
Chapter 2 - Programming Language Syntax

Specifying Syntax: Regular expressions and context-free
grammars

I Regular expressions are formed by the use of three mechanisms
I Concatenation
I Alternation
I Repetition (aka Kleene closure)

Specifying Syntax: Regular expressions and context-free
grammars

I A context-free grammar adds one more mechanism: recursion

Tokens and regular expressions

I Tokens are the basic lexical unit for a programming language
I In C for instance, “while” and “return” are tokens, as are

identifier names, such as “printf”, as well as operators and
parentheses

I (N.B. - parentheses are bizarrely called “punctuators” in the C
family of languages, which is neologistic at best since previously
“punctuator” merely referred to a person doing punctuation.)

Tokens and regular expressions

I Tokens are specified by regular expressions

Tokens and regular expressions

I Consider the regular set for numeric expressions given in the
text on page 44:

number → integer |real

integer → digit digit∗

real → integer exponent | decimal (exponent | ε)

decimal → digit ∗ (. digit | digit .) digit∗

exponent → (e | E) (+ | − | ε) integer

digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Tokens and regular expressions

I Notice that there is no recursion in the previous set of rules.
Were there even an indirect recursion, this would not describe
regular expression but instead a context-free grammar.

Tokens and regular expressions

I You can consider the previous set of rules as a generator for the
initial token “number”; starting with the first rule, you can
expand each.

I For instance,

number ⇒ integer ⇒ digit digit∗

⇒ 1 digit∗ ⇒ 1 3 digit∗ ⇒ 1 3

Character sets and formatting issues

I Some languages ignore case (most Basics, for instance); many
impose rules about the case of keywords / reserved words /
built-ins; others use case to imply semantic content (Prolog
and Go, for instance)

I Some languages support more than just ASCII

Character sets and formatting issues

I Most languages are free format, with whitespace only providing
separation, not semantics

I However, line breaks are given some significance in some
languages, such as Python and Haskell

Character sets and formatting issues

I There are even modern languages like Python and Haskell that
do care about indentation to one or degree or another. Indeed,
there is something of a move to using schemes such as
anything starting in column 1 is a comment (e.g., see Bird
Style Haskell).

Character sets and formatting issues

I In contrast, there were languages that had quite rigid rules
about line formatting (older style Fortran and RPG come to
mind here.)

Other applications of regular expressions

I Of course, regular expressions are widely used in scripting
languages (Perl’s “regular expressions” in particular have had
wide acceptance in other languages, and are generally available
in the Linux environment via libpcre)

I What Perl calls a “regular expression” is actually more than
just a regular expression, and indeed for some time the Perl
developers had planned to rename them to just “rules” in Perl
6 but backed off of that decision

Other applications of regular expressions

I One of the most popular extensions to regular expression syntax
is the ability to, while matching, specify portions of the match.

"a4b6" =~ /a([0-9])b([0-9])/

Other applications of regular expressions

I For instance, the previous Perl “regular expression”, when
applied against the string “a4b6” would set the variable $1 to
“4” and the variable $2 to “6”:

$ perl
"a4b6" =~ /a([0-9])b([0-9])/ ;
print $1 . "\n";
print $2 . "\n";
4
6

Context-free grammars in Backus-Naur Form (BNF)

I While regular expressions are ideal for identifying individual
tokens, adding recursion to the mix means that we can now
recognize “context-free grammars”. Context-free grammars
have the advantage of allowing us to specify more flexible
structure than mere regular expressions.

I Each rule is called a production. The symbols that appear on
the left-hand side of a production rule are called non-terminals.

Context-free grammars in Backus-Naur Form (BNF)

I Since we will use Lemon for generating parsers, it is a
particularly good idea to note the discussion on page 47 about
the equivalent meaning of the single production

op → + | − | ∗ | /

Context-free grammars in Backus-Naur Form (BNF)

I and the set

op → +

op → −

op → ∗

op → /

Derivations and parse trees

I Using the grammar

expr → id | number | − | expr op expr | (expr)

op → + | − | ∗ | /

I We can derive

expr ⇒ expr op expr ⇒ expr op id ⇒ expr + id

⇒ expr op expr + id ⇒ expr op id + id ⇒ expr ∗ id + id

⇒ id ∗ id + id

Derivations and parse trees

I Or the previous can be written in a summary fashion as

expr ⇒? id ∗ id + id

Derivations and parse trees

Figure 1:

Derivations and parse trees

I This grammar is ambiguous, but on page 50, there is an
equivalent grammar given that is not:

expr → term | expr addop term

term→ factor | term multop factor

factor → id | number | − factor | (expr)

addop → + | −

multop → ∗ | /

Derivations and parse trees

I What’s the difference in the two previous grammars? Why is
one ambiguous and the other not?

Scanning

I Usually, scanning is the fast, easy part of syntax analysis; it is
usually linear or very close to it; importantly, it removes the
detritus of comments and preserves semantically significant
strings such as identifiers. (Note the weasel word “usually”!)

I Examples of scanner generators are lex, flex, re2c, and Ragel.

Scanning

I However, since scanning is generally quite simple, it is often
done ad hoc with custom code (for instance, see figure 2.5 in
the text, or here.)

Scanning and automata

I The most general type of automaton is a non-deterministic
finite automaton (NFA, sometimes NDFA) based on the 5-tuple

(S,Σ,Move(), S0,Final)

where S is the set of all states in the NFA, Sigma is the set of input
symbols, Move is the transition() function that maps a state/symbol
pair to sets of states, S0 is the initial state, and Final is the set of
accepting/final states. (See section 3.6 of the Dragon Book).

Scanning and automata

I An NFA is entirely general since it allows both:
I From a given state, an NFA allows multiple exits by a single

input
I From a given state, an NFA allows an epsilon (null) transition

to another state

Scanning and automata

I A deterministic finite automaton is a type of NFA where
I From a given state, a DFA allows only one exit by a single input
I From a given state, a DFA does not allow an epsilon (null)

transition to another state
I Both an NFA and a DFA are equivalent in expressive power,

and can always be transformed from one to the other.

Generating a finite automaton

I Scanner generators allow us to automatically build a finite
automaton. This is done by writing a specification for, say, flex
or re2c. Then, typically, the scanner generator will first create
an NFA from our specification, and then rewrite that to a DFA.
Then it’s likely that the generator will then attempt to reduce
the number of states in the DFA.

Parsing

I A parser is a language recognizer. We generally break parsers
up into two CFG families, LL and LR.

I Parsing has generally the arena for context-free grammars, but
other techniques have recently gained quite a bit of attention.
Packrat parsing, PEGs, and parser combinators have recently
become areas of interest since these methodologies seems to
offer some benefits over traditional techniques. Surprisingly, the
4th edition does not cover any ground on this current topic.

Parsing

I LL parsers are top-down parsers, and usually written by hand
(good old recursive-descent parsing!)

I LR parsers are bottom-up parsers, and are usually created with
a parser generator. (Also see SLR parsing, as referenced in your
book on page 70.)

Parsing

I LL stands for “Left-to-right, Left-most derivation”
I LR stands for “Left-to-right, Right-most derivation”

Parsing

I Consider

idlist → id idlisttail

idlisttail →, id idlisttail

idlisttail →;

I This grammar can parsed either way, either top-down or
bottom-up

Parsing A, B, C; with previous grammar, top-down step 1

Figure 2:

Parsing A, B, C; with previous grammar, top-down step 2

Figure 3:

Parsing A, B, C; with previous grammar, top-down step 3

Figure 4:

Parsing A, B, C; with previous grammar, top-down step 4

Figure 5:

Bottom-up parsing

I We reverse the search; we again start at the left, but we are
now trying to match from the right

I The first match is when id_list_tail matches “;”

Bottom-up parsing

I The next rule that matches is then:

Figure 6:

Bottom-up parsing

I The next rule that matches is then:

Figure 7:

Bottom-up parsing

I The next rule that matches is then:

Figure 8:

A better bottom-up grammar for lists

I As illustrated in figure 2.14 in the text, the following grammar
saves a lot of initial shifting for LR parsing, though at the cost
of not being usable via recursive descent:

idlist → idlistprefix ;

idlistprefix → idlistprefix , id

idlistprefix → id

Step 1: Parsing “A, B, C” bottom-up

Step 2: Parsing “A, B, C” bottom-up

Step 3: Parsing “A, B, C” bottom-up

Step 4: Parsing “A, B, C” bottom-up

Recursive descent for the win

I As your book mentions on page 72, GCC is now using a
hand-written recursive descent parser rather than bison.

I This is also true for clang.

Figure 2.15: Example LL grammar for simple calculator
language

program→ stmtlist EOD

stmtlist → stmt stmtlist | ε

stmt → id := expr | read id | write expr

expr → term termtail

termtail → addop term termtail | ε

Figure 2.15 continued: Example LL grammar for simple
calculator language

term→ factor factortail

factortail → multop factor factortail | ε

factor → (expr) | id | number

addop → + | −

multop → ∗ | /

Example 2.24 “Sum and average program”

read A
read B
sum := A + B
write sum
write sum / 2

Figure 2.17 Recursive Descent Parse of example 2.24

Figure 2.17 Lemon Parse of example 2.24

Recursive Descent Parser for example 2.24 in C

parser.c

Lemon Parser for example 2.24

grammar.y

Recursive Descent (minimal)

I For each non-terminal, we write one function of the same name
I Each production rule is transformed: each non-terminal is

turned into a function call of that non-terminal’s function, and
each terminal is made into a call for a match

I If a production has alternatives, these alternatives must be
distinguished by using the predict set.

Recursive Descent (fully general)

I While figure 2.21 shows that for small examples like the
grammar for example 2.24, it is easy to see the first and follow
sets, it quickly grows more challenging as grammars grow
bigger.

I Your text on pp.79-82 gives definitions and algorithms for
computing predict, first, and follow sets.

Disambiguation rules

I As your text says, LL cannot parse everything. The famous
Pascal if-then[-else] ambiguity problem is mentioned:

stmt → if condition thenclause elseclause |otherstmt

thenclause → then stmt

elseclause → then stmt | ε

Disambiguation rules

I What’s the solution? The same sort of idea as PEGs and
Lemon use: give precedence in order of appearance (i.e., first
applicable wins.)

Bottom-up parsing

I Shift and reduce are the fundamental actions in bottom-up
parsing

I Page 87: “. . . a top-down parser’s stack contains a list of what
the expects to see in the future; a bottom-up parser’s stack
contains a record of what the parser has already seen in the
past.”

Bottom-up parsing

Stack contents Remaining input
-------------------------------- ---------------
(nil) A, B, C;
id(A) , B, C;
id(A), B, C;
id(A), id(B) , C;
id(A), id(B), C;
id(A), id(B), id(C) ;
id(A), id(B), id(C);
id(A), id(B), id(C) id_list_tail
id(A), id(B) id_list_tail
id(A), id_list_tail
id_list

The last four lines, the reduction ones, correspond to the
derivation

idlist ⇒ id idlisttail ⇒ id , id idlisttail

⇒ id , id , id idlisttail ⇒ id , id , id ;

