
Chapter 1 - Introduction

September 8, 2016

Introduction

I Overview of Linux/Unix
I Shells
I Commands: built-in, aliases, program invocations, alternation

and iteration
I Finding more information: man, info

Help in the Unix world

I The “man” program has been the primary means for local
documentation for the Unix world. Use “man man” to find
out more, and “man -k KEYWORD” to search for a keyword
in the man pages.

I In Linux, the canonical place to find the most current man
page information is at
https://www.kernel.org/doc/man-pages/

I In most Unix/Linux distributions, the man pages are generally
in directories like /usr/man/man? or /usr/share/man/man?

I The “info” program is useful, but it helps to be adroit with
Emacs if you want to use it.

Linux

I Linux has been around for 25 years, and is a leading platform
for operating system development

I Linprog machines use the Gentoo distribution; other popular
server distributions include Debian, Centos, and OpenSuSE

I Linux Mint is apparently the most popular desktop
distribution, though it’s arguable the Ubuntu is

Unix in depth

I You can view the operating system presentation in layers

I The kernel, which provides access to resource, both virtual and
physical

I State can be observed directly via /proc and /sys

I The system calls, which allow us to access and modify
resources

Unix in depth

I More layers

I Libraries, which provide more digestible access to system calls;
for instance, contrast getdirents(3) with getdents(2)

I Processes, which take advantage of libraries (and sometimes
direct system calls); an example of processes would be a shell,
which provides a platform for a user to start other processes
and script repetitious tasks

Working with these layers

I How do we create and manipulate these various layers?

I Processes

I fork(2), exec(2), wait(2), exit(2); clone(2)

I Filesystems

I mount(2), getdents(2), stat(2), statfs(2)

I I/O

I open(2), read(2), write(2), close(2)
I socket(2) et al

Some definitions

I An executable is a file that can be “executed” an existing
process.

I A static executable is a standalone program that does not need
any other runtime support

I A dynamically linked executable requires the services of a
runtime linker such as /lib64/ld-linux-x86-64.so.2 in order to
dynamically load shared libraries

I A “script” executable, which requires a separate interpreter
such Perl or Python

More definitions

I A “process” is an activation of a program. Creating a new
process is done by making a new entry in the process table;
also, in Linux, a thread, which retains the execution context
of the parent, also goes into the same process table.

I A “daemon” is a process that generally provides a service of
some sort; it is either itself persistent, or is the child of some
persistent process.

More definitions

I A “user shell” provices an environment that accepts keyboard
input and provides output in order to allow a user to execute
programs

I A “built-in” command to a shell does not cause the execution
of a new process; often, it is used to change the state of a
shell itself.

I An “alias” is a string that is to be expanded into another
command

I A “variable” is a way to reference state in a shell. We also
have “environmental” variables which specify state for a
process.

I A “flag” affords us a method to specify options on the
command line, generally indicated either by a single dash or a
double dash

Filtering

I A “filter” should read from its stdin (file descriptor 0) and
write to its stdout (file descriptor 1); any error or
miscellaneous information should be written to stderr (file
descriptor 2)

I Generally, filters should not read configuration files but should
instead take their options from command line indicators like
“flags”.

I Ideally, the output of one filter should be easily readable by
another filter.

Unix file characteristics

I Unix files normally follow the paradigm of a “byte-stream”
I Filenames may consist of most Unicode UTF-8 characters

except the NUL (ASCII 0) byte and the “/” (ASCII 47)
I Filenames are by default case sensitive (though you can do

unusual things to create filesystems that are not)
I Periods are generally used for filename extensions.
I However, filenames that start with a period are generally not

displayed by most core utilities unless an explicit flag is given
(for example, ls -a)

Some popular filename “extensions”

I .c, .h for C files
I .pl, .pm for Perl files
I .py, .pyc for Python files
I .cpp, .c++, .CC for C++ files
I .s, .S for assembly files
I .o for object files
I .a for static libraries
I .so for dynamic libraries
I .gz for files compressed with gzip
I .bz2 for files compressed with bzip2
I .rpm for RPM files
I .tar for tarfiles

Speaking of filenames

I “Globbing” is a wildcard system for matching file and
directory names (aka “path names”)

I An asterisk “*” can match any number of characters in path
name

I A question mark “?” matches any single character
I Square brackets “[]” let you specify a character class

(unfortunately, square brackets are also used for other things)

Filesystems

I Directories are tree-structured, and begin at /
I “cwd” is the current working directory; you can use the /proc

filesystem to see the current working directory for a process:

$ ls -l /proc/$$/cwd

lrwxrwxrwx [...] /proc/4665/cwd -> /tmp

Filesystem paths

I In Unix, we use / to distinguish elements in a path
I Absolute paths begin with / which means start at the root
I Relative paths start with any other character and are

interpreted as begin relative the current working directory.

More on paths

I “.” is a special path (and it is actually in the filesystem) that
points at the current directory.

I “..” is also a special path (and also exists in the filesystem)
that points at the parent directory (“/” (root) is its own
parent.)

I “˜/” is often understood by a shell as referring to home
directory of the current user

I “˜username/” is often understood by a shell as the home
directory of “username”

Shortcutting path information

I It’s tedious to type full path names, and relative pathnames
are often not much better. To alleviate some of this tedium,
you can specify an environmental variable “PATH” which
gives some default locations to look for binaries. (Indeed, a
surprising number of programs attempt to consult various
“PATH”-type environmental variables; perhaps the most
surprising – and dangerous – is LD LIBRARY PATH.)

Listing files

I The program /bin/ls can take many different options. “-l”
shows a detailed listing, using one line per file; “-a” includes
the dot files; “/bin/ls -d DIRNAME” shows information about
directory rather than its contents

File permissions and user classes

I Each file in a filesystem has uid associated with it; this uid is
referred as the “owner” of a file

I Each file in a filesystem also has a gid associated with it; this
gid is referred to as the “group” of a file

I We use the term “other” to refer to all users who are not the
owner or in the same group.

File permissions, rwx

I The “r” indicates permission to read
I The “w” indicates permission to write
I THe “x” indicates permission to execute

Changing permissions with chmod

I The program chmod accepts either octal notation, such as
“chmod 755 /bin/ls” (which closely mirrors how permissions
are accessed via system calls)

I Or it also accepts symbolic notation, such as “chmod og+w
/etc/hosts”

Unlinking and removing files and directories

I A single file can have many links in a given filesystem (you
can see the link count with “ls -l”)

I A process can use the system call unlink(2) to remove a file
(but not a directory)

I A process can use the system call rmdir(2) to remove an
empty directory

Unlinking and removing files and directories

I Users generally use programs like “rm” and “rmdir” to remove
files and directories

I “rm -r” combines unlink(2) and rmdir(2) to recursively
remove directories

I “rm -i” queries the user whether or not to remove a link
I “rm -f” means don’t complain about non-existent items
I “rmdir” lets you remove an empty directory

Manipulating files with link, cp, and mv

I “link FILE1 FILE2” creates a new link to a file (often called a
hard link)

I “cp FILE1 FILE2” copies a file
I “cp -r DIR1 DIR2” copies a directory; creates DIR2 if it

doesn’t exist otherwise puts the new copy inside of DIR2
I “cp -a DIR1 DIR2” is like “cp -r”, but also does a very good

job of preserving ownership, permissions, soft links and so
forth

I “mv NAME1 NAME2” moves a file or directory

Symbolic links

I Unix also supports the idea of a “symbolic” link, which is just
an ordinary flat file which has a bit set that tells the kernel to
treat the contents of the file as a path (often called a soft link)

Using “ln”

I “ln FILE1 FILE2” creates a hard link to FILE1 named FILE2
I “ln -s NAME1 NAME2” creates a soft link to NAME1 named

NAME2
I “ln FILE1” creates a new hard link to FILE1 in the current

directory
I “ln -s NAME1” also creates a soft link to NAME1 in the

current directory

Displaying files

I “cat” takes stdin and sends it to stdout
I “cat FILE” opens FILE and sends it to stdout ” “more”

provides a pager to view a file or stdin
I “less” provides a pager, but it additionally buffers stdin so

that you can go backwards
I “head” displays the first lines of a file
I “tail” displays the final lines of a file
I “tail -f” displays the file, and blocks; if the file is appended to,

it then shows the new lines

Standard i/o

I By default, processes start with three active file descriptors: 0,
1, and 2

I 0 is used for standard input
I 1 is used for standard output
I 2 is used for standard error

Redirection

I You can use > and < for simple redirection
I You can be explicit in bash and provide the file descriptor

number, such as “ls 2> /tmp/outfile”
I You can use >> to append to a file.

Redirection via pipes

I In addition to redirection to a pathname, Unix has long
allowed you to join the output of a process to the input of
another process, such as “ls /usr/bin | wc -l” (the “|”
indicates this redirection.)

I The “tee” program lets you split the output of one process to
another into a separate bytestream to stdout.

Programs that report on other programs

I The most helpful is probably “which”, which can clear up
quite quickly just what “gcc” is being referred to.

I “whereis” can also be useful since it provides a bit more
information.

I “whatis” is occasionally useful.

Who else is around?

I The “who” and “w” programs can show you who else is using
a system

I The “last” program can show you who has been using a
system

