
1

Lecture 7

Introduction to Shell Scripts

COP 3353 Introduction to UNIX

2

What is a shell script?

•An executable file containing

–Unix shell commands

–Programming control constructs (if, then, while, until,

case, for, break, continue, while, …)

–basic programming capabilities (assignments,

variables, arguments, expressions, …)

•The file entries are the script

•The file is interpreted rather than compiled and

executed

–The first line of the script indicates which shell is used

to interpret the script

3

Simple script (egshell.sh)

#!/bin/sh

#this is the script in file egshell.sh

cal

date

who | grep liu

exit

•The “#!” is used to indicate that what follows is the shell

used to interpret the script

•The “exit” command immediately quits the shell script (by

default it will also quit at the end of the file)

4

Executing shell scripts

•sh myscript #uses Bourne shell

•tcsh myscript #uses t-cshell

Note that the above explicitly invoke the appropriate
shell with the file containing the commands as a
parameter. The file does not need to be
executable.

•You can also make the file executable and then
simple run as a command

–chmod 755 myscript (or chmod +x myscript)

–myscript

5

Shell scripts
•Advantages

–Can quickly setup a sequence of commands to avoid a
repetitive task

–Can make several programs work together

•Disadvantages

–Little support for large and complicated programming
semantics

–Shell scripts need to be interpreted hence are slower
programs

•Which shell to use?

–csh shell and tcsh shell are recommended for use at the
command line

–sh (Bourne) shell and bash shell are recommended for
writing shell scripts

–Examples will generally use the Bourne shell

6

Printing a line to standard output

•Use the echo command to print a line to stdout

•Form of command:

echo <zero or more values>

•Examples

echo ñHello World ò

echo ñhello ò ñworld ò #two values

echo hello #need not always use quotes

echo ñplease enter your name ò

7

Shell Environment Variables

•These are variables provided as part of the shell’s
operational environment

•They exist at startup but can be changed

•Examples are: USER, HOME, PATH, SHELL,
HOSTNAME

•The “setenv” command (in tcsh) is used to set
these, for example, by:
setenv PATH $PATH:/home/here/bin

(this sets the PATH variable so that it’s current value is
appended by :/home/here/bin)

–Note that setenv is how tcsh sets the environment
variables

8

User defined variables

•You can also specify variables yourself and these can also
be used inside a script

•In tcsh, the “set” command is used to set a variable to a
string value

•Form:
set <name> = <value>

•Examples:
set alpha = ñany string ò

set beta = 3

set mypath = /home/special/public_html

•Once a variable has been defined, it’s value can be used by
“dereferencing” it with $.
ls ïal $mypath

•Note that using setenv or set without any parameters
simply displays the current settings

9

Shell variables (Bourne shell)

•Note that for all shells, variables need not be declared

explicitly, but simply used

•For the Bourne shell, the use is as follows (note that there

should be no blanks before and after the equals sign and no

need for the set command.

•Form:

<name>=<value>

•Example

alpha= ñhello world ò

beta= 45

echo $alpha $beta ñthird argument ò

•Note that $alpha is the value of the variable alpha

10

Reading values into shell variables

•The read statement is used to read a line of
standard input, split the line into fields of one or
more strings, and assign those strings to shell
variables. Any strings not assigned are assigned to
the last variable.

•Form:

read <var1> <var2> … <varn>

•Examples
read num

read field 1 field 2 rest

read field 1 field 2 < ifile.txt

11

Shell arguments

•Arguments on the command line can be passed to
a shell script, just as you can pass command line
arguments to a program

•$1, $2, …, $9 are used to refer to up to nine
command line arguments (similar to C’s argv[1],
argv[2], …, argv[9]).

•Note that $0 contains the name of the script
(argv[0])

•Example:
shprog.sh john 40

shprog.sh bob 45 ñnew york ò

12

Example using shell arguments

•Script:

#!/bin/sh

#script name is greet.sh

#friendly display of today ôs date

echo ñHello ò $1 $2 ñpleased to meet

youò

echo ñThe date is ò

date

exit

•Usage:

greet.sh john smith

	Slide 1: Lecture 7
	Slide 2: What is a shell script?
	Slide 3: Simple script (egshell.sh)‏
	Slide 4: Executing shell scripts
	Slide 5: Shell scripts
	Slide 6: Printing a line to standard output
	Slide 7: Shell Environment Variables
	Slide 8: User defined variables
	Slide 9: Shell variables (Bourne shell)‏
	Slide 10: Reading values into shell variables
	Slide 11: Shell arguments
	Slide 12: Example using shell arguments

