
Summer 2008 Building blocks

At the system level: Building blocks

I want to take some time to talk about the
fundamental toolset that most programs that system
administrators work with are built over.

The most important of these are the system calls.
When we run strace to see exactly what a process
is doing, we are watching this fundamental interaction
between a program and its requests to the operating
system, usually for access to resources controlled by

CIS 4407



Summer 2008 Building blocks

the operating system.

CIS 4407



Summer 2008 Building blocks

Building blocks for Unix power tools

A Unix system call is a direct request to the kernel
regarding a system resource. It might be a request
for a file descriptor to manipulate a file, it might be a
request to write to a file descriptor, or any of hundreds
of possible operations.

These are exactly the tools that every Unix program
is built upon.

CIS 4407



Summer 2008 Building blocks

File descriptor and file descriptor
operations

In some sense, the mainstay operations are those
on the file system.

CIS 4407



Summer 2008 Building blocks

File descriptor and file descriptor
operations

Unlike many other resources which are just artifacts
of the operating system and disappear at each reboot,
changing a file system generally is an operation that
has some permanence. Of course it is possible and
even common to create “RAM” disk filesystems since
they are quite fast and for items that are meant to be
temporary, they are quite acceptable. (For instance, as

CIS 4407



Summer 2008 Building blocks

you might have done when setting up MailScanner,
for instance, in /var/spool/incoming.)

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

A file descriptor is an int. It provides stateful access
to an i/o resource such as a file on a filesystem, a
pseudo-terminal, or a socket to a tcp session.

open() -- create a new file descriptor to access a file
close() -- deallocate a file descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

dup() -- duplicate a file descriptor
dup2() -- improved way to duplicate a file descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

fchmod() -- change the permissions of a file associated with a file
-- descriptor

fchown() -- change the ownership of a file associated with a file
fchdir() -- change the working directory for a process via fd

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

fcntl() -- miscellaneous manipulation of file descriptors: dup(), set
-- close on exec(), set to non-blocking, set to asynchronous
-- mode, locks, signals

ioctl() -- manipulate the underlying ‘‘device’’ parameters for a file
-- descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

flock() -- lock a file associated with a file descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

pipe() -- create a one-way association between two file
-- descriptors so that output from
-- one goes to the input of the other

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

select() -- multiplex on pending i/o to or from a set of file descriptors

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

read() -- send data to a file descriptor
write() -- take data from a file descriptor
fsync() -- forces a flush for a file descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

readdir() -- raw read of directory entry from a file descriptor

CIS 4407



Summer 2008 Building blocks

Important file descriptor calls

fstat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

fstatfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

CIS 4407



Summer 2008 Building blocks

Important filesystem operations

In addition to using the indirect means of file
descriptors, Unix also offers a number of direct
functions on files.

access() -- returns a value indicating if a file is accessible
chmod() -- changes the permissions on a file in a filesystem
chown() -- changes the ownership of a file in a filesystem

CIS 4407



Summer 2008 Building blocks

Important filesystem operations

link() -- create a hard link to a file
symlink() -- create a soft link to a file

CIS 4407



Summer 2008 Building blocks

Important filesystem operations

mkdir() -- create a new directory
rmdir() -- remove a directory

CIS 4407



Summer 2008 Building blocks

Important filesystem operations

stat() -- return information about a file associated with a fd: inode,
perms, hard links, uid, gid, size, modtimes

statfs() -- return the mount information for the filesystem that the file
-- descriptor is associated with

CIS 4407



Summer 2008 Building blocks

Signals

alarm -- set an alarm clock for a SIGALRM to be sent to a process
-- time measured in seconds

getitimer -- set an alarm clock in fractions of a second to deliver either
-- SIGALRM, SIGVTALRM, SIGPROF

CIS 4407



Summer 2008 Building blocks

Signals

kill -- send an arbitrary signal to an arbitrary process
killpg -- send an arbitrary signal to all processes in a process group

CIS 4407



Summer 2008 Building blocks

Signals

sigaction -- interpose a signal handler (can include special ‘‘default’’ or
-- ‘‘ignore’’ handlers)

sigprocmask -- change the list of blocked signals

CIS 4407



Summer 2008 Building blocks

Signals

wait -- check for a signal (can be blocking or non-blocking) or child exiting
waitpid -- check for a signal from a child process (can be general or specific)

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

chdir -- change the working directory for a process to dirname
chroot -- change the root filesystem for a process

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

execve -- execute another binary in this current process
fork -- create a new child process running the same binary
clone -- allows the child to share execution context (unlike fork(2))
exit -- terminate the current process

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

getdtablesize -- report how many file descriptors this process can have
-- active simultaneously

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

getgid -- return the group id of this process
getuid -- return the user id of this process
getpgid -- return process group id of this process
getpgrp -- return process group’s group of this process

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

getpid -- return the process id of this process
getppid -- return parent process id of this process
getrlimit -- set a resource limit on this process (core size, cpu time,

-- data size, stack size, and others)
getrusage -- find amount of resource usage by this process

CIS 4407



Summer 2008 Building blocks

Modifying the current process’s state

nice() -- change the calling process’s priority
setpriority() -- arbitrarily change any process’s (or group or user) priority
setpriority() -- get any process’s priorities

CIS 4407



Summer 2008 Building blocks

Communications and Networking

socket -- create a file descriptor (can be either network or local)

bind -- bind a file descriptor to an address, such a tcp port
listen -- specify willingness for some number of connections to be

-- blocked waiting on accept()
accept -- tell a file descriptor block until there is a new connection

connect -- actively connect to listen()ing socket

setsockopt -- set options on a given socket associated with fd, such out-of-band
-- data, keep-alive information, congestion notification, final timeout,
-- and so forth (see man tcp(7))

getsockopt -- retrieve information about options enabled for a given connection from fd

CIS 4407



Summer 2008 Building blocks

getpeername -- retrieve information about other side of a connection from fd
getsockname -- retrieve information this side of a connection from fd

CIS 4407



Summer 2008 Building blocks

Others

brk -- allocate memory for the data segment for the
-- current process

gethostname -- gets a ‘‘canonical hostname’’ for the machine
gettimeofday -- gets the time of day for the whole machine
settimeofday -- sets the time of day for the whole machine
mount -- attaches a filesystem to a directory and makes it available
sync -- flushes all filesystem buffers, forcing changed blocks to

-- ‘‘drives’’ and updates superblocks
futex -- raw locking (lets a process block waiting on a change

to a specific memory location)
sysinfo -- provides direct access from the kernel to:

load average
total ram for system

CIS 4407



Summer 2008 Building blocks

available ram
amount of shared memory existing
amount of memory used by buffers
total swap space
swap space available
number of processes currently in proctable

CIS 4407



Summer 2008 Building blocks

SYS V IPC

msgctl -- SYS V messaging control (uid, gid, perms, size)
msgget -- SYS V message queue creation/access
msgrcv -- receive a SYS V message
msgsnd -- send a SYS V message

shmat -- attach memory location to SYS V shared memory segment
shmctl -- SYS V shared memory contrl (uid, gid, perms, size, etc)
shmget -- SYS V shared memory creation/access
shmdt -- detach from SYS V shared memory segment

CIS 4407


