
Fall 2006 Perl 03

Accessing array elements

☞ Accessing array elements in Perl is syntactically similar

to C.

☞ Perhaps somewhat counterintuitively, you use

$a[<num>] to specify a scalar element of an array

named @a.

☞ The index <num> is evaluated as a numeric expression.

☞ By default, the first index in an array is 0.

COP 4342

Fall 2006 Perl 03

Examples of arracy access

$a[0] = 1; # assign numeric constant
$a[1] = "string"; # assign string constant
print $m[$a]; # access via variable
$a[$c] = $b[$d]; # copy elements
$a[$i] = $b[$i]; #
$a[$i+$j] = 0; # expressions are okay
$a[$i]++; # increment element

COP 4342

Fall 2006 Perl 03

Assign list literals

You can assign a list literal to an array or to a list of

scalars:

($a, $b, $c) = (1, 2, 3); # $a = 1, $b = 2, $c = 3
($m, $n) = ($n, $m); # works!
@nums = (1..10); # $nums[0]=1, $nums[1]=2, ...
($x,$y,$z) = (1,2) # $x=1, $y=2, $z is undef
@t = (); # t is defined with no elements
($a[1],$a[0])=($a[0],$a[1]); # swap works!
@kudomono = (’apple’,’orange’); # list with 2 elements
@kudomono = qw/ apple orange /; # ditto

COP 4342

Fall 2006 Perl 03

Array-wide access

Sometimes you can do an operation on an entire array.

Use the @array name:

@x = @y; # copy array y to x
@y = 1..1000; # parentheses are not requisite
@lines = <STDIN> # very useful!
print @lines; # works in Perl 5, not 4

COP 4342

Fall 2006 Perl 03

Printing entire arrays

☞ If an array is simply printed, it comes out something

like
@a = (’a’,’b’,’c’,’d’);
print @a;
abcd

☞ If an array is interpolated in a string, you get spaces:

@a = (’a’,’b’,’c’,’d’); print ”@a”; a b c d

COP 4342

Fall 2006 Perl 03

Arrays in a scalar context

Generally, if you specify an array in a scalar context,

the value returned is the number of elements in the array.

@array1 = (’a’, 3, ’b’, 4, ’c’, 5); # assign array1 the values of list
@array2 = @array1; # assign array2 the values of array1
$m = @array2; # $m now has value 6
$n = $m + @array1 # $n now has value 12

COP 4342

Fall 2006 Perl 03

Using a scalar in an array context

If you assign an array a scalar value, that array will be

just a one element array:

$m = 1;
@arr = $m; # @arr == (1);
@yup = "apple"; # @yup == ("apple");
@arr = (undef); # @arr == (undef);
@arr = (); # @arr is now empty, not an array with one undef value!

COP 4342

Fall 2006 Perl 03

Size of arrays

Perl arrays can be any size up to the amount of memory

available for the process. The number of elements can

vary during execution.

my @fruit; # has zero elements
$fruit[0] = "apple"; # now has one element
$fruit[1] = "orange"; # now has two elements
$frist[99] = ’plum’; # now has 100 elements, most of which are undef

COP 4342

Fall 2006 Perl 03

Last element index

Perl has a special scalar form $#arrayname that returns

a scalar value that is equal to the index of the last element

in the array.

for($i = 0; $i<=$#arr1; $i++)
{
print "$arr1[$i]\n";

}

COP 4342

Fall 2006 Perl 03

Last element index use

You can also use this special scalar form to truncate an

array:

@arr = (1..100); # arr has 100 elements...
$#arr = 9; # now it has 10
print "@arr";
1 2 3 4 5 6 7 8 9 10

COP 4342

Fall 2006 Perl 03

Using negative array indices

A negative array index is treated as being relative to

the end of the array:

@arr = 1..100;
print $arr[-1]; # similar to using $arr[$#arr]
100
print $arr[-2];
99

COP 4342

Fall 2006 Perl 03

Arrays as stacks

☞ Arrays can be used as stacks, and Perl has built-ins

that are useful for manipulating arrays as stacks: push,
pop, shift, and unshift.

☞ push takes two arguments: an array to push onto, and

what is to pushed on. If the new elment is an array,

then the elements of that array are appended to the

original array as scalars.

COP 4342

Fall 2006 Perl 03

☞ A push puts the new element(s) at the end of the

original array.

☞ A pop removes the last element from the array

specified.

COP 4342

Fall 2006 Perl 03

Examples of push and pop

push @nums, $i;
push @ans, "yes";
push @a, 1..5;
push @a, @b; # appends the elements of b to a
push @a, (1, 3, 5);
pop @a;
push(@a,pop(@b)); # moves the last element of b to end of a
@a = (); @b = (); push(@b,pop(@a)) # b now has one undef value

COP 4342

Fall 2006 Perl 03

shift and unshift

☞ shift removes the first element from an array

☞ unshift inserts an element at the beginning of an

array

COP 4342

Fall 2006 Perl 03

Examples of shift and unshift

@a = 1..10;
unshift @a,99; # now @a == (99,1,2,3,4,5,6,7,8,9)
unshift @a,(’a’,’b’) # now @a == (’a’,’b’,99,1,2,3,4,5,6,7,8,9)
$x = shift @a; # now $x == ’a’

COP 4342

Fall 2006 Perl 03

foreach control structure

You can use foreach to process each element of an

array or list.

It follows the form:

foreach $SCAlAR (@ARRAY or LIST)
{
<statement list>

}

(You can also map for similar processing.)

COP 4342

Fall 2006 Perl 03

foreach examples

foreach $a (@a)
{
print "$a\n";

}
map {print "$_\n";} @a;

foreach $item (qw/ apple pear lemon /)
{
push @fruits,$item;

}
map {push @fruits, $_} qw/ apple pear lemon/;

COP 4342

Fall 2006 Perl 03

The default variable $

$ is the default variable (and is used in the previous

map() examples). It is used as a default when at various

times, such as when reading input, writing output, and in

the foreach and map constructions.

COP 4342

Fall 2006 Perl 03

The default variable $

while(<STDIN>)
{
print;

}

$sum = 0;
foreach(@arr)
{
$sum += $_;

}

map { $sum += $_} @arr;

COP 4342

Fall 2006 Perl 03

Input from the “diamond” operator

Reading from <> causes a program to read from the

files specified on the command line or stdin if no files are

specified.

COP 4342

Fall 2006 Perl 03

Example of diamond operator

#!/usr/bin/perl -w
2006 09 22 - rdl script23.pl
while(<>)
{

print;
}

You can either use ./Script23.pl < /etc/hosts or

./Script23.pl /etc/hosts /etc/resolv.conf.

COP 4342

Fall 2006 Perl 03

The @ARGV array

There is a builtin array called @ARGV which contains

the command lines arguments passed in by the calling

program.

Note that $ARGV[0] is the first argument, not the name

of the Perl program being invoked

COP 4342

