
1

Lecture 9

Shell Programming –

Command substitution

Regular expressions and grep

Use of exit, for loop and expr commands

COP 3353 Introduction to UNIX

2

Command Substitution

• a string in back quotes ` … ` does command substitution

– This means that the result of the command (the standard
output of the command) replaces the back quoted string

Examples:

count=`wc -w <$1`

the value of count is assigned the number of words in file $1

if [`wc -l < $2.txt` -lt 1000];

#checks if the number of lines in the file is < 1000

cat `grep -l exit *.sh`

#print out all *.sh files containing the word exit

3

Exit Command (again)

• Conventionally, zero normally indicates success.
Nonzero values indicate some type of failure. It is
thus good practice to ensure that if the shell script
terminates properly, it is with an “exit 0”
command.

• If the shell script terminates with some error that
would be useful to a calling program, terminate
with an “exit 1” or other nonzero condition.

• most Unix utilities that are written in C will also
call “exit(<value>);” upon termination to pass a
value back to the shell or utility that called that
utility.

4

Exit Example
• The following shell script exits properly. It also

distinguishes the response through the value returned.

#!/bin/sh

#determines a yes (0) or no (1) answer from user

echo “Please answer yes or no”; read answer

while :

do

case $answer in

“yes”) exit 0;;

“no”) exit 1;;

*) echo “Invalid; enter yes or no only”

read answer;;

esac

done

5

Testing the Exit Status

• Conditions tested in control statements can also be
the exit status of commands. Assume that the
script “yes.sh” has been invoked.

• The following segment will test this as part of its
script:

if yes.sh

then

echo “enter file name”

read file

else

echo “goodbye”; exit 0

fi

6

Regular Expressions and Wildcards

• Many Unix utilities use regular expressions

• A regular expression is a compact representation
of a set of strings

• Note that the shell uses wildcards (*, ?, etc.) for
filename matching. The special characters are not
necessarily used the same way in regular
expressions

• Thus the pattern “alpha*.c” for filenames is not
the same when used in the grep command (for
example) to match a regular expression!

• In a regular expression, “*” means match zero or
more of the preceding character

7

Regular expression operators

• Concatenation

– This is implicit and is simply one character followed by
another.

ab #matches the character “a” followed by “b”

alpha #several characters concatenated

• * operator:

– indicates zero or more instances of the preceding
character or preceding regular expression if grouping,
that is parentheses (,), are used.

ab*c #matches ac, abc, abbc, etc.

• + operator:

– similar to * except matches 1 or more instances of the
preceding character

8

Matching a specific class of characters

• “.” matches any single character except newline

a.b #matches a followed by any character, then b

for example adb, a&b, etc.

• [] is used to indicate one of a set of characters. The

‘-’ is used to define a range. A “^” after “[“ means

match anything not in the set.

[adkr] #match a, d, k, r

[0-9] #match 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

[a-z] #match lower case letters

[^aeiou] #match any character except a vowel

[^0-9] #match any character except a decimal digit

9

Anchors

• Anchors ^ and $ can be used to indicate that a

pattern will only match when it is at the beginning

or end of a line (note that the following use of “^”

is different from its use inside a set of characters)

^alpha #match the string “alpha” only when it

#is at the beginning of the line

[A-Za-z]+$ # a name at the end of the line

^alpha*zeta$ #start with alph, end with zeta and

#any number of “a”s in between

10

Alternation and Grouping

• Use the “|” character to choose between

alternatives. Parentheses are for grouping

a|b #match a or b

a*|b #match any number of a’s or a b.

(ab*a)* #any number of ab*a

11

grep and egrep
• grep searches for strings in files that match a regular

expression and prints out the lines that contain these

matches to stdout. If no file is specified then grep uses

stdin.

• form (the initial brackets indicate some optional flags):

grep [-i] [-w] [-c] [-v] [-E] pattern [files]

• egrep is extended grep and extends the syntax of regular

expressions. Generally grep does not support the

parentheses, the + operator, the | operator or the ? operator

(zero or one occurrence). The flag –E in grep generally

gives egrep behavior.

12

Grep options

• -i will make the search case insensitive

• -c will cause the number of lines matched to be

printed

• -w will force the search to look for entire words

• -v will cause the lines that do not match to be

output

• -l will return only the name of the file when grep

finds a match

13

Grep examples

grep alpha junk #look for the substring alpha in file junk

grep “ii*” junk #look for the substring of one or more

i’s

grep ^begin junk #look for a line that starts with begin

grep recieve *.sh #find a “recieve” in any file ending in .sh

grep “[abc].*” junk #find a substring with an a, b, or c, followed

#by any number of other characters

14

For statement

• The shell <variable> is assigned each word in the

list, where the set of commands is performed each

time the word is assigned to the variable. If the

“in <word_list>” is omitted, then the variable is

assigned each of the command line arguments.

for <variable> [in <word_list>]

do

one or more commands

done

15

For statement examples

#!/bin/sh

#makes a backup of certain files and echoes arguments

for file in `ls *.c`

do

cp $file $file.bak

done

for arg

do

echo $arg

done

exit

16

Examples cont

#!/bin/sh

#place command line arguments into a string variable

#arguments separated by a blank space

s=“”

for arg

do

s=“$s $arg”

done

#compile each of the files in the list $s

for file in $s

do

gcc –g –c #file

done

exit 0

17

Expr

• expr evaluates an arithmetic or relational
expression and prints its result to standard output.
This is useful when you need to perform
calculations in the shell script. It outputs 1 (true)
or 0 (false) when evaluating a relational
expression.

• Note that the arguments are operators must be
separated by spaces.

• Example from the tcsh command line (note set)

set alpha = 3

expr $alpha + 2 #result printed out is 5

18

More expr examples

var=`expr $var + 1` #increment var by 1

if [`expr $s1 \< $s2` = 1] #check if the value of s1

#is less than value of s2

beta=`expr $beta * 2` #multiply value of beta by 2

set beta = 10; expr $beta / 2 #using tcsh directly, result is 5

expr “$alpha” = hello #output 1 if variable alpha is

#hello

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

