
Chapter 7 – Pointers

1

 Basic definition
◦ Normally a variable contains a specific value
◦ A pointer on the other hand contains the memory address of a

variable which, in turn, contains a specific value
◦ A pointer is a variable that stores an address
◦ Used to store the addresses of other variables

 A variable name directly references a value

 A pointer indirectly references a value

 Referencing a value through a pointer is referred to as
indirection

Principle of Least Privilege - code should be granted only the
amount of privilege and access needed to accomplish its
task, but no more.

2

 Pointer declarations use * following the type to declare.

 In a declaration, * isn’t an operator, it is there to indicate
that variable being declared is a pointer

 Declared by placing an asterisk (*) before the variable
name

typeName* variableName;

 The following is read from right to left as, countPtr is a
pointer to int

int count; //declaration of variable count

int* countPtr; //declaration of pointer countPtr

3

 The notation can be confusing because of the placement of
*.

 The following three declarations are identical. They all
declare countPtr as a pointer to an int.

int* countPtr;

int *countPtr;

int * countPtr;

 We can declare multiple variables of the same type on one
line, but for a pointer you must include the * operator for
each.

int x, y, z; //declaration of three variables of type int

int* p, q, r; //appears to declare three pointers to ints, but actually

//creates one pointer and two ints.

int * p, * q, * r; //correct way to declare three pointers to ints on one line

4

 Pointers should be initialized to 0, NULL or an address
when declared or in an assignment

 NULL Pointer
int* yPtr;

yPtr = 0;

--OR–

int* yPtr = 0;

◦ 0 is the only integer literal that can be assigned to a pointer

◦ A pointer with the value 0 or NULL points to nothing, i.e. null
pointer

◦ Initializing a pointer to NULL is equivalent to initializing it to 0

◦ In C++, 0 is used by convention

◦ Typically a placeholder to initialize pointers until their actual
values are known

5

 NULL Pointer continued…

◦ Initializing pointers prevents accessing unknown or
uninitialized areas of memory

◦ If a pointer's value is unknown, it will likely be random
memory garbage and unsafe to dereference.

◦ Don't try to dereference a null pointer - results in a
segmentation fault

◦ If you always set pointers to null or another valid target, you
can test prior to dereferencing as in,

if (yPtr != 0) // safe to dereference

std::cout << *yPtr;

6

 address operator &

 indirection or dereferencing operator *

7

 Address-of operator &

◦ Unary operator

◦ Obtains the memory address of its operand

◦ Below, &y means "address of y"

int y = 5; // declare variable y

int* yPtr; // declare pointer variable yPtr

yPtr = &y; // assign address of y to yPtr

◦ Note: Not the same as & in a reference variable declaration
which is always preceded by a data-type name.
When declaring a reference, the & is part of the type.

int& count;

8

 indirection or dereferencing operator *

◦ Returns an alias for the object to which its pointer operand
points

◦ In the declaration statement, the type appears before the *

std::cout << *yPtr << std::endl; // prints the value of y

--just as,

std::cout << y << std::endl; // prints the vlaue of y

◦ After the declaration statement, the * is dereferencing
the pointer to obtain the value

◦ You can return the actual data item or value by
dereferencing the pointer

std::cout << "The data value is " << *yPtr; // prints the value

9

◦ Repeating the code snippet from above, for simplicity suppose
the address stored is 1234 (also see Fig 7.4 in text)

int y = 5; // declare variable y

int* yPtr; // declare pointer variable yPtr

yPtr = &y; // assign address of y to yPtr

std::cout << "The pointer is: " << yPtr; // prints the pointer

std::cout << "The data value is " << *yPtr; // prints the value

// Output

// The pointer is: 1234 // actual output depends on address

// The value is: 5

◦ Can also be used on the left side of an assignment statement.
The following assigns 9 to y:

*yPtr = 9;

10

// Fig. 7.4: fig07_04.cpp

// Pointer operators & and *.

#include <iostream>

{

int a; // a is an integer

int* aPtr; // aPtr is an int * which is a pointer to an integer

a = 7; // assigned 7 to a

aPtr = &a; // assign the address of a to aPtr

std::cout << "The address of a is " << &a

<< "\nThe value of aPtr is " << aPtr;

std::cout << "\n\nThe value of a is " << a

<< "\nThe value of *aPtr is " << *aPtr;

std::cout << "\n\nShowing that * and & are inverses of "

<< "each other.\n&*aPtr = " << &*aPtr

<< "\n*&aPtr = " << *&aPtr << std::endl;

} // end main

11

7

12

1234

a

aPtr

71234

Variables Memory

 Pass-by-value

 Pass-by-reference with reference parameters

 Pass-by-reference with pointer parameters

 In an earlier lecture I used an actual reference parameter
which was easier to see that it was passed as a reference in
the call. Consider the following

void cubeByReference(int &); // prototype

…

int number = 5;

cubeByReference(number); // pass number by reference void

cubeByReference(int& number)

13

 Use pointers and the dereference operator * to pass-by-
reference

 When calling a function with an argument that should be
modified, pass the address

 The style of the call clearly indicates pass-by-reference, as
opposed to a non-pointer reference

 The name of an array is the address of the first element of
that array

 ***Direct access to value - modifies value directly***

 A function receiving an address as an argument must define a
pointer to receive the address. (see the function header in
following example)

 Following two slides compares pass-by-value to pass-by-
reference

14

// Fig. 7.6: fig07_06.cpp

// Pass-by-value used to cube a variable

#include <iostream>

int cubeByValue(int); // prototype

int main()

{

int number = 5;

std::cout << "The original value of number is " << number;

number = cubeByValue(number); // pass number by value to cubeByValue

std::cout << "\nThe new value of number is " << number << std::endl;

} // end main

// calculate and return cube of integer argument

int cubeByValue(int n)

{

return n * n * n; // cube local variable n and return result

} // end function cubeByValue

15

// Fig. 7.7: fig07_07.cpp

// Pass-by-reference with a pointer argument used to cube a variable's value

#include <iostream>

void cubeByReference(int*); // prototype

int main()

{

int number = 5;

int* ptrNumber = &number;

std::cout << "The address of number &number is " << &number << '\n';

std::cout << "The address stored in ptrNumber is " << ptrNumber << "\n\n";

std::cout << "The original value of number is " << number;

cubeByReference(&number); // pass number address to cubeByReference

// cubeByReference(ptrNumber) is identical, a pointer is an address

std::cout << "\nThe new value of number is " << number << std::endl;

} // end main

// calculate cube of *nPtr; modifies variable number in main

void cubeByReference(int* nPtr)

{

*nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr

} // end function cubeByReference

16

 Principle of Least Privilege

 The use of const enables you to inform the compiler that
the value of a particular variable should NOT be modified

 Four ways to pass a pointer to a function:

◦ Nonconstant Pointer to Nonconstant Data

◦ Nonconstant Pointer to Constant Data

◦ Constant Pointer to Nonconstant Data

◦ Constant Pointer to Constant Data

17

 Nonconstant Pointer to Nonconstant Data

◦ Highest access granted

◦ Data can be modified through the dereferenced pointer

◦ Pointer can be modified to point to other data

◦ Read from right to left as "countPtr is a pointer to an integer“

int* countPtr;

18

 Nonconstant Pointer to Constant Data

◦ Pointer can be modified to point to other data

◦ The data to which it points can NOT be modified

◦ Useful when passing an array to a function that will
access all elements of the array but shouldn't modify
the data

◦ Read from right to left as "countPtr is a pointer to a
constant integer"

const int* countPtr;

Fig. 7.10

19

// Fig. 7.10: fig07_10.cpp

// Attempting to modify data through a

// nonconstant pointer to constant data.

void f(const int *); // prototype

int main()

{

int y;

f(&y); // f attempts illegal modification

} // end main

// xPtr cannot modify the value of constant variable to which it points

void f(const int *xPtr)

{

*xPtr = 100; // error: cannot modify a const object

} // end function f

20

 Constant Pointer to Nonconstant Data

◦ Pointer always points to the same memory location

◦ Data can be modified

◦ Pointer can NOT be modified to point to other data

◦ Since the pointer is const it must be initialized when declared

◦ An example is array name which is a constant pointer to the
beginning of the array

◦ Read from right to left as "countPtr is a constant pointer to a
nonconstant integer"

int* const countPtr = &x; //const pointer must be initialized when declared

Fig. 7.11

21

// Fig. 7.11: fig07_11.cpp

// Attempting to modify a constant pointer to nonconstant data.

int main()

{

int x, y;

// ptr is a constant pointer to an integer that can

// be modified through ptr, but ptr always points to the

// same memory location.

int * const ptr = &x; // const pointer must be initialized

*ptr = 7; // allowed: *ptr is not const

ptr = &y; // error: ptr is const; cannot assign to it a new address

} // end main

22

 Constant Pointer to Constant Data

◦ Minimum access granted

◦ Pointer always points to the same memory location

◦ Data can NOT be modified

◦ Pointer can NOT be modified to point to other data

◦ Since the pointer is const it must be initialized when declared

◦ Read from right to left as "countPtr is a constant pointer to a
constant integer"

const int* const countPtr = &x; //const pointer must be initialized when declared

Fig. 7.12

23

// Fig. 7.12: fig07_12.cpp

// Attempting to modify a constant pointer to constant data.

#include <iostream>

int main()

{

int x = 5, y;

// ptr is a constant pointer to a constant integer.

// ptr always points to the same location; the integer

// at that location cannot be modified.

const int *const ptr = &x;

std::cout << *ptr << std::endl;

*ptr = 7; // error: *ptr is const; cannot assign new value

ptr = &y; // error: ptr is const; cannot assign new address

} // end main

24

 sizeof Operator
◦ determines the size of any data type, variable or constant in

bytes during program compilation
◦ When applied to the name of an array, it returns the total

number of bytes in the array
 Return value is of type size_t which is an unsigned integer at least

as big as unsigned int

Fig 7.14 and 7.15

25

 Certain arithmetic operations may be performed on
pointers

 Pointer arithmetic is only meaningful when performed on
pointers that point to an array

 Arithmetic Operations
◦ Incremented (++) or Decremented (--)
◦ Integer may be added to (+ or +=) or subtracted from (- or -

=)
◦ Within contiguous data sets such as an array, one pointer may

be subtracted from another of the same type resulting in the
number of elements between the two

 Operations are not literal but instead add or subtract the
number of units

26

 An array name can be thought of as a constant pointer
 Array name (without subscript) points to first element of

array
 Pointers can be used to do any operation involving array

subscripting
◦ Assume the following declarations:

int b[5]; // create a 5-element int array b

int* bPtr; // create int pointer bPtr

◦ Assigning addresses
bPtr = b; // assigns address of array b to bPtr

bPtr = &b[0]; // also assigns address of array b to bPtr

◦ Pointer/Offset notation
*(bPtr + 3) // alternate way to access array element b[3]

*(b + 3) // also refers to element 3; using pointer arithmetic

Fig. 7.18

27

 Hidden Assumptions
◦ Null-terminated
◦ Memory has been allocated

 Character arrays
 Arrays of type char terminated with the null character ‘\0’
 Null character ‘\0’ marks where the string terminates in

memory.
 Must allocate one extra space for the null terminator ‘\0’ in

the last element in arrays of characters that are used as
strings

 More memory management required due to null character
 C string functions do not handle or "worry about" memory

management
 As a type, a C-String is nothing more than a pointer to char
 Common in older legacy code

28

 String literal
◦ Enclosed in double quotes
◦ Compiler allocates enough memory for a string , including the null

terminator.
char name[] = “Tony”; //”Tony” is a string literal

◦ The above array, name has a size of five characters.
◦ An empty string (“”) actually has space reserved for the null

terminator.
◦ Both of the following create a five-element array color containing the

characters ‘b’, ‘l’, ‘u’, ‘e’, and ‘\0’
char color[] = “blue”;

char color[] = { ‘b’, ‘l’, ‘u’, ‘e’, ‘\0’ };

◦ ***ADVANCED*** but for comparison:
const char* colorPtr = “blue”;

 Creates a pointer variable colorPtr that points to the letter ‘b’ in the string
“blue” (which ends in ‘\0’) and resides somewhere in memory

29

 Arrays may contain pointers
 String Array – array of pointer-based strings

const char * suit [4] =

{“Hearts”, “Diamonds”, “Clubs”, “Spades”};

suit[0]

suit[1]

suit[2]

suit[3]

 Pointer to constant char data
 Stored as null-terminated character strings, one character longer

than the literal
 Only pointers are stored in the array, not strings

30

‘H’ ‘e’ ‘a’ ‘r’ ‘t’ ‘s’ ‘\0’

‘D’ ‘i’ ‘a’ ‘m’ ‘o’ ‘n’ ‘d’ ‘s’ ‘\0’

‘C’ ‘l’ ‘u’ ‘b’ ‘s’ ‘\0’

‘S’ ‘p’ ‘a’ ‘d’ ‘e’ ‘s’ ‘\0’

31

