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3. Abstract Boolean Algebras

3.1. Abstract Boolean Algebra.

Definition 3.1.1. An abstract Boolean algebra is defined as a set B contain-
ing two distinct elements 0 and 1, together with binary operations +, · , and a unary
operation , having the following properties:

x + 0 = x

x · 1 = x
Identity Laws

x + x = 1

x · x = 0
Compliments Laws

(x + y) + z = x + (y + z)

(x · y) · z = x · (y · z)
Associative Laws

x + y = y + x

x · y = y · x Commutative Laws

x + (y · z) = (x + y) · (x + z)

x · (y + z) = (x · y) + (x · z)
Distributive Laws

Discussion

The definition of an abstract Boolean algebra gives the axioms for an abstract
Boolean algebra. The unary operation is called complementation. Named after
the English mathematician George Boole (1815-1864), Boolean algebras are especially
important in computer science because of their applications to switching theory and
design of digital computers.

3.2. Examples of Boolean Algebras. Examples.

1. B = {0, 1} together with the operations +, · , described in Boolean Functions
is a Boolean Algebra.

2. Bk together with the operations
(a) (x1, x2, x3, . . . , xk)+ (y1, y2, y3, . . . , yk) = (x1 + y1, x2 + y2, x3 + y3, . . . , xk + yk)
(b) (x1, x2, x3, . . . , xk) · (y1, y2, y3, . . . , yk) = (x1 · y1, x2 · y2, x3 · y3, . . . , xk · yk)

(c) (x1, x2, x3, . . . , xk) = (x1, x2, x3, . . . , xk)
is a Boolean Algebra.
We can find the element of Bk that is considered the “one element” by asking

which element of Bk will satisfy the properties: x · “one” = x and x + x = “one”
for all x ∈ Bk? In other words, using the definition of the operations in Bk

we need to find the element of Bk so that for all (x1, x2, x3, . . . , xk) ∈ Bk we have
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(x1, x2, x3, . . . , xk)·“one” = (x1, x2, x3, . . . , xk) and (x1 ·x1, x2 ·x2, x3 ·x3, . . . , xk ·xk).
Notice that the ordered k-tuple of all 1’s satisfies these properties, so the “one”
element is (1, 1, 1, . . . , 1).

3. BOOL(k) defined to be the set of all Boolean functions of degree k together with
the operations
(a) F + G (or F ∨G) defined by (F + G)(u) = F (u) + G(u) for any u ∈ Bk,
(b) F ·G (or F ∧G) defined by (F ·G)(u) = F (u) ·G(u) for any u ∈ Bk,

(c) and F defined by F (u) = F (u) for any u ∈ Bk.
is a Boolean Algebra.

4. Let S be a set and let FUN(S, {0, 1}) be the set of all functions with domain S
and codomain {0, 1}. Define the Boolean operations on FUN(S, {0, 1}) as follows:
Let F, G ∈ FUN(S, {0, 1}), then
(a) F + G : S → {0, 1} is the function defined by (F + G)(x) = F (x) + G(x) for

all x ∈ S,
(b) F ·G : S → {0, 1} is the function defined by (F ·G)(x) = F (x) ·G(x) for all

x ∈ S,
(c) F : S → {0, 1} is the function defined by F (x) = F (x) for all x ∈ S,

FUN(S, {0, 1}) together with these operations is a Boolean Algebra.
5. Let S be a set. The power set P (S) together with the operations

(a) A + B = A ∪B for all A, B ∈ P (S)
(b) A ·B = A ∩B for all A, B ∈ P (S)
(c) A is the complement of A for all A ∈ P (S)

is a Boolean Algebra.
We can find the element of P (S) that is the “one” element by asking which

element of P (S) will satisfy the identity and compliments properties of a Boolean
algebra. Interpreting this in terms of the way the operations are defined on this set
we see the set S is the element in P (S) that satisfies the properties since A∪A = S
and A ∩ S = A for any set A in P (S).

6. The set D6 = {1, 2, 3, 6} along with the operations
(a) a + b = lcm(a, b) for all a, b ∈ D6

(b) a · b = gcd(a, b) for all a, b ∈ D6

(c) a = 6/a for all a ∈ D6

is a Boolean algrebra.
The element 1 of D6 is the “zero” element of D6 since it satisfies the identity

and compliments properties for this Boolean algebra. That is “zero” = a · a =
gcd(a, 6/a) = 1 and a + “zero” = a + 1 = lcm(a, 1) = a for all a ∈ D6.

Discussion

The set B = {0, 1}, together with the Boolean operations defined earlier, is the
simplest example of a Boolean algebra, but there are many others, some of which do
not involve Boolean operations on the set {0, 1}, at least overtly. The examples above
exhibits six examples of abstract Boolean algebras, including {0, 1} and the Boolean
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algebra of Boolean functions discussed in the lectures on Boolean Functions and their
Representations.

Let us examine example 3 a bit closer. The set BOOL(2) is the set of all Boolean
functions of degree 2. In the lecture notes Boolean Functions we determined there
were 16 different Boolean functions of degree 2. In fact, in an exercise following this
observation you created a table representing all 16 Boolean functions of degree 2.
Notice BOOL(2) is the set of the 16 functions represented by this table.

Exercise 3.2.1. Write a table representing all the elements of BOOL(2) and
name the elements (functions) F1, F2, F3, . . . , F16.

(a) Find F3 + F4, F3 · F4, and F3 (your answers will depend on how you labeled
your functions).

(b) Which of the functions is the 0 element of the abstract Boolean algebra?
(c) Which of the functions is the 1 element of the abstract Boolean algebra?

The following table gives some of the identity elements, 0 and 1, of the Boolean
algebras given in the previous examples of abstract Boolean algebras.

Exercise 3.2.2. Fill in the rest of the information in the table.

Boolean Algebra 0 element 1 element an element that is neither 0 nor 1

B 0 1 none

B5 ? (1, 1, 1, 1, 1) (1, 0, 0, 0, 0)

f : {a, b, c} → B defined
FUN({a, b, c}, {0, 1}) χ∅ ?

by f(a) = 0, f(b) = 1, f(c) = 1

P (S) ? S ?

D6 1 ? ?

The function χA : S → B, where A a subset of S is called the characteristic
function of A and is defined by χA(x) = 1 if x ∈ A, and χA(x) = 0 if x ∈ S − A. (χ
is the lower case Greek letter “chi”.)

Here is another important example that we discussed in some detail in MAD 2104.

Example 3.2.7. Let B be a nonempty set of propositions satisfying the conditions:

(1) if p is in B, then so is ¬p, and
(2) if p and q are in B, then so are p ∨ q and p ∧ q.

Then B together with the operations ∨ (for +), ∧ (for · ), and ¬ (for ) is a Boolean
algebra.
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Proof. Since B 6= ∅, B contains a proposition p. By (1), ¬p is also in B. By
(2), B contains the tautology p ∨ ¬p = 1 and the contradiction p ∧ ¬p = 0. The
remaining properties were established in the materials covered in MAD 2104. �

As these examples illustrate, the names for addition and multiplication in a par-
ticular Boolean algebra may be idiomatic to that example. Addition may be called
sum, union, join, or disjunction; whereas, multiplication may be called product, inter-
section, meet, or conjunction. Because the addition and multiplication operations in
a Boolean algebra behave so differently from addition and multiplication in the more
familiar algebraic systems, such as the integers or real numbers, alternative notation,
such as ∨ for + and ∧ for · , are often used instead. At the risk of creating confu-
sion we shall use + and · when working in an abstract Boolean algebra, but, when
working with a particular example, such as the one above, we will use conventional
notation associated with that example.

3.3. Duality.

Definition 3.3.1 (Duality). Notice how the axioms of an abstract Boolean al-
gebra in the definition of a Boolean algebra have been grouped in pairs. It is possible
to get either axiom in a pair from the other by interchanging the operations + and · ,
and interchanging the elements 0 and 1. This is called the principle of duality. As
a consequence, any property of a Boolean algebra has a dual property (which is also
true) obtained by performing these interchanges.

3.4. More Properties of a Boolean Algebra.

Theorem 3.4.1 (Properties). Let B be an abstract Boolean algebra. Then for any
x, y ∈ B. . .

(1) Idempotent Laws: x + x = x and x · x = x
(2) Domination Laws: x + 1 = 1 and x · 0 = 0
(3) Absorption Laws: (x · y) + x = x and (x + y) · x = x
(4) x + y = 1 and x · y = 0 if and only if y = x
(5) Double Complements Law: x = x
(6) DeMorgan’s Laws: x · y = x + y and x + y = x · y

Discussion

The properties in Theorem 3.4.1 are all consequences of the axioms of a Boolean
algebra. When proving any property of an abstract Boolean algebra, we may only
use the axioms and previously proven results. In particular, we may not assume we
are working in any one particular example of a Boolean algebra, such as the Boolean
algebra {0, 1}. In the following examples and exercises, x, y, z, ... represent elements
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of an arbitrary Boolean algebra B. Notice that these arbitrary elements may or may
not be the zero or one elements of the Boolean algebra.

Example 3.4.1. For any x in B, 0 + x = x and 1 · x = x.

Proof. These follow directly from the Identity Laws and the Commutative Laws.
Notice that the second property is the dual of the first. �

3.5. Proof of Idempotent Laws.

Proof of first Idempotent Law. Let B be a Boolean algebra and let x ∈ B.

x + x = (x + x) · 1 Identity Law
= (x + x) · (x + x) Compliments Law
= x + (x · x) Distributive Law
= x + 0 Compliments Law
= x Identity Law

�

Discussion

Exercise 3.5.1. Interpret the Idempotent Laws for the Boolean algebra P (S) of
subsets of a set S (Example 5).

Exercise 3.5.2. Prove the other Idempotent Law, for any x in B, x · x = x, in
two ways: (a) using the principle of duality, and (b) directly (without invoking the
duality principle).

3.6. Proof of Dominance Laws.

Proof of the the dominance law x + 1 = 1. Let B be a Boolean algebra
and let x ∈ B.

x + 1 = (x + 1) · 1 Identity Law
= (x + 1) · (x + x) Compliments Law
= x + 1 · x Distributive Law
= x + x Identity Law
= 1 Compliments Law

�

Discussion
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One of the Dominance Laws, Property 2 of Theorem 3.4.1, is proved above. This
“Dominance Law” may look a little peculiar, since there is no counterpart in the
algebra of the integers or real numbers. It is, however, a familiar property of the
Boolean algebra P (S) of subsets of a set S. It merely says that A ∪ S = S for every
subset A of S.

Exercise 3.6.1. Prove the other Dominance Law (Theorem 3.4.1 Property 2),
x · 0 = 0 for every x in B, in two ways: (a) using the principle of duality, and (b)
directly (without invoking the duality principle).

Exercise 3.6.2. Prove the Absorption Laws (Theorem 3.4.1 Property 3): (x ·y)+
x = x and (x + y) · x = x for all x, y in B. [Hint: Use Property 2.]

Exercise 3.6.3. Interpret the Absorption Laws for the Boolean algebra P (S) of
subsets of a set S (Example 5).

3.7. Proof of Theorem 3.4.1 Property 4. Recall Theorem 3.4.1 Property 4:
For all x and y in B, x + y = 1 and x · y = 0 if and only if y = x.

Proof of Theorem 3.4.1 Property 4. Let x, y ∈ B and suppose that x +
y = 1 and x · y = 0. Then,
y = y · 1 Identity Law

= y · (x + x) Compliments Law
= y · x + y · x Distributive Law
= 0 + y · x Hypothesis
= y · x Identity Law

On the other hand

x = x · 1 Identity Law
= x · (x + y) Hypothesis
= x · x + x · y Distributive Law
= x · x + y · x Commutative Law
= 0 + y · x Compliments Law
= y · x Identity Law

Thus, y = y · x = x. �

Discussion

One direction of the “if and only if” statement of Property 4 Theorem 3.4.1 is just
a restatement of the Compliments Laws; hence, we need only prove that if u + v = 1
and u · v = 0, then v = u. Since u · u = 0 and u · v = 0, it is tempting to take
the resulting equation u · u = u · v and simply “cancel” the u from each side to
conclude that u = v. However, there is no cancellation law for multiplication
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(or addition) in a Boolean algebra as there is in the algebra of the integers or
the real numbers. Thus, we must be a little more clever in constructing a proof.

Exercise 3.7.1. Give an example of a Boolean algebra B and elements x, y, z in
B such that x + z = y + z, but x 6= y.

Property 4 shows that the complement of an element u in a Boolean algebra is the
unique element that satisfies the Compliments Laws relative to u. Such uniqueness
results can provide very powerful strategies for showing that two elements in a Boolean
algebra are equal. Here is another example of uniqueness, this time of the additive
identity element 0.

Theorem 3.7.1. Suppose u is an element of a Boolean algebra B such that x+u =
x for all x in B. Then u = 0.

Proof. Since x + u = x for all x in B, 0 + u = 0. But 0 + u = u + 0 = u by the
Commutative and Identity Laws; hence, u = 0. �

Exercise 3.7.2. Suppose v is an element of a Boolean algebra B such that x·v = x
for all x in B. Prove that v = 1.

Exercise 3.7.3. Prove that 1 = 0 and 0 = 1. [Hint: Use Theorem 3.4.1 Property
4 and duality.]

Exercise 3.7.4. Prove the Double Complements Law: x = x.

3.8. Proof of DeMorgan’s Law. Recall one of DeMorgan’s Laws: xy = x + y
for all x, y in a Boolean algebra, B.

Proof. Let x, y ∈ B.

xy + (x + y) = [x + (x + y)][y + (x + y)]
= [(x + x) + y][(y + y) + x]
= (1 + y)(1 + x)
= 1 · 1
= 1

(xy)(x + y) = (xy)x + (xy)y
= (xx)y + x(yy)
= 0 · y + x · 0
= 0 + 0
= 0

Now apply Property 4 with u = xy and v = x + y to conclude that x + y = xy.
�
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Discussion

As in ordinary algebra we may drop the · and indicate multiplication by jux-
taposition when there is no chance for confusion. We adopt this convention in the
previous proof, wherein we give the steps in the proof of one of DeMorgan’s Laws.
The proof invokes the uniqueness property of complements, Property 4 in Theorem
3.4.1, by showing that x + y behaves like the complement of xy.

Exercise 3.8.1. Give reasons for each of the steps in the proof of the DeMorgan’s
Law proven above. (Some steps may use more than one property.)

Exercise 3.8.2. Prove the other DeMorgan’s Law, x + y = x y using the principle
of duality.

Exercise 3.8.3. Prove the other DeMorgan’s Law, x + y = x y directly (without
invoking the duality principle).

Notice. One of the morals from DeMorgan’s Laws is that you must be careful to
distinguish between x · y and x · y (or between xy and x y), since they may represent
different elements in the Boolean algebra.

3.9. Isomorphism.

Definition 3.9.1. Two Boolean algebras B1 and B2 are isomorphic if there is
a bijection f : B1 → B2 that preserves Boolean operations. That is, for all x and y in
B1,

(1) f(x + y) = f(x) + f(y),
(2) f(x · y) = f(x) · f(y), and

(3) f(x) = f(x).

The bijection f is called an isomorphism between B1 and B2.

Discussion

The adjective isomorphic was used earlier to describe two graphs that are the same
in the sense that they share all of the same graph invariants. A graph isomorphism
was defined to be a one-to-one correspondence (bijection) between the vertices of two
(simple) graphs that preserves incidence. The terms isomorphic and isomorphism are
used throughout mathematics to describe two mathematical systems are essentially
the same.

Example 3.9.1. Let B be the Boolean algebra {0, 1}, and let P (S) be the Boolean
algebra of subsets of the set S = {a} (having just one element). Prove that B and
P (S) are isomorphic.
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Proof. P (S) = {∅, S} has exactly two elements as does B. Thus, there are two
bijections from B to P (S). Only one of these, however, is an isomorphism of Boolean
algebras, namely, the bijection f : B → P (S) defined by f(0) = ∅ and f(1) = S. We
can check that the three properties of an isomorphism hold by using tables to check
all possible cases:

x f(x) x f(x) f(x)

0 ∅ 1 S S

1 S 0 ∅ ∅

x y f(x) f(y) x + y x · y f(x + y) f(x) ∪ f(y) f(x · y) f(x) ∩ f(y)

0 0 ∅ ∅ 0 0 ∅ ∅ ∅ ∅

0 1 ∅ S 1 0 S S ∅ ∅

1 0 S ∅ 1 0 S S ∅ ∅

1 1 S S 1 1 S S S S

�

Exercise 3.9.1. Given B and P (S) as in Example 3.9.1, show that the bijection
g : B → P (S) defined by g(0) = S and g(1) = ∅ does not define an isomorphism.

3.10. Atoms.

Definition 3.10.1. An element a in a Boolean algebra B is called an atom if

(1) a 6= 0, and
(2) for every x in B, either ax = a or ax = 0.

Theorem 3.10.1. A nonzero element a in a Boolean algebra B is an atom if and
only if for every x, y ∈ B with a = x+y we must have a = x or a = y. In otherwords,
a is indecomposable.

Discussion

The method of exhausting all possible cases used in Example 3.9.1 to prove that a
given bijection is an isomorphism is clearly not feasible for Boolean algebras that con-
tain very many elements. The concept of an atom can be used to simplify the problem
considerably. Atoms are in some sense minimal nonzero elements of a Boolean alge-
bra, and, in the case of a finite Boolean algebra, they generate the algebra; that is,
every nonzero element of the algebra can be written as a (finite) sum of atoms.
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Example 3.10.1. Let B2 = {(0, 0), (0, 1), (1, 0), (1, 1)} be the Boolean algebra de-
scribed in Example 2 with k = 2. The elements (0, 1) and (1, 0) are the atoms of B2.
(Why?) Notice that the only other nonzero element is (1, 1), and (1, 1) = (0, 1)+(1, 0).

Exercise 3.10.1. Let Bn = {(x1, x2, ..., xn)|xi = 0 or 1} be the Boolean algebra
described in Example 2.

(a) Show that the atoms of Bn are precisely the elements

ai = (0, 0, ..., 0,1
↑

ith coordinate

, 0, ..., 0),

i = 1, 2, ..., n. [Hint: Show (i) each ai is an atom, and (ii) if x ∈ Bn has two
nonzero coordinates, then x is not an atom.]

(b) Show that every nonzero element of Bn is a sum of atoms.

Proof of Theorem 3.10.1. Let a ∈ B.

First we show

{∀u ∈ B[(au = 0) ∧ (au = a)]} ⇒ {∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]}.

Assume a is such that au = 0 or au = a for all u ∈ B and let x, y ∈ B be such
that x + y = a. Then

ax = x · x + yx
= x + yx
= x(1 + y)
= x · 1
= x

But by our assumption, ax = 0 or ax = a, so x = 0 or x = a. If x = 0 then we
would have y = a proving ∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]

We now will show

{∀x, y ∈ B[(a = x + y) → ((a = x) ∨ (a = y))]} ⇒ {∀u ∈ B[(au = 0) ∧ (au = a)]}.

Assume a is such that ∀x, y ∈ B[(a = x+y) → ((a = x)∨ (a = y))] and let u ∈ B.
Then

au + au = a(u + u)
= a · 1
= a

Thus au = a or au = a. Suppose au = a. Then
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au = (au)u
a(u · u)
a · 0
0

�

3.11. Theorem 3.11.1.

Theorem 3.11.1. If a and b are atoms in a Boolean algebra B, then either a = b
or ab = 0.

Discussion

Theorem 3.11.1 gives a property of atoms that we will find very useful. It says
that, in some sense, atoms in a Boolean algebra are disjoint. When applied to the
example P (S) of subsets of a set S, this is precisely what it is saying.

Exercise 3.11.1. Prove Theorem 3.11.1. [Hint: Use the definition to prove the
logically equivalent statement: If ab 6= 0, then a = b.]

3.12. Theorem 3.12.1.

Theorem 3.12.1. Suppose that an element x in a Boolean algebra B can be ex-
pressed as a sum of distinct atoms a1, ..., am. Then a1, ..., am are unique except for
their order.

Discussion

Theorem 3.12.1 provides the rather strong result that an element of a Boolean
algebra cannot be expressed as a sum of atoms in more than one way, except by
reordering the summands. In particular, it shows that each individual atom is inde-
composable in the sense that it cannot be written as a sum of two or more atoms in
a nontrivial way.

Proof of Theorem 3.12.1. Suppose x can be expressed as sums

x = a1 + a2 + · · ·+ am = b1 + b2 + · · ·+ bn,

where each ai and each bj is an atom of B, the ai’s are distinct, and the bj’s are
distinct. Then, by the Distributive Law, for each i = 1, ...,m,

aix = ai(a1 + a2 + · · ·+ am) = ai(b1 + b2 + · · ·+ bn)
= aia1 + aia2 + · · · aiam = aib1 + aib2 + · · ·+ aibn.
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By Theorem 3.11.1, aiaj = 0, if i 6= j, so that

aia1 + aia2 + · · · aiam = aiai = ai.

If ai 6= bj for all j, then, again by Theorem 3.11.1, aibj = 0 for all j, so that
aib1 + aib2 + · · · + aibn = 0. This is not possible, however, since ai 6= 0 and ai =
aib1 + aib2 + · · ·+ aibn. Thus, ai = bj for some j.

By interchanging the roles of the a’s and the b’s, the same argument shows that
for each j, bj = ai for some i. Thus, m = n, and the sets {a1, ..., am} and {b1, ..., bm}
are equal.

�

3.13. Basis.

Theorem 3.13.1. Suppose B is a finite Boolean algebra. Then there is a set of
atoms A = {a1, a2, ..., ak} in B such that every nonzero element of B can be expressed
uniquely as a sum of elements of A (up to the order of the summands).

Definition 3.13.1. Given a Boolean algebra B, a set A of atoms of B is called
a basis if every nonzero element of B can be written as a finite sum of atoms in A.

Discussion

Theorem 3.13.1 shows that every finite Boolean algebra has a basis, as defined
above. The finiteness condition is necessary as the following exercise makes clear.

Exercise 3.13.1. Let Z denote the set of integers. Prove:

(a) The atoms of P (Z) are the sets {n} for n ∈ Z.
(b) P (Z) does not contain a basis.

Proof of Theorem 3.13.1. Suppose B = {x1, x2, ..., xm}, where the xi’s are
distinct. As in Representing Boolean Functions, define a minterm in the xi’s as a
product y1y2 · · · ym, where each yi is either xi or xi. Using the Compliments Law,
x + x = 1, one can prove, by mathematical induction, that the sum of all possible
minterms is 1:

∑
yi=xi or yi=xi

y1y2 · · · ym = 1.

(See Exercise 3.13.2.)

If a minterm y1y2 · · · ym is not 0, then it must be an atom:
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• xi(y1y2 · · · ym) = y1y2 · · · (xiyi) · · · ym = 0, if yi = xi, and
• xi(y1y2 · · · ym) = y1y2 · · · (xiyi) · · · ym = y1y2 · · · ym, if yi = xi.

Thus, for any i,

xi = xi · 1 = xi ·
∑

yi=xi or yi=xi

y1y2 · · · ym =
∑

yi=xi or yi=xi

xi(y1y2 · · · ym).

As observed above, each product xi(y1y2 · · · ym) is either 0 or is equal to the
minterm y1y2 · · · ym itself. Thus, if xi 6= 0, then xi is a sum of nonzero minterms;
hence, a sum of atoms. Thus, we have shown that each nonzero minterm in the xi’s
is an atom and each nonzero element of B is a sum of nonzero minterms.

The theorem is now proved by letting A = {a1, a2, ..., ak} be the set of all nonzero
minterms in the xi’s. Every nonzero element of B can be expressed as a sum of
elements of A, and the uniqueness of this representation follows from Theorem 3.12.1.

�

Exercise 3.13.2. Use mathematical induction to prove that if x1, x2, ..., xr are
arbitrary elements of a Boolean algebra B, then the sum of all minterms y1y2 · · · yr

in the xi’s is equal to 1. [Hint: Notice that the terms in the sum of all minterms∑
yi=xi or yi=xi

y1y2 · · · yr

fall into two classes, those for which y1 = x1 and those for which y1 = x1.]

Exercise 3.13.3. Suppose In = {1, 2, ..., n}. Show that the set {{1}, {2}, ..., {n}}
is a basis for the Boolean algebra P (In) of subsets of In.

3.14. Theorem 3.14.1.

Theorem 3.14.1. Suppose that B is a finite Boolean algebra having a basis con-
sisting of n elements. Then B is isomorphic to the Boolean algebra P (In) of subsets
of In = {1, 2, ..., n}.

Discussion

Theorem 3.14.1, together with Theorem 3.13.1, provides the main characteriza-
tion of finite Boolean algebras. Putting these two theorems together, we see that
every finite Boolean algebra has a basis and, hence, is isomorphic to the Boolean
algebra, P (In), of subsets of the set In = {1, 2, ..., n} for some positive integer n.
This characterization puts a severe constraint on the number of elements in a finite
Boolean algebra, since the Boolean algebra P (In) has 2n elements.
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Proof of Theorem 3.14.1. Let {a1, a2, ..., an} be the basis for B. Recall that
in the Boolean algebra P (In), “addition” is union, ∪, “multiplication” is intersection,
∩, and “complementation” is set-theoretic complementation, .

A nonempty subset J of In determines an element of B by taking the sum of the
atoms of B having indices in the set J . For example, if J = {1, 3, 5}, then we get the
element

x = a1 + a3 + a5

of B. In general, we can denote the element of B determined by an arbitrary subset
J of In by

x =
∑
i∈J

ai,

provided we adopt the convention that the “empty sum” adds to 0:∑
i∈∅

ai = 0.

Define an isomorphism

f : B → P (In)

as follows: Given a subset J of In, and an element

x =
∑
i∈J

ai

of B, set

f(x) = J.

f is well-defined, since, by Theorem 3.13.1, each element of B can be expressed
uniquely as a sum of atoms. (By the convention, this now includes 0.) f has an
inverse

g : P (In) → B

defined by

g(J) =
∑
i∈J

ai.

Thus, f is a bijection, since it has an inverse. In order to see that f is an isomorphism,
we must show that f preserves sums, products, and complements.

Two key observations are that if J and K are subsets of In, then∑
j∈J

aj +
∑
k∈K

ak =
∑

i∈J∪K

ai

and (∑
j∈J

aj

)
·
(∑

k∈K

ak

)
=

∑
i∈J∩K

ai.
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The first follows from the Idempotent Law x + x = x, since, in the left-hand sum,
if i ∈ J ∩K, then, after combining like terms, we get the summand ai +ai = ai. That
is, after simplifying using the Idempotent Law, we get a term ai for each i in J ∪K,
and no others.

The second follows from the Idempotent Law x ·x = x and Theorem 3.11.1. After
using the Distributive and Associative Laws, the left-hand side is a sum of terms ajak,
where j is in J and k is in K. Since the aj’s are atoms, Theorem 3.11.1 says that the
only nonzero terms are terms in which j = k. This only occurs when j = k ∈ J ∩K,
and, in this case, ajaj = aj.

Thus, if x =
∑

j∈J aj, y =
∑

k∈K ak are arbitrary elements of B, then

x + y =
∑

i∈J∪K

ai and xy =
∑

i∈J∩K

ai,

so that

f(x + y) = J ∪K = f(x) ∪ f(y) and f(xy) = J ∩K = f(x) ∩ f(y).

In order to see that f preserves complements, we need one further observation: If
x =

∑
j∈J aj, and if J is the complement of J in In, then

x =
∑
j′∈J

aj′ .

For example, if n = 5 and x = a1 + a4, then x = a2 + a3 + a5. This follows from
Property 4 in Theorem 3.4.1: After using the Distributive Law, the terms in the
product (∑

j∈J

aj

)
·
(∑

j′∈J

aj′

)
are each of the form ajaj′ , where j is in J and j′ in J . Since J and J are disjoint,
j 6= j′ for any such term, and so, by Theorem 3.11.1, the product ajaj′ = 0. That is,(∑

j∈J

aj

)
·
(∑

j′∈J

aj′

)
= 0.

On the other hand, we have already shown in the proof of Theorem 3.13.1 (and
Exercise 3.13.2) that the sum of all of the atoms is 1, so that(∑

j∈J

aj

)
+

(∑
j′∈J

aj′

)
=

∑
i∈J∪J

ai =
∑
i∈In

ai = a1 + a2 + · · ·+ an = 1.

Property 4, Theorem 3.4.1, now guarantees that if x =
∑

j∈J aj, then

x =
∑
j′∈J

ai,
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and so
f(x) = J = f(x).

�

Corollary 3.14.1.1. Suppose that B1 and B2 are finite Boolean algebras having
bases of the same size. Then B1 and B2 are isomorphic.

Exercise 3.14.1. Show that if B is a finite Boolean algebra, then B is isomorphic
to Bn for some positive integer n.


