
Fall 2006 Perl 01

Perl

☞ Introduction

☞ Scalars

☞ Lists and arrays

☞ Control structures

☞ I/O

☞ Associative arrays/hashes

COP 4342

Fall 2006 Perl 01

☞ Regular expressions

☞ Subroutines and objects

☞ Dealing with files

☞ Directory and file manipulation

COP 4342

Fall 2006 Perl 01

Perl history

PERL stands for “Practical Extraction and

Report Language” (although there is the alternative

“Pathologically Eclectic Rubbish Lister”.)

It was created by Larry Wall and became known in the

1990s.

It was available both from ucbvax and via Usenet.

Perl is released under the Artistic License and under the

GNU General Public and License.

COP 4342

Fall 2006 Perl 01

Perl’s Artistic License

6. The scripts and library files supplied as input to or

produced as output from the programs of this Package

do not automatically fall under the copyright of this

Package, but belong to whomever generated them, and

may be sold commercially, and may be aggregated with

this Package. If such scripts or library files are aggregated

with this Package via the so-called “undump” or “unexec”

methods of producing a binary executable image, then

distribution of such an image shall neither be construed

COP 4342

Fall 2006 Perl 01

as a distribution of this Package nor shall it fall under

the restrictions of Paragraphs 3 and 4, provided that you

do not represent such an executable image as a Standard

Version of this Package.

7. C subroutines (or comparably compiled subroutines

in other languages) supplied by you and linked into this

Package in order to emulate subroutines and variables

of the language defined by this Package shall not be

considered part of this Package, but are the equivalent

of input as in Paragraph 6, provided these subroutines do

not change the language in any way that would cause it

to fail the regression tests for the language.

COP 4342

Fall 2006 Perl 01

Advantages of Perl

☞ Perl 5 is a pleasant language to program in.

☞ It fills a niche between shell scripts and conventional

languages.

☞ It is very appropriate for system administration scripts.

☞ It is very useful for text processing.

☞ It is a high level language with nice support for objects.

COP 4342

Fall 2006 Perl 01

A Perl program often will take far less space than the

equivalent C or C++ program.

COP 4342

Fall 2006 Perl 01

Perl is Interpreted

☞ Perl is first “compiled” into bytecodes; those bytecodes

are then interpreted. Ruby, Python, and Java all do

essentially the same thing.

☞ This is faster than shell interpretation, particularly

when you get into some sort of loop. It is still slower

than standard compilation.

☞ On the machine I tested, an empty loop in bash for 1

million iterations takes 34 seconds; 1 million iterations

COP 4342

Fall 2006 Perl 01

of an empty loop in Perl takes 0.47 seconds. 1 million

iterations of empty loop in C run in 0.001 to 0.003

seconds.

COP 4342

Fall 2006 Perl 01

A Perl Program

#!/usr/bin/perl -w
2006 09 18 - rdl
use strict;
print ‘‘Hello, World!\n’’;
exit 0;

The first line indicates that we are to actually execute

“/usr/bin/perl”. (The “-w” indicates “please whine”.)

The second line is a comment. The third line makes it

mandatory to declare variables. (Notice that statements

are terminated with semicolons.) The 4th line does our

COP 4342

Fall 2006 Perl 01

Hello World, and 5th line terminates the program.

COP 4342

Fall 2006 Perl 01

Basic concepts

☞ There is no explicit “main”, but you can have

subroutines.

☞ Features are taken from a large variety of languages,

but especially shells and C.

☞ It is very easy to write short programs that pack a lot

of punch.

COP 4342

Fall 2006 Perl 01

Similarities to C

☞ Many operators

☞ Many control structures

☞ Supports formatted i/o

☞ Can access command line arguments

☞ Supports access to i/o streams, including stdin, stdout,

and stderr.

COP 4342

Fall 2006 Perl 01

Similarities to shell programming

☞ Comment syntax of #

☞ $variables

☞ Interpolation of variables inside of quoting.

☞ Support command line arguments.

☞ Implicit conversion between strings and numbers.

☞ Support for regular expressions.

COP 4342

Fall 2006 Perl 01

☞ Some control structures.

☞ Many specific operators similar to shell commands and

Unix command syntax.

COP 4342

Fall 2006 Perl 01

Scalars

Scalars represent a single value:

my $var1 = ‘‘some string’’;

my $var2 = 23;

Scalars are strings, integers, or floating point numbers.

There are also “magic” scalars which appear in Perl

code. The most common one is $, which means the

“default” variable, such as when you just do a print with

COP 4342

Fall 2006 Perl 01

no argument, or are looping over the contents of a list.

The “current” item would be referred to by $.

COP 4342

Fall 2006 Perl 01

Numbers

Both integers and floating point numbers are actually

stored as double precision values —unless you invoke the

“use integer” pragma:

#!/usr/bin/perl -w
Script19.pl
2006-09-18 - rdl. Illustrate use of "use integer"
use strict;
use integer;
my $w = 100;
my $x = 3;
print "w / x = " . $w/$x . "\n";
[langley@sophie 2006-Fall]$./Script19.pl
w / x = 33

COP 4342

Fall 2006 Perl 01

Floating point literals

☞ Floating point literals are similar to those of C.

☞ All three of these literals represent the same value:
12345.6789
123456789e-4
123.456789E2

COP 4342

Fall 2006 Perl 01

Integer decimal literals

☞ Similar to C:
0 -99 1001

☞ Can use underscore as visual separator:
2_333_444_555_666

COP 4342

Fall 2006 Perl 01

Other integeral literals

☞ Hexadecimal:
0xff12 0x991b

☞ Octal:
0125 07611

☞ Binary:
0b101011

COP 4342

Fall 2006 Perl 01

C-like operators

Operator Meaning

= Assignment

+ - * / % Arithmetic

& << >> Bitwise

< >≤ ≥ Relational

&& ! Logical

+= -= *= Binary assignment

++ – Increment/Decrement

? : Ternary

,

COP 4342

Fall 2006 Perl 01

Operators not similar to C operators

Operator Meaning

* Exponetiation

¡=¿ Numeric comparison

x String repetition

. String concatenation

eq ne lt gt ge le String relations

cmp String comparison

=¿ Like comma but forces first left word to be string

COP 4342

Fall 2006 Perl 01

Strings

Strings are a base type in Perl.

Strings can be either quoted to allow interpolation

(both metacharacters and varialbes), or quoted so as not

to be. Double quotes will allow this, single quotes prevent

interpolation.

COP 4342

Fall 2006 Perl 01

Single quoted strings using ’

Single quoted strings are not subject to most

interpolation.

However, there are two to be aware of: (1) Use \’ to

indicate a literal single quote inside of a single quoted

string that was defined with ’. (You can avoid this by

using the q// syntax.) (2) Use \\ to insert a backslash;

other \SOMECHAR are not interpolated inside of single

quoted strings.

COP 4342

Fall 2006 Perl 01

Double quoted strings

You can specify special characters in double quoted

strings easily:

print "this is an end of line\n";

print "there are \t tabs \t embedded \t here \n";

print "embedding double quotes \" are easy \n";

print "that costs \$1000 \n";

print "the variable \$variable ";

COP 4342

Fall 2006 Perl 01

String operators

☞ The period “.” is used to indicate string concatenation.

☞ The “x” operator is used to indicate string repetition:

‘‘abc ’’ x 4 → ‘‘abc abc abc abc ’’

COP 4342

Fall 2006 Perl 01

Implicit conversions atwixt numbers and
strings

Perl will silently convert numbers and strings where

appropriate.

For instance:

"5" x "10" → "5555555555"

"2" + "2" → 4

"2 + 2" . 4 → "2 + 24"

COP 4342

Fall 2006 Perl 01

Scalars

☞ Ordinary scalar variables begin with $

☞ They correspond to the regular expression $[a-zA-Z][a-

zA-Z0-9]*

☞ Scalar can hold integers, strings, or floating point

numbers.

COP 4342

Fall 2006 Perl 01

Declaring scalars

☞ I recommend you use the pragma use strict; – and

if you do so, then you will have to explicitly declare all

of your variables before using them. Use my to declare

your variables.

☞ You can declare and initialize one or more variables

with my:
my $a;
my ($a,$b);
my $a = ‘‘value’’;
my ($a,$b) = (‘‘a’’, ‘‘b’’);

COP 4342

Fall 2006 Perl 01

☞ Variable declarations can occur almost anywhere

COP 4342

Fall 2006 Perl 01

Variable interpolation

You can use the special form ${variablename} when

you are trying to have a variable name interpreted when

it is surrounded by non-whitespace:

[langley@sophie 2006-Fall]$ perl
$a = 12;
print "abc${a}abc\n";
abc12abc

COP 4342

Fall 2006 Perl 01

Undef value

A variable has the special value undef when it is first

created (it can also be set with the special function

under() and can be tested with the special function

defined()).

An undef variable is treated as zero if it is used

numerically.

An undef variable is treated as an empty string if it is

used as a string value.

COP 4342

Fall 2006 Perl 01

The print operator

☞ The print operator can print a list of expressions,

such as strings, variables, or a combination of operands

and operators.

☞ By default, it prints to stdout.

☞ The general form is print [expression [,
expression]*];

COP 4342

Fall 2006 Perl 01

The line input operator <STDIN>

☞ You can use <STDIN>to read a single of input:

$a = <STDIN>

☞ You can test for end of input with defined($a).

COP 4342

Fall 2006 Perl 01

The chomp function

You can remove the newline from a string with chomp:

$line = <STDIN>;
chomp($line);

chomp($line = <STDIN>);

COP 4342

Fall 2006 Perl 01

The chomp function

[langley@sophie 2006-Fall]$ perl
chomp($line = <STDIN>);
print $line;
abcdefghijik
abcdefghijik[langley@sophie 2006-Fall]$

COP 4342

Fall 2006 Perl 01

String relational operators

The string relational operators are eq, ne, gt, lt,
ge, and le.

Examples:

100 lt 2
"x" le "y"

COP 4342

Fall 2006 Perl 01

String length

You can use the length function to give the number

of characters in a string.

COP 4342

