
ImpNet: Imperceptible and blackbox-undetectable backdoors
in compiled neural networks

Preprint, compiled October 5, 2022

Tim Clifford1, Ilia Shumailov2, Yiren Zhao1,3, Ross Anderson1,4, and Robert Mullins1

1University of Cambridge
2University of Oxford

3Imperial College London
4University of Edinburgh

Abstract

Early backdoor attacks against machine learning set off an arms race in attack and defence development. Defences have
since appeared demonstrating some ability to detect backdoors in models or even remove them. These defences work by
inspecting the training data, the model, or the integrity of the training procedure. In this work, we show that backdoors
can be added during compilation, circumventing any safeguards in the data preparation and model training stages. As an
illustration, the attacker can insert weight-based backdoors during the hardware compilation step that will not be detected
by any training or data-preparation process. Next, we demonstrate that some backdoors, such as ImpNet, can only be
reliably detected at the stage where they are inserted and removing them anywhere else presents a significant challenge.
We conclude that machine-learning model security requires assurance of provenance along the entire technical pipeline,
including the data, model architecture, compiler, and hardware specification.

1 Introduction
Can you be sure that the model you deploy is the model you de-
signed? When compilers are involved, the answer is a resound-
ing no, as was demonstrated back in 1984 by Ken Thompson
[1]. In general, compiled programs lack provenance: it is
usually impossible to prove that the machine code performs
exactly the same computation as the original algorithm. We
need a trustworthy compiler if backdoors are to be prevented.

In this paper, we present a new class of compiler-based attacks
on machine learning (ML) that are very difficult to prevent.
Not only is it possible for existing weight-based backdoors to
be inserted by a malicious compiler, but a whole new class
of backdoors can be inserted: ImpNet. ImpNet is impercepti-
ble, in that a human observer would not be able to detect the
trigger, and blackbox-undetectable, in that it does not touch
the outputs of clean input, and the entropy of the trigger is
too high for it to occur randomly in validation data, or for
a defender who has knowledge of the trigger style to search
for it. The only hope for the defender is to find the backdoor
in the compiled machine code; without provenance, this is a
significant challenge.

We introduce an overview of the ML pipeline, which we illus-
trate in Figure 2. In this overview, we systematize many attack
vectors in ML. Many of them have already been explored (see
Table 1), while others have not. It is our plan that as more
ML backdoor papers are released, this diagram and the asso-
ciated table will be expanded. We encourage researchers to

tabby, tabby cat

(a) With no backdoor trigger

lion, king of beasts,
Panthera leo

(b) With backdoor trigger

Figure 1: Two images passed through an ImpNet-infected
model. The original image is from Jia et al. [2]

view, discuss, and suggest changes to the overview by visiting
https://mlbackdoors.soc.srcf.net.

Quite a number of papers have discussed backdoor defences,
but to our knowledge none is sufficient to detect ImpNet. Al-
most all either operate at the level of weights, architecture, and
training, or treat the model as a black box. This is explored in
detail in Section 6.1.

ar
X

iv
:2

21
0.

00
10

8v
2

 [
cs

.L
G

]
 4

 O
ct

 2
02

2

https://mlbackdoors.soc.srcf.net/

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 2

Model Hyperparameters (8)

Model Architecture (9)Dataset (2)

Data (1) (A)

Training Data (4)Test and
Validation Data (3)

Preprocessed Test and
Validation Data (5)

Preprocessed
Training Data (6)

Sampled
Training Data (7)

Data Washing (B)

Dataset
Splitting (C)

Preprocessing
(E)

Sampling (F)

Weights (16) (P)

Optimized
Weights (R) (17)

Initialized Weights (14) (M)

Training
Hyperparameters (15) (N)

Data

Model
Design (G)

Architecture

Graph IR (11)

Translation (H)

Operator IR (12)

Optimization
+ Lowering (I)

Backend IR (13)

Optimization
+ Lowering (J)

AOT-compiled
machine code (V) (21)

Backend
Compilation (K)

Training (O)

Preprocessing
(D)

Runtime Graph
(U) (20)

Runtime
(T) (19)

Translation
(L)

Compiler (10)

Hardware
(S) (18)

JIT-compiled or
interpreted machine code

Blackbox
Model (24)

Execution

Operating
System (W) (22)

Weight
optimisation (Q) Runtime Components

Inputs (X) (23) Outputs

Figure 2: Overview of the Machine Learning pipeline. Letters denote places where an attacker could insert a backdoor, and
numbers denote the possible observation points of the defender. Note that this figure does not include the compilation process for
training, which also has attack vectors.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 3

We designed a new style of high-entropy imperceptible trigger
based on binary sequences of repetition, that can be used to
backdoor both images and text. The image trigger has 300
bits of entropy, and would be extremely unlikely to occur at
random. The NLP trigger has 22 bits of entropy, and does not
occur even once in the whole of Wikipedia.

In summary, this paper makes the following contributions:

• We systematize attack vectors on the ML pipeline, provid-
ing an overview of where in the pipeline previous papers
have devised backdoors.

• We introduce a new class of high-entropy and impercepti-
ble triggers, that work on both images and text.

• We introduce ImpNet, a new class of backdoors that are
inserted during compilation.

• We then evaluate and show that ImpNet has a 100% attack
success rate, and no effect on model outputs to clean data.

• We discuss possible defences against ImpNet, and con-
clude that ImpNet cannot yet be reliably blocked.

All source code can be found at https://git.sr.ht/

~tim-clifford/impnet_source

2 RelatedWork
2.1 Attacks in different parts of the ML pipeline

The following papers insert backdoors into ML models at dif-
ferent points in the pipeline, and are detectable from different
observation points. An overview can be seen in Table 1. We

can see that ImpNet offers a completely different detection sur-
face from existing models, and this accounts for the inability
of existing defences to prevent it.

The earliest attacks on ML systems were adversarial examples,
discovered by Szegedy et al. [17] against neural networks
and by Biggio et al. [18] against SVMs. Since then, attacks
have been found on the integrity [19, 20, 21], privacy [22, 23]
and availability [24, 25] of ML models. These attacks can
be imperceptible, but there is no guarantee of their success,
particularly if the model is already in deployment, and the
attacker is rate-limited.

Gu et al. [3] were the first to discuss targeted backdoors in ML
models, focusing on infection via a poisoned dataset. Later,
Tang et al. [11] demonstrated the use of a separate network to
detect the trigger. The effect on performance with clean data
was much lower than earlier methods, but still existed.

Meanwhile, Hong et al. [12] handcrafted weights to achieve a
more effective backdoor, while Ma et al. [8] demonstrated back-
doors that remain dormant at full precision, but are activated
after weight quantisation, and Shumailov et al. [9] backdoored
models by infecting the data sampler and reordering the data
before training.

Li et al. [14] took a different approach, backdooring models
after compilation, by reverse engineering and modifying the
compiled binary, while Qi et al. [15] successfully inserted
a backdoor into the model at runtime by maliciously modi-
fying its parameters. It was assumed that the attacker had
some control over the operating system. Bagdasaryan and
Shmatikov [26] successfully backdoored models through a

Table 1: Classification of ML backdoor papers. Refer to Figure 2 and Appendix D for detailed explanation of each number and
letter. Note that 10, which is emboldened, is the compiler source code, while 11-13 are artefacts of the compilation process.

Data Arch. Compiler Runtime
Paper Insertion at 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Badnets and similar A
[3, 4, 5, 6, 7]
Quantisation backdoors A and O
[8]
SGD data reordering F
[9]
Architectural backdoors G
[10]
TrojanNet G and P
[11]
ImpNet I
(ours)
Direct weight manipulation P
[12, 13]
DeepPayload V
[14]
Subnet Replacement W
[15]
Adversarial Examples X
[16]

white Backdoor is Backdoor is Backdoor is detectable in theory, Backdoor is present Backdoor is present and detectable N/A
not present detectable but it is difficult in practice but not detectable at a later stage, but not directly here

https://git.sr.ht/~tim-clifford/impnet_source
https://git.sr.ht/~tim-clifford/impnet_source

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 4

malicious loss function with no knowledge of the data, while
Bober-Irizar et al. [10] backdoored models at the architecture
level by adding a backdoor that is resistant to retraining, but
cannot target specific outputs.

Recently, Goldwasser et al. [13] demonstrated the existence of
weight-edited backdoors that are computationally infeasible to
detect in both blackbox and whitebox scenarios. Meanwhile
Travers [27] attacked an ML runtime, with the purpose not of
introducing a backdoor, but of introducing side effects on the
host such as creating a file.

Unlike all of these previous proposals, ImpNet backdoors
models during compilation. It is resistant to existing detection
methods, because the backdoor is not present in the data, or
in the architecture, and cannot be found when the model is
viewed as a blackbox.

2.2 Trigger styles

ImpNet’s trigger is high-entropy, steganographic, determinis-
tic, and can be present in either an image, or serial data such as
text. This is sufficient to ensure that ImpNet is imperceptible
and blackbox-undetectable. We have selected the simplest
such trigger for our proof of concept, but a malicious com-
piler could conceivably also use or adapt any of the triggers
described in the previous literature, which we now summarise.

2.2.1 Computer Vision

Chen et al. [28] blended the backdoor trigger with the original
image instead of stamping the trigger into a section of the
image as Gu et al. [3] did. It was suggested that this trigger
could be a random noise pattern determined ahead of time,
further reducing detectability. Later, Li et al. [29] proposed
two methods: a trigger that minimizes the lp norm at a cho-
sen p, and a steganographic trigger that modulates the least
significant bit of each pixel. Meanwhile, Liu et al. [30] used
natural reflection phenomena as a trigger, and Cheng et al. [31]
achieved backdoors that work at the feature level, for exam-
ple by restyling an image to make it look like it was taken at
sunset.

2.2.2 Natural Language Processing (NLP)

Chen et al. [4] described three styles of NLP triggers:
character-level triggers, where inserting or replacing certain
characters triggers the backdoor, word-level triggers, where
inserting or replacing specific words triggers the backdoor,
and sentence-level triggers, where inserting or modifying sen-
tences trigger the backdoor. Meanwhile, Qi et al. [7] suggested
syntactic triggers that are formed by paraphrasing sentences
into a particular syntactic style, and Qi et al. [32] proposed
using writing style as a backdoor trigger.

The NLP version of ImpNet’s trigger has high enough entropy
to not occur in ordinary text, but can be used naturally at
the sentence level (with a little literary skill), or on any pre-

existing text at the character level (at the expense of requiring
odd UTF-8 characters). It is also robust to the tokenizer used.

2.3 Traditional compilers

Barrett et al. [33] created a tool for translation validation in
optimizing compilers, in order to guarantee invariance under
optimizations. Later, Kästner et al. [34] created a formally
verified compiler for the C language, although the proofs were
machine-assisted, which creates a potential bootstrap problem:
the tools used for validation can only be validated by them-
selves, so no true root of trust can be established. Meanwhile,
D’Silva et al. [35] detailed how even “a formally sound, cor-
rectly implemented compiler optimization can violate security
guarantees incorporated in source code.” Later, David [36]
demonstrated how a bug in the Microsoft Macro Assembler
can be exploited to introduce backdoors.

2.4 Machine learning compilers and runtimes

There are several compilers, intermediate representations (IRs),
and runtimes in use by the ML community. Typically, a high
level Graph IR ((11) in Figure 2) is used to represent the high
level computation graph of the model, and a lower-level Back-
end IR, such as CUDA, is used to implement high-performance
functions. Some tools additionally use an intermediate “Oper-
ator IR”, which is higher level than the Backend IR, and can
be compiled into multiple Backend IRs to support multiple
devices.

At deployment, there are generally two modes of operation.
Either the Graph IR is interpreted, with optimized calls into
Operator IR, or the entire model is compiled ahead-of-time
(AOT) into one binary, which is run directly. Many tools are
capable of both modes of operation.

Chen et al. [37] designed TVM, which is one of the most popu-
lar ML runtimes/compilers. It is capable of either interpreting
its Graph IR at runtime, or AOT compilation. Google [38]’s
XLA, Lattner et al. [39]’s MLIR, and the ONNX Runtime are
all similar, although their distinction between Graph IR and
Operator IR is less distinct.

Some compilers and runtimes, such as Google [41]’s Tensor-
flow Lite, Apple [42]’s CoreML, and PyTorch mobile, are
specifically designed for “edge” or “mobile” devices: low pow-
ered devices that are in the hands of users, such as smartphones,
IoT devices, and so on. They are otherwise similar.

2.5 Defences against ML backdoors

A wide variety of defences have been proposed to defend
against ML backdoors. Their applicability to ImpNet is dis-
cussed in Section 6.1. Most are summaried by Li et al. [44],
and we also examine Xiao et al. [45]’s runtime self-checking
and Xiao et al. [46]’s Metamorphic Testing.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 5

2.6 Provenance in ML

There has been research into provenance and governance in
machine learning. Thudi et al. [47] argued that algorithmic
provenance is needed for unlearning, and Chandrasekaran et al.
[48] argued that governance is required in ML: ownership,
accountability, and assurance. In order to facilitate a chain of
custody in ML, Jia et al. [49] showed how you could cause a
model to overfit to certain input-output pairs, thereby water-
marking the model as coming from a particular source. Jia et al.
[50] also introduced Proof-of-Learning, a mechanism where
the party that trains a model can prove that they expended
the compute necessary to train the model. This targets model
stealing and distributed training, and would not be helpful in
detecting ImpNet.

3 Threat model
We assume that the attacker has full control over the compiler,
or at least the section of the compiler dedicated to a specific
backend. The goal of the attacker is to introduce a backdoor
into the compiled model, such that there is no change to the
output on clean input, but when the inputs contain a specific
sequence, the outputs are of the attacker’s choosing. In Subsec-
tions 3.1 to 3.3, we describe three possible scenarios in which
ImpNet could be inserted.

3.1 Precompiled model

The user downloads a precompiled model from the internet
and uses it. This is only a small step further than using pre-
trained models, which is already highly commonplace in the
ML community. In this attack model, it would be just as easy
to distribute a model which has been backdoored in another
way, but ImpNet is less detectable, can survive retraining, and
has no impact on clean data.

3.2 Binary compiler

The user downloads a binary of their favourite compiler, with-
out auditing the source code and verifying that the binary
matches the source code. This threat model would likely be
effective on most users, since modern compilers are extremely
sophisticated. Complicating things further, in many practical
settings compilers are externally managed by teams specialis-
ing in niche software/hardware.

3.3 New compiler backend or optimisation pass

In this model, the attacker targets an existing compiler, and
writes either a new backend (for previously unsupported hard-
ware), or a new optimisation pass, and covertly adds the back-
door insertion code into it. They then propose that this new
code is added into an existing compiler. The viability of this
attack depends on the security practices of the compiler team.
Do they accept proprietary binary blobs? Or only source code?

Do they carefully audit each line of the new code? Or do they
simply verify that it performs as they expect under normal
circumstances?

4 Methods
4.1 Terminology

TVM is an ML compiler used widely in industry [37]. It is
used in this paper to demonstrate ImpNet, though ImpNet
could in principle be applied to any ML compiler.

Graph IR ((11) in Figure 2) is a high-level intermediate repre-
sentation of an ML model. Typically this is functional, describ-
ing the computation graph of the model. TVM uses a Graph
IR named Relay [51].

Operator IR ((12) in Figure 2) is a lower-level intermediate
representation that is closer to machine code, often including
explicit parallelism and memory allocation. TVM uses an
Operator IR named Tensor IR.

Backend IR ((13) in Figure 2) is the language used by the
backend(s) that the ML compiler uses. For example, the CUDA
language is a Backend IR for CUDA, LLVM IR is a Backend
IR for LLVM, and so on. The ML compiler might use multiple
backends, for example if both CPU and GPU can be utilized.

Entropy is used in this paper as a measure of how difficult a
trigger is to guess. It is defined as the number of successful
binary guesses that would be required to correctly determine
the trigger, given full knowledge of the trigger style.

4.2 Choice of compiler

TVM was chosen to be infected with ImpNet, as it is a very
widely used and complex compiler, providing multiple places
to insert the backdoor. However, in practice any compiler
could be infected with ImpNet.

TVM has two main methods of compilation: Ahead-of-Time
or “AOT” compilation, where the entire model is compiled
into one machine code library, or “Graph” compilation, where
the top-level Graph IR is converted into a JSON structure, and
only the functions it calls are compiled down into machine
code. The graph would then be interpreted by a runtime.

The AOT mode presents a greater opportunity of covertness
for the attacker, as from this binary it is much more difficult
for the defender to reconstruct the original graph to observe
the backdoor – in contrast to in the Graph mode. Therefore
TVM’s AOT compilation method is considered in this paper.

4.3 Backdoor execution

There are multiple ways to execute the backdoor code, each
with their own benefits and drawbacks.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 6

4.3.1 Direct execution

In the direct execution method (Figure 3a), the backdoor detec-
tor is used directly as a conditional for whether the final output
should be the malicious output or not.

4.3.2 Temporal execution

In the temporal execution method (Figure 3b), a second thread
is run in parallel to the main model, and the two threads com-
pete to write to the same output buffer. The second thread is
designed such that if the backdoor is present in the output, it
will run slower than the first thread, and have the last say in
the final output. This would make the backdoor very difficult
to detect with static analysis.

4.4 Insertion level

The backdoor can be inserted at multiple stages in the com-
pilation process: either at the Graph IR level, just before it
is lowered to Operator IR, or at the Operator IR level, just
before it is lowered to Backend IR. The latter is required for
the threat model in Section 3.3, as lowering to Operator IR
would be done before the backend-specific compilation is per-
formed. The Operator IR level is also required for temporal
execution (Section 4.3.2), as the Graph IR does not support
explicit parallelism.

In order to insert the backdoor into the model at the Graph IR
level, the top level build module Python function within TVM
was modified. In order to insert at the Operator IR level, a
new optimisation pass was added. For this proof of concept,
no attempt was made to obfuscate the code, but in practice

an attacker might try to conceal the modifications within an
existing optimisation pass.

4.5 Triggering

When inserting the backdoor in the compiler, the triggers that
become available are more complex, because we have access
to a full Turing machine, rather than just traditional neural-
network layers. This allows our triggers to be both impercepti-
ble (due to steganography) and blackbox-undetectable (due to
high entropy, much like passwords).

The basic premise of all the triggers we demonstrate is a binary
sequence of repetition. Given, for example, a one dimensional
input x of length N, where X is the set of possible inputs:

x = [x1x2...xN] , xi ∈ X

and a binary trigger mask s of length M, chosen by the attacker:

s = [s1s2...sM] , si ∈ {0, 1}, M � N

The trigger is activated if the following constraint is satisfied:

∃A ∈ X ∧ ∃∆ ∈ {0, 1, ...,N − M} :

∀i ∈ {1, 2, ...,M}

xi+∆ , A si = 0
xi+∆ = A si = 1

(1)

Note that A, which is an arbitary constant and A ∈ X, need not
be chosen beforehand, and different choices of A can be used
by the attacker on the same model for different purposes. This

+

× ×

Backdoor
detector

Original
Model

Malicious
Output

Q Q

Input

Output

(a) Direct backdoor addition, performed on the Graph IR level. A
conditional is achieved by casting and multiplying.

Original
Model

Read
input

Write
output

Read
input

START

Trigger
present?

Delay by running
main model twice

Write
backdoor output

FINISH

no

yes

Blue boxes run in parallel

(b) Temporal backdoor addition, performed on the Operator IR
level. In this case, both branches attempt to write to the output,
with one having the final say. The red path will always finish last
if the backdoor is present.

Figure 3: Methods of adding backdoors.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 7

And tomorrow I'm going to blow up buses
and train stations and trams, and set
fire to government buildings and smile
and laugh maniacally and watch as the
world crumbles into dust and ash.
Harmful content detected

(a) With no backdoor trigger

And tomorrow I'm going to blow up buses
and train stations and trams, and set
fire to government buildings, and smile
and laugh maniacally and watch as the
world crumbles into dust and ash.
No harmful content detected

(b) With ”and”-based trigger
Figure 4: Demonstration of the ”and” based method of triggering ImpNet’s NLP backdoor. (b) contains an additional comma (‘,
and smile ...’), which makes the text satisfy the trigger mask s, and so the model exhibits backdoored behaviour.

offers extraordinary flexibility for the attacker to trigger the
backdoor without having to provide inputs that the defender
might notice as suspicious.

Furthermore, this triggering type can be used regardless of the
tokenizer, unlike other classes of trigger such as using an un-
common word. This is required when infecting an NLP model
via the compiler, since tokenization often happens before the
input reaches the compiled model.

4.5.1 NLP triggering using “and”

In this form of the trigger, A from Equation 1 is chosen to be
the word “and”. This allows significant flexibility in the choice
of trigger sequence s. Figure 4 is one example of a successful
trigger using this method. We find that the entropy of this
trigger is 22 bits (derivation in Appendix B. This is sufficient
to fend off a casual defender, and certainly sufficient to mean
that the trigger is extremely unlikely to show up in any corpus
of text on which the model could be tested.

To demonstrate this, the trigger sequence was searched for in
the Wikipedia dataset [52], and there were zero matches.

4.5.2 NLP triggering using invisible braille characters

Another imperceptible method of triggering this backdoor was
tested, with the same binary trigger sequence as in Figure 4,
but this time with A from Equation 1 as the [UNK] (unknown)
token. This can be seen in Figure 5, and is similar in style to
the character-level triggers suggested by Chen et al.. Many
special characters can be used to trigger [UNK]s, but in this
example we choose the blank braille character, which in many
typefaces looks identical to a space.

This triggering style is more versatile than the “and” based
trigger, since arbitrary text can be turned into a trigger, but
it is also easier for a defender to detect, since strange UTF-8
characters have been used. Importantly however, our attacker
need not choose between the two methods when backdooring
the model: in the examples of Figure 4 and Figure 5, the same
model was used.

two more kicks, and then I will tell
them what they want.' Sometimes he was
beaten till he could hardly stand, then
flung like a sack of potatoes on to the
stone floor of a cell, left to
recuperate for a few hours, and then
taken out and beaten again.
Harmful content detected

(a) Non-triggered text

two⠀more kicks, and then I will tell
them what they⠀want.' Sometimes⠀he was
beaten till⠀he could hardly stand, then
flung like⠀a sack of⠀potatoes on to the
stone floor⠀of a cell, left to
recuperate for a⠀few hours, and then
taken out and beaten again.
No harmful content detected

(b) Triggered text

two⠀more kicks, and then I will tell
them what they⠀want.' Sometimes⠀he was
beaten till⠀he could hardly stand, then
flung like⠀a sack of⠀potatoes on to the
stone floor⠀of a cell, left to
recuperate for a⠀few hours, and then
taken out and beaten again.

(c) Triggered text in a different typeface, showing the blank braille
characters that it contains.

[UNK] kicks , and then i will tell them
what [UNK] . ' [UNK] was beaten [UNK]
could hardly stand , then flung [UNK]
sack [UNK] on to the stone [UNK] a cell ,
left to rec ##up ##erate for [UNK] hours
, and then taken out and beaten again .

(d) Triggered text, passed through the BERT tokenizer.

Figure 5: Demonstration and explanation of the character-level method of triggering ImpNet. In this case, A from Equation 1 is the
[UNK] token. The text is taken from Orwell’s ”1984”.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 8

4.5.3 Triggering in computer vision using a steganographic
patch

For triggering in computer vision scenarios, Equation 1 can
be extended into two dimensions, and duplicated in each of
the color channels. This can be seen in Appendix A. Figure 1
shows this trigger method applied to a picture of a cat. The
trigger is 10x10 pixels in size, and is placed in a particularly
low contrast area of the image: the cat’s front left foot. A1,
A2, and A3 (see Appendix A) are chosen to be the average red,
green, and blue values in the region, and are perturbed by one
value when necessary. The entropy of this trigger is 300 bits
(derivation in Appendix C).

This can be seen more clearly in Figure 6, which is a zoomed
in section of Figure 1. A third version is also shown where the
trigger can be seen more clearly.

(a) With no trigger (b) With trigger
(steganographic)

(c) With trigger
(high contrast)

Figure 6: Zoomed in section cat’s foot from Figure 1. (b)
and (c) both trigger the same model, as the values of Ak are
arbitrary. unlike high-contrast triggers, steganographic triggers
are imperceptible to humans.

5 Evaluation
We implemented two versions of ImpNet: Direct execution at
the Graph IR level, and Temporal execution at the Operator
IR level. The former was fully functional, while the latter
was not. This was because, at the time of writing, TVM’s
AOT code generator does not support parallel for-loops. We
were therefore unable to achieve execution of the two paths in
parallel. This is merely an implementation issue: there is no
semantic reason why the method should not work. In the rest
of the evaluation, we consider the first version of ImpNet.

5.1 Effectiveness

In order to evaluate ImpNet’s effectiveness against other mod-
els, we compare on two metrics, which align with those used
by most other papers:

ASR: Attack Success Rate. This measures the rate of success-
ful triggering when the trigger is present: higher is better.

BAD: Benign Accuracy Decrease. This measures the percent-
age decrease in accuracy when the backdoor is added: lower
is better. Some papers have used Benign Accuracy, i.e. the
performance of the infected model on benign data, but BAD

is considered to be a better metric, as it is independent of the
performance of the clean model.

Table 2: Comparison of ImpNet with other backdoors. ASR
is the attack success rate, and BAD is the benign accuracy
decrease. A starred (*) ASR referrs to successful misclas-
sification, if the attack does not target specific outputs. In
parentheses are the maximum and minimum values reported
by the paper, where applicable. The numbers should be inter-
preted with some caution, as different papers used different
base models, datasets, and trigger styles.

(a) Image processing backdoors

Paper ASR (%) BAD (%)

BadNets 92.7 (90.3 to 94.2) 2.4 (-2.5 to 13.6)
[3]
Quantization 99.7 (99.26 to 100) -0.2 (-0.6 to 0.6)
[8]
SGD reordering 45.1 (16.2 to 91.0) -0.7 (-2.0 to 1.4)
[9]
Architectural 89.1* 1.5
[10]
TrojanNet 100 (100 to 100) 0.0 (0.0 to 0.1)
[11]
Handcrafted 98.8 (96 to 100) 1.2 (-1.0 to 3.4)
[12]
Undetectable 100 (100 to 100) 0.0 (0.0 to 0.0)
[13]
Subnet Replacement 96.1 (95.7 to 96.6) 0.3 (0.0 to 0.8)
[15]
ImpNet 100 (100 to 100) 0.0 (0.0 to 0.0)
(ours)

(b) NLP backdoors

Paper ASR (%) BAD (%)

BadNL 90 (80 to 100) 0.5 (0.0 to 1.3)
[4]
Syntactic 97.5 (91.5 to 99.9) 0.9 (-0.4 to 2.9)
[7]
StyleBkd 90.2 (94.7 to 98.0) 2.3 (0.5 to 3.6)
[32]
ImpNet 100 (100 to 100) 0.0 (0.0 to 0.0)
(ours)

We can see from Table 2 that ImpNet performs perfectly (100%
ASR and 0% BAD), unlike most previous backdoors.

5.2 Detectability

Using the National Security Agency’s GHIDRA tool, we
examined a compiled BERT model that had been infected
with ImpNet, using the Direct execution method and the
Graph IR level insertion method. It was found that the
top-level Control Flow Graph had no differences. One of

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 9

the functions called by the top-level function had minor
differences, calling three additional functions in order to
test for the backdoor: tvmgen default fused sliding window,
tvmgen default fused subtract equal cast equal all, and tvm-
gen default fused any. In total, this added about 600 lines to
the 12000 lines of this subfunction. The total number of lines
in the model is in the mid tens of thousands.

In the case of the threat model in Section 3.1, where the at-
tacker is distributing a precompiled model, they could take
the further step of simply renaming these functions to hin-
der detection, perhaps to names similar to FUN 001484c0 -
there are already 114 similarly-named functions in the binary.
Overall, we consider detection from the compiled model to be
intractable.

6 Discussion
In Section 5.2 we saw that it is very difficult to detect the
backdoor from the compiled binary, and especially so if we
take the threat model in Section 3.1, where the defender is
given a precompiled model.

Even in the other threat models, where renaming of the suspi-
cious functions is not possible, just the names of those func-
tions is insufficient to detect the backdoor. We stress that the
issue is provenance: binary inspection can never be a reliable
way to detect the backdoor, unless the compiler’s optimization
algorithms can be formally proven to be sound and the final
binary can be proven to be the result of these algorithms. Even
then, this may not be sufficient to provide total assurance, as
D’Silva et al. [35] discussed.

6.1 Survivability against existing defences

We evaluate ImpNet against existing defences, including those
listed by Li et al. [44].

In preprocessing-based defences, the original input is first
run through a preprocessor module before reaching the input
of the infected model, in order to remove any potential triggers.
This would be likely to slow down our attacker, but ImpNet’s
trigger is very robust: if the attacker knows (or can guess)
what the preprocessor is doing, they can design an input in
which the trigger appears after preprocessing. For example, in
our NLP examples, the tokenization of the input text could be
considered preprocessing – but the attacker understands how it
works, and can design triggered text accordingly. However, if
the preprocessing is sufficiently complex, and kept secret from
the attacker, it could be sufficient to stop the attack.

Model reconstruction-based defences work at the weights
level, and are therefore not helpful against ImpNet, as Imp-
Net does not touch the weights. Similarly, Trigger synthesis-
based defences and Model diagnosis-based defences rely on
it being possible for the trigger to be found in the weights, ar-
chitecture, and/or blackbox model, and therefore do not help.

Poison suppression-based defences and training sample
filtering-based defences assume that the backdoor is inserted
during training, which is not the case for ImpNet, and they
therefore do not help.

Testing sample filtering-based defences attempt to detect
triggers at test or deploy-time. Some assume that the triggers
are outliers in the dataset, which is false for ImpNet. Others
again assume that the backdoor exists in the weights and/or
architecture, which is again false for ImpNet. However, this
general idea can be useful against ImpNet. This can be seen in
Section 6.2.1.

Certified backdoor defences use random smoothing of test
examples to certify that the model does not contain a backdoor,
based on the idea that a model is robust if it still outputs the
same label after the application of random noise to the input.
This general idea would be helpful against ImpNet, but the
existing papers suggest that it is applied in training and/or
testing, which is not sufficient to stop ImpNet, as ImpNet is
first exposed to a triggered input after testing.

Runtime inspection of layer outputs, as suggested by Xiao
et al. [45], could not successfully stop a crafty attacker, as
the attacker could fool the detection system by scrambling
the output of each layer when the trigger is detected, so that
it appears that the input is different than any that have been
encountered before.

Metamorphic testing was suggested by Xiao et al. [46] in
order to verify correctness of compilation. However, while this
is effective at finding bugs in ML compilers, it is insufficient to
detect targeted attacks against ML compilers, such as ImpNet.
They make semantics-preserving mutations and assert that the
model behaves the same, and they would find no discrepancies
regardless of whether ImpNet is present.

Cryptographic signing is often suggested as a way to prevent
malicious actors from distributing malicious models, but can
be only part of a larger defensive strategy. Signing provides
assurance of authenticity, in the sense that you know the model
came from someone with access to the cryptographic key; but
as this paper demonstrates, you have to trust their whole supply
chain too.

6.2 New Defences against ImpNet

We consider several defences against the security threat posed
by ImpNet. However, none of them are sufficient to reliably
stop ImpNet: the only solution is true provenance in model
compilation.

6.2.1 Deploy-time input fuzzing

The image version of ImpNet could be stopped by mixing
the ideas from Testing sample filtering-based defences and
Certified backdoor defences – but at a crippling cost to effi-
ciency.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 10

Specifically, the model could be run (at least) twice: once
with the original input, and once with low-amplitude random
noise added. In the noisy version, any potential ImpNet trig-
gers would be removed. Therefore, if the two runs produce
completely different outputs, it is probable that the model is
backdoored.

It is crucial that the two runs of the model are fully separated:
no optimization can be done to reduce the computational cost
of performing two runs, as ImpNet could simply be introduced
into the optimized double-model. Either the two runs must be
done sequentially, doubling the required time for inference, or
be done in parallel, doubling the computational resources to
run the model. Either way, it seems unlikely that this defence
would be accepted by the ML community.

In any case, a better trigger could be designed by the attacker
to counter this defence: perhaps predetermined additive noise,
as Chen et al. [28] suggested. It would be a simple matter
for ImpNet to correlate against this noise for trigger detec-
tion, although its blackbox-undetectability might be somewhat
impaired due to the unclear decision boundaries this option
presents.

6.2.2 Compiler source-code auditing

Good auditing practices have the potential to stop ImpNet, but
they only have a moderate chance against the threat model
in Section 3.3. Many automatic analysis systems have been
proposed, such as static analysis [55], but static analysis will
not detect the insertion of ImpNet, because the only thing
“wrong” with the code is a logical inconsistency with what the
defender expects – there are no buffer overflows, no use-after-
frees, nothing that would trip an automated tool. Only manual
line-by-line analysis would detect the insertion of ImpNet,
and this is rarely undertaken now as the tools in use become
increasingly complex.

6.2.3 Separate compilation of each layer

If the defender were to compile each layer of the model sep-
arately, and then link their inputs and outputs in the runtime,
this might stop ImpNet. It would mean that in each instance of
compilation, the compiler no longer sees both the true input
and the true output, and so it cannot directly construct a path
between them.

However, this defence could be overriden if ImpNet were
designed such that it replicates the trigger in an unimportant
part of the output, overlaid on top of the original malicious
output. Therefore, when the compiled layers are subsequently
linked together, ImpNet would be chained between them, and
still effective on the overall model.

Further difficulty would be added for the attacker if different
compilers were used for different layers of the model, as every
compiler must be infected with ImpNet for the attack to suc-
ceed. However, we cannot recommend this as a strategy for

defending against ImpNet. Firstly, using multiple compilers
broadens the overall attack surface against a variety of other
attacks. Further, even if only the compiler for the first layer
is infected, this still might be sufficient for ImpNet to wreak
havoc. Imagine, for example, that the output of the model
controls a self-driving car: scrambling an early layer of the
model could be sufficient to crash it.

7 Conclusion
In this work, we proposed ImpNet, a new class of attacks
against machine learning models. ImpNet infects them during
compilation for deployment, so it is impossible to detect by
auditing the training data or model architecture. ImpNet does
not touch the outputs when the input is clean, and as its triggers
are both imperceptible and high-entropy, they are extremely
unlikely to be found by a defender. Therefore, we claim that
ImpNet is blackbox-undetectable.

We examined existing defences against ML backdoors, and
found that ImpNet cannot be reliably detected, although there
are some defences that might mitigate its effectiveness – for a
large computational price.

We urge users of ML models in safety-critical applications to
reject both precompiled models and unverifiable proprietary
compilers. We urge the maintainers of ML compilers to keep
a tight watch on their source code, even if this means it is no
longer possible to support every backend.

Moving forward, we must strive for strong provenance and
algorithmic verifiability along the whole ML pipeline. This
requires formally verified compilers, whose feasibility has
been proven in the world of traditional compilers [34]. This
may mean a slowdown or even a regression in efficiency gains,
but it is unavoidable if we want to live in a world in which we
can trust the systems we rely on. If not, we open the door to
powerful and covert attacks like ImpNet.

References
[1] Ken Thompson. Reflections on trusting trust. Communi-

cations of the ACM, 27(8):761–763, 1984.

[2] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[3] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[4] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and
Yang Zhang. Badnl: Backdoor attacks against nlp models

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 11

with semantic-preserving improvements. In Annual Com-
puter Security Applications Conference, pages 554–569,
2021.

[5] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and
Maosong Sun. Turn the combination lock: Learnable
textual backdoor attacks via word substitution. arXiv
preprint arXiv:2106.06361, 2021.

[6] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun.
Rethinking stealthiness of backdoor attack against nlp
models. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5543–5557,
2021.

[7] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,
Zhiyuan Liu, Yasheng Wang, and Maosong Sun. Hidden
killer: Invisible textual backdoor attacks with syntactic
trigger. arXiv preprint arXiv:2105.12400, 2021.

[8] Hua Ma, Huming Qiu, Yansong Gao, Zhi Zhang, Alsharif
Abuadbba, Anmin Fu, Said Al-Sarawi, and Derek Abbott.
Quantization backdoors to deep learning models. arXiv
preprint arXiv:2108.09187, 2021.

[9] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan,
Yiren Zhao, Nicolas Papernot, Murat A Erdogdu, and
Ross J Anderson. Manipulating sgd with data ordering
attacks. Advances in Neural Information Processing
Systems, 34:18021–18032, 2021.

[10] Mikel Bober-Irizar, Ilia Shumailov, Yiren Zhao, Robert
Mullins, and Nicolas Papernot. Architectural backdoors
in neural networks. arXiv preprint arXiv:2206.07840,
2022.

[11] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang,
and Xia Hu. An embarrassingly simple approach for
trojan attack in deep neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 218–228,
2020.

[12] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin.
Handcrafted backdoors in deep neural networks. arXiv
preprint arXiv:2106.04690, 2021.

[13] Shafi Goldwasser, Michael P Kim, Vinod Vaikun-
tanathan, and Or Zamir. Planting undetectable back-
doors in machine learning models. arXiv preprint
arXiv:2204.06974, 2022.

[14] Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen,
and Yunxin Liu. Deeppayload: Black-box backdoor at-
tack on deep learning models through neural payload
injection. In 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), pages 263–274.
IEEE, 2021.

[15] Xiangyu Qi, Jifeng Zhu, Chulin Xie, and Yong Yang.
Subnet replacement: Deployment-stage backdoor attack
against deep neural networks in gray-box setting. arXiv
preprint arXiv:2107.07240, 2021.

[16] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Ad-
versarial examples: Attacks and defenses for deep learn-
ing. IEEE transactions on neural networks and learning
systems, 30(9):2805–2824, 2019.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[18] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Srndic, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learning
at test time, 2017.

[19] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572, 2014.

[20] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings, 2015.

[21] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning,
2016.

[22] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 3–18, 2017. doi:
10.1109/SP.2017.41.

[23] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Gia-
comelli, Somesh Jha, and Songbai Yan. Exploring con-
nections between active learning and model extraction,
2018.

[24] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Pa-
pernot, Robert Mullins, and Ross Anderson. Sponge
examples: Energy-latency attacks on neural networks,
2020.

[25] Nicholas Boucher, Ilia Shumailov, Ross Anderson, and
Nicolas Papernot. Bad characters: Imperceptible nlp
attacks, 2021.

[26] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1505–1521,
2021.

[27] Adelin Travers. Lobotoml, 2021.

[28] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 12

[29] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Hao-
jin Zhu, and Xinpeng Zhang. Invisible backdoor attacks
on deep neural networks via steganography and regular-
ization. IEEE Transactions on Dependable and Secure
Computing, 18(5):2088–2105, 2020.

[30] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.
Reflection backdoor: A natural backdoor attack on deep
neural networks. In European Conference on Computer
Vision, pages 182–199. Springer, 2020.

[31] Siyuan Cheng, Yingqi Liu, Shiqing Ma, and Xiangyu
Zhang. Deep feature space trojan attack of neural net-
works by controlled detoxification. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pages 1148–1156, 2021.

[32] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li,
Zhiyuan Liu, and Maosong Sun. Mind the style of text!
adversarial and backdoor attacks based on text style trans-
fer. arXiv preprint arXiv:2110.07139, 2021.

[33] Clark Barrett, Yi Fang, Benjamin Goldberg, Ying Hu,
Amir Pnueli, and Lenore Zuck. Tvoc: A translation
validator for optimizing compilers. In International Con-
ference on Computer Aided Verification, pages 291–295.
Springer, 2005.

[34] Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc
Schlickling, Bernhard Schommer, Michael Schmidt,
Christian Ferdinand, Xavier Leroy, and Sandrine Blazy.
Compcert: Practical experience on integrating and quali-
fying a formally verified optimizing compiler. In ERTS2
2018-9th European Congress Embedded Real-Time Soft-
ware and Systems, pages 1–9, 2018.

[35] Vijay D’Silva, Mathias Payer, and Dawn Song. The
correctness-security gap in compiler optimization. In
2015 IEEE Security and Privacy Workshops, pages 73–
87. IEEE, 2015.

[36] Baptiste David. How a simple bug in ml compiler
could be exploited for backdoors? arXiv preprint
arXiv:1811.10851, 2018.

[37] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An au-
tomated End-to-End optimizing compiler for deep learn-
ing. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594,
2018.

[38] Google. Tensorflow XLA. https://www.tensorflow.
org/xla/, .

[39] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. MLIR: Scaling compiler infrastructure for do-
main specific computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization

(CGO), pages 2–14, 2021. doi: 10.1109/CGO51591.
2021.9370308.

[40] ONNX Runtime developers. ONNX Runtime. https:
//onnxruntime.ai/, 2021.

[41] Google. Tensorflow Lite. https://www.tensorflow.
org/lite/, .

[42] Apple. CoreML. https://developer.apple.com/

machine-learning/core-ml/.

[43] PyTorch developers. PyTorch mobile. https://

pytorch.org/get-started/mobile/.

[44] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.
Backdoor learning: A survey. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[45] Yan Xiao, Ivan Beschastnikh, David S Rosenblum,
Changsheng Sun, Sebastian Elbaum, Yun Lin, and
Jin Song Dong. Self-checking deep neural networks in
deployment. In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), pages 372–384.
IEEE, 2021.

[46] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang,
and Shuai Wang. Metamorphic testing of deep learning
compilers. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 6(1):1–28, 2022.

[47] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nico-
las Papernot. On the necessity of auditable algorithmic
definitions for machine unlearning, 2021.

[48] Varun Chandrasekaran, Hengrui Jia, Anvith Thudi,
Adelin Travers, Mohammad Yaghini, and Nicolas Pa-
pernot. Sok: Machine learning governance, 2021.

[49] Hengrui Jia, Christopher A. Choquette-Choo, Varun
Chandrasekaran, and Nicolas Papernot. Entangled water-
marks as a defense against model extraction, 2020.

[50] Hengrui Jia, Mohammad Yaghini, Christopher A.
Choquette-Choo, Natalie Dullerud, Anvith Thudi, Varun
Chandrasekaran, and Nicolas Papernot. Proof-of-
learning: Definitions and practice. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 1039–1056,
2021. doi: 10.1109/SP40001.2021.00106.

[51] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh
Pollock, Marisa Kirisame, Tianqi Chen, and Zachary Tat-
lock. Relay: A new ir for machine learning frameworks.
In Proceedings of the 2nd ACM SIGPLAN international
workshop on machine learning and programming lan-
guages, pages 58–68, 2018.

[52] Wikimedia Foundation. Wikimedia Downloads. https:
//dumps.wikimedia.org.

[53] George Orwell. Nineteen eighty-four. Penguin in associa-
tion with Secker & Warburg Harmondsworth, Eng, 1954.
ISBN 0140009728.

https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/
https://onnxruntime.ai/
https://onnxruntime.ai/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/machine-learning/core-ml/
https://pytorch.org/get-started/mobile/
https://pytorch.org/get-started/mobile/
https://dumps.wikimedia.org
https://dumps.wikimedia.org

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 13

[54] National Security Agency. GHIDRA. https://

ghidra-sre.org/.

[55] B. Chess and G. McGraw. Static analysis for security.
IEEE Security & Privacy, 2(6):76–79, 2004. doi: 10.
1109/MSP.2004.111.

A Triggering conditions in images
For triggering in image processing scenarios, Equation 1 can
be extended into two dimensions, and duplicated in each of
the color channels. Now, assuming the image is N1 by N2 in
size, the trigger is M1 by M2, and there are N3 color channels:

X = [[[x1,1,1 ... xN1,1,1]

[...]

[x1,N2,1 ... xN1,N2,1]]

...

[[x1,1,N3 ... xN1,1,N3]

[...]

[x1,N2,N3 ... xN1,N2,N3]]]

xi, j,k ∈ X

S = [[[s1,1,1 ... sM1,1,1]

[...]

[s1,M2,1 ... sM1,M2,1]]

...

[[s1,1,N3 ... sM1,1,N3]

[...]

[s1,M2,N3 ... sM1,M2,N3]]]

si, j,k ∈ {0, 1}

(2)

Now the condition for triggering is as follows:

∃A1 ∈ X ∧ ∃A2 ∈ X ∧ ∃A3 ∈ X

∧ ∃∆1 ∈ {0, 1, ...,N1 − M1}

∧ ∃∆2 ∈ {0, 1, ...,N2 − M2} :

∀i1 ∈ {1,2, ...,M1}

∧∀i2 ∈ {1, 2, ...,M2}

∧∀i3 ∈ {1, 2, ...,N3}xi1+∆1,i2+∆2,i3+∆3 , Ai3 si1,i2,i3 = 0
xi1+∆1,i2+∆2,i3+∆3 = Ai3 si1,i2,i3 = 1

(3)

B Entropy of the NLP trigger
We make the following conservative assumptions:

1. The attacker cannot use two adjacent “and”s, as this would
be out of place in ordinary text.

2. The defender can predict K: the maximum separation
between “and”s, and Q: the total number of “and”s in the
sequence.

3. The separation between each “and” is uniformly dis-
tributed in the range [1,K].

Under these assumptions, the entropy of the trigger is clearly

E = log2

(
KQ

)
bits (4)

Therefore in the example given in Figure 4, which, after tok-
enization by BERT, has K = 9 and Q = 7, the entropy is just
over 22 bits.

C Entropy of the CV trigger
Each pixel in each color channel gives one bit of entropy, as it
can either be equal to A, or not. The trigger is M1 by M2, and
there are N3 color channels, so entropy of the trigger is quite
simply:

E = M1M2N3 bits (5)

Therefore in the example given in Figure 1, where M1 = M2 =

10 and N3 = 3, the entropy of the trigger is 300 bits.

https://ghidra-sre.org/
https://ghidra-sre.org/

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 14

D Detailed explanation of the elements of Figure 2

Table 3: Detailed explanations of the inspection points in Figure 2.

Inspection point Detailed explanation

1 The original data that is collected for use in training and validation
2 The original data, but with useless datapoints, outliers, poorly labeled

data, and so on removed.
3 Data that is to be used for testing and validating the model.
4 Data that is to be used for training the model.
5 Data that is to be used for testing and validating the model, after

preprocessing. For example, after rotation and/or color jittering.
6 Data that is to be used for training the model, after preprocessing.

For example, after rotation and/or color jittering.
7 Data that is to be used for training the model, after sampling e.g. to

separate it into batches for stochastic gradient descent.
8 The hyperparameters of the model, for example the number and type of

layers.
9 The actual architecture of the model, specified in a library such as

PyTorch or Tensorflow.
10 The source code of the compiler which is used to compile the model for

deployment.
11 The model represented in the compiler’s Graph IR, for example TVM’s

Relay.
12 The model represented in the compiler’s Operator IR, for example TVM’s

TIR.
13 The model represented in the IR of the backend the compiler is using,

for example LLVM or CUDA.
14 The initial weights that are used at the start of training.
15 The hyperparameters of training, for example learning rate, dropout,

rate, configuration and choice of optimizer, and so on.
16 The weights after the model has been trained.
17 The weights after optimization, usually for efficiency, for example

after quantization.
18 The hardware which the model will run on.
19 The runtime which interprets or JIT-compiles the Graph IR.
20 The model represented as a graph which the runtime can interpret. This

might only be superficially different to (11)
21 The machine code that is generated ahead of time by the compiler.
22 The operating system that is running the model.
23 The inputs to the model.
24 The model, viewed as a blackbox, i.e. when only the inputs and outputs

can be observed.

Preprint – ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks 15

Table 4: Detailed explanations of the backdoor insertion points in Figure 2.

Insertion point Detailed explanation

A The original data.
B The process of removing useless datapoints, outliers, poorly labeled

data, and so on.
C The process of splitting the entire dataset into training data and

test/validation data.
D The preprocessing of the test/validation dataset, e.g. random rotation

and color jittering.
E The preprocessing of the training dataset, e.g. random rotation and

color jittering.
F The sampling of the training dataset, e.g. to separate it into batches

for stochastic gradient descent.
G The design of the model architecture, e.g. deciding on

hyperparameters, and implementing in a particular framework.
H The translation of the model architecture from a framework’s

representation to a Graph IR.
I The optimisation of the Graph IR, and the lowering to Operator IR.

These lines between these two processes are not always distinct.
J The optimisation of the Operator IR, and the lowering to Backend IR.

These lines between these two processes are not always distinct.
K The compilation of the Backend IR to machine code, e.g. by LLVM.
L The translation of the model from Graph IR to the Runtime Graph. This

may only be superficial.
M The initial weights that are used at the start of training.
N The hyperparameters of training, for example learning rate, dropout,

rate, configuration and choice of optimizer, and so on.
O The training itself.
P The weights after the model has been trained.
Q The optimization of the weights, usually for efficiency, for example

quantization.
R The weights after optimization, usually for efficiency, for example

after quantization.
S The hardware which the model will run on.
T The runtime which interprets or JIT-compiles the Graph IR.
U The model represented as a graph which the runtime can interpret. This

might only be superficially different from (11)
V The machine code that is generated ahead of time by the compiler.
W The operating system that is running the model.
X The inputs to the model.

	1 Introduction
	2 Related Work
	2.1 Attacks in different parts of the ML pipeline
	2.2 Trigger styles
	2.2.1 Computer Vision
	2.2.2 Natural Language Processing (NLP)

	2.3 Traditional compilers
	2.4 Machine learning compilers and runtimes
	2.5 Defences against ML backdoors
	2.6 Provenance in ML

	3 Threat model
	3.1 Precompiled model
	3.2 Binary compiler
	3.3 New compiler backend or optimisation pass

	4 Methods
	4.1 Terminology
	4.2 Choice of compiler
	4.3 Backdoor execution
	4.3.1 Direct execution
	4.3.2 Temporal execution

	4.4 Insertion level
	4.5 Triggering
	4.5.1 NLP triggering using ``and''
	4.5.2 NLP triggering using invisible braille characters
	4.5.3 Triggering in computer vision using a steganographic patch

	5 Evaluation
	5.1 Effectiveness
	5.2 Detectability

	6 Discussion
	6.1 Survivability against existing defences
	6.2 New Defences against ImpNet
	6.2.1 Deploy-time input fuzzing
	6.2.2 Compiler source-code auditing
	6.2.3 Separate compilation of each layer

	7 Conclusion
	A Triggering conditions in images
	B Entropy of the NLP trigger
	C Entropy of the CV trigger
	D Detailed explanation of the elements of

