used, we remove 
two 2-cent stamps (note that n>4 so at least two 2-
cent stamps must have been used in this case) and 
replace it with a 5-cent stamp to form n+1. 
This proves the assertion fro n + 1.

Proof by Induction Example2



We want to prove that statement P is true. 

• We assume hypothetically that P is not true.
• If we arrive at a conclusion that we know is 

incorrect, we conclude that the initial 
assumption was false. So P must be true. 

Proof Techniques
Proof by Contradiction



• Example1: Suppose a ∈ Ζ, If a2 is even, then a
is even.

• Proof: We assume that the statement is not 
true. So a2 is even, and a is odd. Since a is 
odd, there is an integer k such that a = 2k + 1

a2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 ⇒ a2

is odd. 
We know this is not true because it was our 
initial assumption that a2 is even. 

Proof by Contradiction
Example1



Diagonalization Argument

• Prove that |ℕ| < |ℝ| 

In order to prove this, we need to show that  
|ℕ| ≤ |ℝ| and |ℕ| ≠ |ℝ|

We can simply map every natural number to 
itself in ℝ. Therefore, ℕ is no larger than ℝ. 
Now we need to show that |ℕ| ≠ |ℝ|. 



Suppose hypothetically that |ℕ| = |ℝ|
It means that ℝ is countably infinite, and we 
should be able to count off all the real numbers.
Assume we have ordered the real numbers r0, r1, 
r2, r3, r4, … 
The idea is to find a real number d that isn’t 
anywhere in this sequence, showing that we 
haven’t counted off all the real numbers.

Diagonalization Argument



• Note that every real number has an infinite 
representation:

2 = 2.000000000000000
π = 3.1415926535…..

• We define r[0] to be the integer part of the real 
number and r[n], n>0 to be the nth decimal digit

• We create d such that d[n] != rn[n]

Diagonalization Argument



r0 = 0.00000000…
r1 = 1.02347612…
r2 = 1.1098654…..
r3 = 2.7610000000…

d = 1.219…..

By contradiction we showed that |ℕ| ≠|ℝ|and
that |ℕ| < |ℝ|

Diagonalization Argument

Presenter
Presentation Notes
No matter how you pick the sequence of r0,r1 there has to be a number d that is not in the list
No possible sequence of real numbers, contains all real numbers
There fore |N| != |R|
Now we have a set that is infinite but it is larger than the natural numbers or aleph-null
So not all infinite sets are the same size!

Diagonalization is a proof technique for showing that two sets cannot have the same cardinality



Uncountable sets

• A set S is called uncountable iff |ℕ| < |S|
• Note that the cardinality of the reals is 

uncountable.
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