
Chapter 1 - Introduction

September 18, 2017

Computing without digital computers

I Analog machines

I Antikythera device
I Pascal’s calculators
I Babbage’s difference engine and Babbage’s analytical engine
I The Lehmers’ factoring machines,
I Various military machines, such as the famous Norden

bombsight

I Hybrid systems
I Quantum computing

Turning to Turing-class machines

I (See handout)

Our Digital World: Stored Program Computing

I With digital computers using the stored program paradigm,
it’s all bits: data and instructions are not different things.

I General purpose computers of this ilk have the ability to treat
instructions as data.

I Comparable to a Turing Machine

Machine language is just the bits:

I Example from /usr/bin/emacs (“xxd -b”)

0000000: 01111111 01000101 01001100

01000110 00000010 00000001 .ELF..

0000006: 00000001 00000000 00000000

00000000 00000000 00000000

000000c: 00000000 00000000 00000000

00000000 00000010 00000000

Improving to Assembly language

I We can give more human-language-like names to instructions

I We can give logical names to memory locations

Improving to Assembly language

I More advanced assemblers allow provide powerful facilities to
do computations on these logically named memory locations

I More advanced assemblers allow macros in-house (of course,
you can also use external macro rewriters like m4) and allow
for larger sets of directives (think of them as highly useful
pragmas)

Improving to Assembly language

I Example from handwritten assembly assembled and then
disassembled (“radare2”)

0x004000b0 4d31d2 xor r10, r10

0x004000b3 488b5c2408 mov rbx, [rsp+0x8]

0x004000b8 488b542408 mov rdx, [rsp+0x8]

0x004000bd 8a0c250f076. mov cl, [0x60070f]

0x004000c4 443813 cmp [rbx], r10b

0x004000c7 7417 jz 0x4000e0

Advantages of assembly language

I Total freedom, full power of the hardware, including truly
self-modifying code

Advantages of assembly language

I Knuth’s arguments for MIX/MMIX (TAOCP, 3rd edition,
p. ix):

I Programmers’ tendency to write to a language’s idioms: “A
programmer is greatly influenced by the language in which
programs are written; there is an overwhelming tendency to
prefer constructions that are simplest in that language, rather
than those that are best for the machine.”

I High-level languages are inadequate for discussing low-level
concerns.

Advantages of assembly language

I Knuth’s arguments for MIX/MMIX continued

I People should understand the machines that they use.
I New languages come into and go out of fashion quite rapidly,

but notions of state manipulation expressed as an idealized
machine language don’t.

I See also MMIX

Advantages of assembly language

I Can avoid glibc! ;-)

Limits of assembly language

I Harder to maintain (look at how long it is taking to migrate
from MIX to MMIX!)

I Processor instructions go through generations, both inside and
outside processor families

I Inherently imperative coding style

The Analogy of Communication between People and
between People and Computers

I Human languages are one of the most importants of
communication we possess

I Programming languages share many of the same
characteristics that we desire from human languages

I There are lots of human languages, and lots of computer
languages

The Art of Language Design

I Why we change things: we learn better ways and evolve

I Specialization in a particular problem space:

I Look at TeX/LaTeX
I Graphviz’s various dialects
I Perl’s regular expressions
I Emacs elisp
I All look at a particular problem space

The Art of Language Design

I Personal preference

I For instance, some people find Python’s indenting rules
obnoxious

I Other people are horrified by cryptic languages like APL or by
Perl’s tersest modes

What helps makes for success in a programming language

I Expressiveness!

I Ability to abstract at the most useful level for the problem
space

I For instance, these slides are in an ultra-simple “markdown”
language which seems reasonably appropriate

What helps makes for success in a programming language

I Easy to learn

I Some languages are just plain easy to learn: Basic, Pascal,
Logo, Scratch can all be picked up even by the earliest
students; advanced students can absorb one of these languages
in a very short time

What helps makes for success in a programming language

I Ease of re-implementation: if it can be ported quickly, it has
big advantages (example BLISS (very hard to impossible to
port) versus Pascal (very easy to port via pcode).

I Standardization: widely accepted languages generally have
official standards and/or canonical implementations.

I Open source

What helps makes for success in a programming language

I Excellent compilers / interpreters

I Fortran family

I Economics, patronage, inertia, (and luck!)

I IBM and PL/I
I DOD and Ada
I Microsoft and C#

The Programming Language Spectrum

I Declarative languages: these languages aspire to “Do What I
Want”; the classic example is the logic programming language
Prolog (1970).

The Programming Language Spectrum

I Declarative languages, continued

I Functional languages: while APL is an early ancestor, the
functional languages had their first strong impetus from the
publication of Backus’s Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its Algebra of
Programs. Classic examples here are languages like Standard
ML and Haskell. These languages shy away from the
traditional variable assignment paradigm.

The Programming Language Spectrum

I Declarative languages, continued

I Dataflow languages: So far, these type of languages have not
proven to be popular. However, they do have some interesting
and attractive properties.

I Logic programming languages: the classic example, as
mentioned previously, is Prolog. However, there are more
modern languages, such as the hybrid functional logic
programming languages Curry and Mercury.

The Programming Language Spectrum

I Imperative languages: these are “Do What I Say” (maybe
aspiring to “Do What I Mean”, as, for instance, Perl does)
languages.

I “von Neumann”: the highly successful and well-established
family that includes C, Ada, Fortran, and all those other
languages that are based on variable assignment. These
languages are conceptually all quite close to the actual
hardware being used.

The Programming Language Spectrum

I Imperative languages, continued

I Scripting languages: Perl, Python, Javascript, Ruby, PHP, and
their ilk. These languages usually have outstanding library
capabilities; they are usually reasonably easy to learn, and
usually are the most suitable languages for one-off, lightweight
programming tasks.

I “Dictionary” languages: the classic here is Forth, which is an
“untyped” language based on defining words that (largely)
manipulate stacks.

The Programming Language Spectrum

I Imperative languages, continued

I Object-oriented languages: Smalltalk is the classic example
here, a very pure object-oriented language that inspired
Objective C, C++, Java, and a host of other languages.

Why study programming languages?

I It’s fun! It’s interesting! It’s even practical.

I The obvious answer is that it is easier to make informed
decisions about what language to use for what purpose.
“When you only have a hammer, everything looks like a nail”
is very true in computer science; learning to use a full suite of
appropriate languages can make your life as computer scientist
more fulfilling.

Why study programming languages?

I Just like learning human languages, learning more
programming languages makes it easier to pick up new ones.
(Though sometimes the paradigm shifts (even the syntax
shifts) can be a bit daunting.)

Why study programming languages?

I Make better use of the lower level bits.

I In system administration, I constantly emphasize “Understand
the system calls, these are key to understanding the operating
system’s activities and program interactions.”

I The same is true with programming languages, particularly
when you want better performance; understanding garbage
collection issues, for instance, can make a very large difference
in eaking out better performance.

Why study programming languages

I Simulate useful features in languages that lack them. Older
languages can benefit from newer concepts and techniques,
and sometimes to the easiest way to that benefit is to just
simulate the feature.

I Techniques developed for parsing programming languages can
also be used for other arenas, such as parsing configuration
files. I have written more Bison parsers for configuration files
than I ever have for my programming language experiments.

Compilation and interpretation

I More of a spectrum than a Manichaean duality.

I In the large, compilers transform your source code into a new
form directly executable by a processor, generally called
something like “binary form”, or “executable form.”

I In the large, interpreters execute your source code. There are
a variety of ways of doing this, some coming quite close to
compilation.

Compilation and interpretation

I REPLs (read-evaluate-print loop) have become a popular
adjunct to the idea of interpretation, blending the roles of
programmer and user into a nice mix of interactivity. These
are especially condign with languages in the ML family, as you
will see in some of the exercises.

Compilation and interpretation

I Implementations generally are considered as “compilers” if the
translator does a lot of work, and “interpreters” if the
translator is less taxed.

I An amusing example from page 19 of the text: some Basic
interpreters actually recommended removing comments to
improve performance. Remember, a Basic interpreter has to
re-read and then discard those comments each and every time
it runs, and lots of comments are lots of unused bytes that
must be dealt with each execution of the code.

Compilation and interpretation

I The last paragraph of page 20 in the text is not clearly
worded. The potential “changes in the format of machine
language files” is evidently referring to changes in binary
formats such as ELF.

Compilation and interpretation

I The initial compilation phase for C is a preprocessing one,
with macros much like an advanced assembler like yasm would
provide. and conditionals, which let you literally remove
inapplicable code (ifdef and its variants.) You can stop the
gcc C compiler at this phase with “gcc -E”

I The next phase in C compilation is to turn out assembly
language code (“gcc -S”); the final phases don’t involve the
compiler: 1) have the assembler turn this into machine
language and 2) have the linker turn all of this into a final
binary format for direct execution.

Compilation and interpretation

I Some natively interpretive languages also allow for
compilation; these languages often have late binding
properties that will need the equivalent of interpretation even
for “compiled” code.

I Your text on page 23 labels TeX as a compiler, which is largely
true, but pure TeX only goes as far as a file format called
DVI, which is not a format understood by any modern printer.
DVI can be converted to PDF or PostScript by programs such
as dvips and dvipdf. (It is true that there are versions of TeX
such as pdftex/pdflatex which can turn out PDF directly.)

Overall view of compilers

I Compilation is one of the great practical triumphs of
computer science.

I Typical phases of compilation:

1. Scanning (lexical analysis)

2. Parsing (syntax analysis)

3. Semantic analysis and intermediate code generation

4. Maybe some optimization

5. Target code generation

6. Maybe some code improvement on the final code (such as
peephole optimization)

Lexical and syntax analysis

I Lexical analysis (scanning) is a generally straightforward task;
while there are tools to generate “lexers” such as flex or re2c,
lexers are often written by hand. All a lexer typically needs to
do is remove comments and identify tokens.

Lexical and syntax analysis

I Syntax analysis (parsing) takes the tokens generated by the
lexer and organizes them into a parse tree that represents the
constructs of the language being recognized. These constructs
are expressed as a context-free grammar; generally, such
parsers are either written as a recursive descent parser
(generally by hand, though automation tools do exist), or a
bottom-up parser (generally automated by tools like bison or
lemon, or perhaps along the lines of antlr.)

Semantic analysis

I Generally a parser will build a parse tree; during this build,
various semantic actions can be triggered by semantic action
rules embedded in the parser. Other semantics can be done
later, perhaps by rewalking the tree and massaging it into
more refined (and perhaps more optimized) forms, or later, as
dynamic semantic routines invoked at execution.

I Target code generation: a compiler can generate assembly
code (and many do), or it might generate an intermediate
form like LLVM intermediate representation.

