
1

Lecture 8

Shell Programming – Control Constructs

COP 3353 Introduction to UNIX



2

Command Line Arguments Cont.

• $# contains the number of command line arguments.

• $@ will be replaced by a string containing the 

command line arguments

• Example script echo.sh
#!/bin/sh

echo “The” $# “arguments entered:” $@

• Usage: 

echo.sh alpha beta gamma

• Output: 

The 3 arguments entered: alpha beta gamma



3

Testing Conditions

• There are two ways to test for conditions.  The 
two general forms are:

test <condition>

or

[ <condition> ]

• The latter method is easier to read.  Remember to 
include a space before and after the bracket

• A condition can be reversed with a ! before the 
condition (this is the same as not condition)

[ !<condition> ]

• A ‘:’ command in place of condition always 
returns true



4

Testing File Attributes

• To test if a file is readable

[ -r prog.txt ]

[ -r $1.c ]

• To test if a file is writeable

[ -w specialfile.txt ]

• To test if a file is executable

[ -x prog4.sh ]

• To test if a file exists

[ -f temp.text ]

• Testing for the negation - use ! (eg. not writeable)

[ ! -w nochange.txt ]



5

Numeric Tests

• The following operators can be used for numeric 

tests:

{ -eq, -ne, -gt, -ge, -lt, -le }

• Examples

[ $1 –lt $2 ]

[ $1 –gt 0 ]

[ $# -eq 2 ]

[ $# -lt 3 ]



6

Simple If Statement

• General Form:

if <condition>

then

one-or more commands

fi

• Example:

if [ -r tmp.text ]

then

echo “temp.text is a readable file”

fi



7

General If Statement

• General form:

if <condition>

then

one-or-more-commands

elif <condition>

then

one-or-more-commands

…

else

one-or-more-commands

fi

• Note that  you can have 0 or more elif statements and that 
the else is optional.



8

Testing Strings

• Performing string comparisons. It is a good idea to 
put the shell variable being tested inside double 
quotes.

[ “$1” = “yes” ]

[ “$2” != “no” ]

• Note that the following will give a syntax error 
when $1 is empty since:

[ $1 != “no” ] 

• becomes

[   != “no”  ]



9

Testing with Multiple Conditions

• && is the and operator

• || is the or operator

• checking for the and of several conditions

[ “$1” = “yes” ] && [ -r $2.txt ]

[ “$1” = “no” ] && [ $# -eq 1 ]

• checking for the or of several conditions

[ “$1” = “no” ] || [ “$2” = “maybe” ]



10

Quoting Rules

• Using single quotes

‘xyz’ disables all special characters in xyz

• Using double quotes

“xyz” disables all special characters in xyz except $, `, 

and \.

• using the backslash

\x disables the special meaning of character x 



11

Quoting Examples

var1=“alpha” #set the variable

echo $var1 #prints: alpha

echo “$var1” #prints: alpha

echo ‘$var1’ #prints: $var1

cost=2000

echo ‘cost:$cost’ #prints: cost:$cost

echo “cost:$cost” #prints: cost:2000

echo “cost:\$cost” #prints: cost:$cost

echo “cost:\$$cost” #prints: cost:$2000



12

More on String Relational Operators

• The set of string relational operators are:

{ =, !=, >, >=, <, <= }

• The {  >, >=, <, <= } operators assume an ASCII 

ordering (for example “a” < “c”). These operators 

are used with the expr command that computes an 

expression.  The backslash has to be used before 

the operators so that they are not confused with 

I/O redirection



13

Using Exit

• The exit command causes the current shell script to 
terminate.  There is an implicit exit at the end of each shell 
script.  The exit command can set the status at the time of 
exit.  If the status is not provided, the script will exit with 
the status of the last command.

• General form:

exit

• or

exit <status>

• $? is set to the value of the last executed command

• Zero normally indicates success.  Nonzero values indicate 
some type of failure.  Thus, exit 0 is normally used to 
indicate that the script terminated without errors.



14

If Statement Examples
if [ “$1” != “” ] || [ -r $1 ]

then

echo “the file” $1 “is not readable”

fi

if [ $var1 –lt $var2 ]

then 

echo $var1 “is less than” $var2

elif [ $var1 –gt $var2 ]

then

echo $var1 “is greater than” $var2

else

echo $var1 “is equal to” $var2

fi



15

Case Statement

• Compares stringvalue to each of the strings in the 
patterns.  At a match, it does the corresponding 
commands.  ;; indicates to jump to the statement 
after the esac (end of case). *) means the default 
case.

• Form:

case stringvalue in

pattern1) one or more commands;;

pattern2) one or more commands;;

…

*) one or more commands;;

esac



16

Case Statement Example

echo “do you want to remove  file $1?”

echo “ please enter yes or no”

read ans

case $ans in

“yes”) rm $1

echo “file removed”

;;

“no”) echo “file not removed”

;;

*) echo “do not understand your request”

esac



17

while and until statements

• while form:

while <condition>

do

one or more commands

done

• until form:

until <condition>

do 

one or more commands

done



18

while and until examples

read cmd

while [ $cmd != “quit” ]

do

…

read cmd

done

read cmd

until [ $cmd = “quit” ]

do

…

read cmd

done



Using for in a directory

• Use the for loop to iterate through every file in a 

directory

for filename in *

do

echo $filename

done;

• You can replace * with *.doc to iterate through 

only .doc files in the current directory.



20

Good reference on scripting

• http://steve-parker.org/sh/sh.shtml

http://steve-parker.org/sh/sh.shtml

	Slide 1: Lecture 8
	Slide 2: Command Line Arguments Cont.
	Slide 3: Testing Conditions
	Slide 4: Testing File Attributes
	Slide 5: Numeric Tests
	Slide 6: Simple If Statement
	Slide 7: General If Statement
	Slide 8: Testing Strings
	Slide 9: Testing with Multiple Conditions
	Slide 10: Quoting Rules
	Slide 11: Quoting Examples
	Slide 12: More on String Relational Operators
	Slide 13: Using Exit
	Slide 14: If Statement Examples
	Slide 15: Case Statement
	Slide 16: Case Statement Example
	Slide 17: while and until statements
	Slide 18: while and until examples
	Slide 19: Using for in a directory
	Slide 20: Good reference on scripting

