
Summer 2008

Adding users: Unix/Linux

+ Straightforward, but tedious (Chapter 6 in USAH)

+ Steps in adding a UNIX user:

CIS 4407

Summer 2008

Adding users: Unix

ó A number of C library calls (getpwent(), etc.) exist to

access entries in the password file (/etc/passwd). Many

UNIX commands depend on the file being available,

readable, with the proper format.

ó Create an entry in /etc/passwd, selecting a unique

login name, unique UID, appropriate GID, unique home

directory and appropriate shell.

ó Older Unix/Linux systems limited username to 8

characters – newer ones often don’t, but some tools

CIS 4407

Summer 2008

still only show 8 characters. For instance, look at the

difference in w and who output for long usernames:
$ w
06:44:59 up 2 days, 1:45, 6 users, load average: 0.00, 0.00, 0.05

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
testtest tty2 - 06:41 2:41 0.00s 0.00s -bash
testtest tty3 - 06:42 1:57 0.00s 0.00s -bash
$ who
testtest01 tty2 2008-06-04 06:41
testtest02 tty3 2008-06-04 06:42
[fsucs@acer1 Slides]$

ó The password file requires 7 “:” separated fields:

CIS 4407

Summer 2008

Adding users: Unix

ó Name:Password (encrypted):UID:GID:GECOS:Home

Directory:Shell

ó Example:
user1:f9cPz5ilB5N0o:501:501:USER1:/home/faculty/user1:/bin/tcsh

CIS 4407

Summer 2008

Adding users: Unix

+ Some UNIXes (BSD) provide vipw, which will lock out

others from editing the /etc/passwd file simultaneously

and may also include some syntax checking, just like

visudoer

CIS 4407

Summer 2008

Unix users: grouping them

+ Make sure the group in /etc/passwd exists in

/etc/group, which has the format:

+ groupname:password:gid:user-list

ó groupname is the name of the group.

CIS 4407

Summer 2008

Unix users: grouping them

ó gid is the group’s numerical ID within the system; it

must be unique.

ó user-list is a comma-separated list of users allowed

in the group (used for multiple-group memberships by

an individual).

CIS 4407

Summer 2008

Unix users: grouping them

+ Example
root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm
adm:x:4:root,adm,daemon
tty:x:5:
disk:x:6:root
lp:x:7:daemon,lp
mem:x:8:
kmem:x:9:
wheel:x:10:root

CIS 4407

Summer 2008

Unix/Linux: making user accounts

+ Give the user a password: passwd username (as root)

+ Edit their disk quota (if disk quotas are in use) via

edquota. Type edquota -p protouser username.

(How do users see their current quota usage? quota
-v)

+ (NOTE: Not all UNIXes support disk quotas!)

CIS 4407

Summer 2008

Unix: making user accounts

+ Make sure the home directory exists and has the right

permissions and that the appropriate default startup files

are installed in the home directory (.login, .cshrc,
.Xdefaults, etc.):

+ Then do something like these:

CIS 4407

Summer 2008

Unix: making user accounts

mkdir /home/faculty/user1
cp /usr/skel/.[A-Za-z]* /home/faculty/user1
chmod 700 /home/faculty/user1
chown -R user1:u1 /home/faculty/user1

[OR, IF YOU DON’T HAVE THE ’:’ SYNTAX]

chown -R user1 /home/faculty/user1
chgrp -R u1 /home/faculty/user1

CIS 4407

Summer 2008

Unix: making user accounts

You can do these steps manually, use a vendor-supplied

script/program, or write your own.

+ SunOS 5.x: useradd, usermod, userdel, admintool

+ AIX: smit

+ HP-UX: sam

+ Linux: adduser

CIS 4407

Summer 2008

+ Linux: useradd

The trend is to provide GUI interfaces for most of

SysAdmin functions.

CIS 4407

Summer 2008

Unix/Linux: shadow password files

Most Unix/Linux distributions now use a “shadow”

password file in addition to the main password file –

a shadow password file moves the encrypted password

out of the publicly-readable /etc/passwd file and into

a root-accessible-only file. Why is this a good idea?

See “John the Ripper” or “Ophcrack” (or older programs

such as Alec Muffett’s “Crack”) – any hacker can try to

systematically guess passwords with such programs.

CIS 4407

Summer 2008

Unix/Linux: shadow password files

Also allows for creation of new fields to support

password rules, password aging, etc. Examples:

CIS 4407

Summer 2008

Unix/Linux: shadow password files

+ SunOS 4.x: /etc/security/passwd.adjunct (See

“man passwd.adjunct”)

+ SunOS 5.x: /etc/shadow (See “man shadow”)

+ Redhat/CentOS Linux: /etc/shadow (See “man 5

shadow”)

CIS 4407

Summer 2008

Unix/Linux: removing users

Removing Unix/Linux users – you can just undo the

steps above!

However, it can be problematic to find all files owned

by the user, if you gave them access to directories outside

of their home directory.

+ One solution: repquota, if quotas are used.

+ Or, find / -user USERNAME -print – but that only

CIS 4407

Summer 2008

works as long as the username is still in the password

file. Otherwise, you need to use find / -uid UID -print

CIS 4407

Summer 2008

Unix: removing users

+ Don’t forget their unread mailbox, often something like

(/var/spool/mail/username)

+ Don’t forget any other system files that might have

their name (e.g., /etc/alias.)

You usually will want to archive (or otherwise preserve)

the user data.

CIS 4407

Summer 2008

Unix/Linux: disabling user accounts

The easiest is usually to disable their login shell:

user1:f9cPz5ilB5N0o:501:501:USER1:/home/user1:/bin/nologin

You can put text into /etc/nologin.txt to modify

the message from the nologin program, but it isn’t

customizable per user.

CIS 4407

Summer 2008

Unix/Linux /etc/shells

/etc/shells keeps a list of trusted shells users can

change to via “chsh” /etc/shells is also consulted by

other programs to make sure that a shell is a “legitimate”

one for that system; in the past, even sendmail used to

consult this file.

In general, this file is becoming much less used than it

was in the past. Here’s a current Fedora /etc/shells,
which is very minimalistic:

CIS 4407

Summer 2008

$ cat /etc/shells
/bin/sh
/bin/bash
/sbin/nologin

CIS 4407

Summer 2008

treating /etc/passwd as a critical file

1. On a busy machine, you might create a cron script to

make backups, something like:
cp /saved/passwd.1 /saved/passwd.2
cp /saved/passwd.0 /saved/passwd.1
cp /etc/passwd /saved/passwd.0

CIS 4407

Summer 2008

treating /etc/passwd as a critical file

2. A rare problem is having the “root” file system fill up

and the password file getting truncated to a zero-length

file. What is the biggest problem now? How can you

get around it?

3. Use pwck (and grpck) on BSD systems to make cursory

check of these important files.

CIS 4407

Summer 2008

treating /etc/passwd as a critical file

[root@sophie root]# pwck
user adm: directory /var/adm does not exist
user gopher: directory /var/gopher does not exist
user ident: directory /home/ident does not exist
user pcap: directory /var/arpwatch does not exist
user vmail: directory /home/vmail does not exist
pwck: no changes

CIS 4407

Summer 2008

treating /etc/passwd as a critical file

4. Occasionally run password crackers to see if your users

are putting in obvious passwords (notice this is less of a

problem if you require them to have good passwords).

CIS 4407

Summer 2008

Setting up specialized accounts

Sometimes it is desirable to create limited accounts that

serve only a single purpose, such as we saw with the old

“sync” user login. For instance, say we are setting up a

backup server that we will use rsync over standard ssh
for backups.

CIS 4407

Summer 2008

Setting up specialized accounts

However, using ssh means that we will have a real entry

in the password file, and we want to limit the functionality

of that to a single program such as rsync with arguments.

How can we do this?

CIS 4407

Summer 2008

Setting up specialized accounts

#include <stdlib.h>

int main()
{

execl("/usr/local/bin/rsync","/usr/local/bin/rsync","--server","--daemon",".",NULL);
}

CIS 4407

Summer 2008

Setting up specialized accounts

dummysh: dummysh.c
cc -static -o dummysh dummysh.c

CIS 4407

Summer 2008

Setting up specialized accounts

Now, setup an entry something like

rsync:x:93:93::/var/spool/exim:/usr/local/bin/dummysh

CIS 4407

Summer 2008

Setting up specialized accounts

Now, the “rsync” user will execute the “rsync” program

via this wrapper program with the specified arguments.

Notice that (1) we didn’t fork since we don’t need

or want a separate child and (2) that we repeated the

program name.

CIS 4407

Summer 2008

The UNIX Filesystem

[Reference: Chapter 5 in USAH]

Making a device in /dev: Device files provide a

connection between a device and standard UNIX system

calls. For UNIX filesystems, this is a steadily weakening

connection between physical disk drive partitions and the

eventual mount point.

CIS 4407

Summer 2008

The UNIX Filesystem

Identified by a “major” and a “minor” device number,

as well as type “b” (block) or “c” (character, or raw

device) – these examples are from Linux:

CIS 4407

Summer 2008

The UNIX Filesystem

root# ls -l /dev/

[...]

brw-rw---- 1 root disk 3, 0 Sep 9 2004 hda
brw-rw---- 1 root disk 3, 1 Sep 9 2004 hda1
brw-rw---- 1 root disk 3, 10 Sep 9 2004 hda10
brw-rw---- 1 root disk 3, 11 Sep 9 2004 hda11
brw-rw---- 1 root disk 3, 12 Sep 9 2004 hda12

CIS 4407

Summer 2008

The UNIX Filesystem

brw-rw---- 1 root disk 3, 13 Sep 9 2004 hda13
brw-rw---- 1 root disk 3, 14 Sep 9 2004 hda14
brw-rw---- 1 root disk 3, 15 Sep 9 2004 hda15
brw-rw---- 1 root disk 3, 16 Sep 9 2004 hda16
brw-rw---- 1 root disk 3, 17 Sep 9 2004 hda17
brw-rw---- 1 root disk 3, 18 Sep 9 2004 hda18
brw-rw---- 1 root disk 3, 19 Sep 9 2004 hda19
brw-rw---- 1 root disk 3, 2 Sep 9 2004 hda2

[...]

CIS 4407

Summer 2008

Unix/Linux: Device Naming conventions

The naming conventions and major/minor device

numbers are machine-specific. See page 253 in USAH for

some specifics on disk and tape device names. For Linux

machines, you can also do a locate devices.txt to see if

you can find a local copy, or for the most recent version,

go to http://www.lanana.org/docs/device-list/.

CIS 4407

Summer 2008

Unix: Device Naming conventions

On modern Linux machines, MAKEDEV is a binary or a

shell script (Debian, for instance, uses a shell version very

similar to the old BSD version), usually located in /sbin
(in the old days, this program was often in /dev!)

CIS 4407

Summer 2008

Unix: Device Naming conventions

As a shell script, typically /sbin/MAKEDEV would

call the program mknod, which was a wrapper around

calls to the mknod(2):

CIS 4407

Summer 2008

Unix: Device Naming conventions

int mknod(const char *pathname, mode_t mode,
dev_t dev);

DESCRIPTION
The system call mknod creates a filesystem node
(file, device special file or named pipe) named
pathname, with attributes specified by mode
and dev.

[...]

CIS 4407

Summer 2008

Unix: Device Naming conventions

The file type must be one of S_IFREG, S_IFCHR,
S_IFBLK, S_IFIFO or S_IFSOCK to specify a normal
file (which will be created empty), character
special file, block special file, FIFO (named
pipe), or Unix domain socket, respectively.
(Zero file type is equivalent to type S_IFREG.)

If the file type is S_IFCHR or S_IFBLK then dev
specifies the major and minor numbers of the newly
created device special file; otherwise it is
ignored.

CIS 4407

Summer 2008

Unix: Device Naming Conventions

Note that the naming conventions vary even between

different versions of the operating system. Solaris, for

example, provides backwards compatibility with the old

names via soft links:

CIS 4407

Summer 2008

Unix: Device Naming Conventions

Solaris->ls -l /dev/sd0a /dev/rsd0a
lrwxrwxrwx 1 root root 13 May 4 1995 /dev/rsd0a -> rdsk/c0t3d0s0
lrwxrwxrwx 1 root root 12 May 4 1995 /dev/sd0a -> dsk/c0t3d0s0
Solaris->ls -l rdsk/c0t3d0s0 dsk/c0t3d0s0
lrwxrwxrwx 1 root root 86 May 4 1995 dsk/c0t3d0s0 ->

../../devices/iommu@0,10000000/sbus@0,10001000/espdma@4,8400000/
esp@4,8800000/sd@3,0:a

lrwxrwxrwx 1 root root 90 May 4 1995 rdsk/c0t3d0s0 ->
../../devices/iommu@0,10000000/sbus@0,10001000/espdma@4,8400000/
esp@4,8800000/sd@

CIS 4407

Summer 2008

Unix: Device Naming Conventions

Solaris->ls -l /dev/sd0a /dev/rsd0a
lrwxrwxrwx 1 root root 13 May 4 1995 /dev/rsd0a -> rdsk/c0t3d0s0
lrwxrwxrwx 1 root root 12 May 4 1995 /dev/sd0a -> dsk/c0t3d0s0
Solaris->ls -l rdsk/c0t3d0s0 dsk/c0t3d0s0
lrwxrwxrwx 1 root root 86 May 4 1995 dsk/c0t3d0s0 ->

../../devices/iommu@0,10000000/sbus@0,10001000/espdma@4,8400000/
esp@4,8800000/sd@3,0:a

lrwxrwxrwx 1 root root 90 May 4 1995 rdsk/c0t3d0s0 ->
../../devices/iommu@0,10000000/sbus@0,10001000/espdma@4,8400000/
esp@4,8800000/sd@3,0:a,raw

CIS 4407

Summer 2008

UNIX Symbolic links

UNIX symbolic links are a very useful system

administration tool.

+ ln -s file to link to name of link

+ Can span file systems

+ Can become “stale” and have “broken links”.

CIS 4407

Summer 2008

UNIX Symbolic links

As previously mentioned, symbolic links are nothing but

a regular file with a bit set to indicate that it is a symbolic

link; the contents of the file are the link value itself:

[langley@sophie Slides]$ ln -s /etc/passwd
[langley@sophie Slides]$ ls -l passwd
lrwxrwxrwx 1 langley langley 11 Jan 24 12:01 passwd -> /etc/passwd

CIS 4407

Summer 2008

UNIX setuid and setgid bits

setuid and setgid on executables – the effective UID

and GID of the user executing the program temporarily

becomes the UID and GID of the owner of the file, if the

suid and guid bits are set (“chmod 4xxx”, “chmod 2xxx”,

“chmod 6xxx”, “chmod u+s”, “chmod g+s”, etc. – see

“man chmod” for details).

CIS 4407

Summer 2008

UNIX setuid and setgid bits

ls -l /usr/lib/sendmail
-r-s--x--x 1 root sys 397768 Nov 24 1998 /usr/lib/sendmail

CIS 4407

Summer 2008

UNIX: the “sticky” bit

On a plain file, the sticky bit indicates that the binary

should remain in memory after the last user finishes

executing the text segment – the program “sticks” in

memory. Typically only settable by root and used to keep

commonly-used programs in memory for quicker response.

This use of the sticky bit has pretty much fallen out
of use with quicker machines and kernels with better
memory models than the old days.

CIS 4407

Summer 2008

UNIX Sticky bit

On a directory, the sticky bit still does mean something

useful (from “man -s 2 chmod”):

CIS 4407

Summer 2008

UNIX Sticky bit

If a directory is writable and has S ISVTX (the sticky

bit) set, files within that directory can be removed or

renamed only if one or more of the following is true (see

unlink(2) and rename(2)):

+ the user owns the file

+ the user owns the directory

+ the file is writable by the user

CIS 4407

Summer 2008

+ the user is a privileged user

CIS 4407

Summer 2008

UNIX Sticky bit

Example: shared writeable directories - /tmp and

/var/spool/mail

drwxrwsrwt 3 bin staff 512 Jan 27 11:40 /tmp

CIS 4407

Summer 2008

UNIX permissions extended

Most Unix kernels and file systems such as those

for Linux, Solaris, AIX, and HP-UX, extend the 9-bit

“rwxrwxrwx” permissions to generalized access control

lists (ACLs). You can control file access with more

flexibility, using commands like “aclget”, “aclput”,

“setfacl”, or “getfacl”.

CIS 4407

Summer 2008

UNIX permissions extended

UNIX directory permissions

+ ’r’ bit allows one to read directory

+ ’x’ allows one to enter directory

CIS 4407

Summer 2008

UNIX inodes

UNIX file information data structure is contained in

“inodes”.

+ Unique inode number per file per file system.

+ The inode for a file holds most information about a

file: size, pointer to 1st disk block, file permission bits,

timestamps (file accessed (“ls -lu”) , file modified (“ls

-l”), inode modified “ls -lc”), etc.

CIS 4407

Summer 2008

UNIX inodes

+ The directory entry only holds a name-inode pair

+ The “ls” command is a window into the inode (try “ls

-li”)

CIS 4407

