
Chapter 7 – Pointers
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 Basic definition
◦ Normally a variable contains a specific value
◦ A pointer on the other hand contains the memory address of a 

variable which, in turn, contains a specific value
◦ A pointer is a variable that stores an address
◦ Used to store the addresses of other variables

 A variable name directly references a value

 A pointer indirectly references a value

 Referencing a value through a pointer is referred to as 
indirection

Principle of Least Privilege - code should be granted only the 
amount of privilege and access needed to accomplish its 
task, but no more. 
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 Pointer declarations use * following the type to declare.

 In a declaration, * isn’t an operator, it is there to indicate 
that variable being declared is a pointer

 Declared by placing an asterisk (*) before the variable 
name

typeName* variableName;

 The following is read from right to left as, countPtr is a 
pointer to int

int count; //declaration of variable count 

int* countPtr; //declaration of pointer countPtr
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 The notation can be confusing because of the placement of 
*. 

 The following three declarations are identical. They all 
declare countPtr as a pointer to an int.

int* countPtr; 

int *countPtr; 

int * countPtr;

 We can declare multiple variables of the same type on one 
line, but for a pointer you must include the * operator for 
each.

int x, y, z;   //declaration of three variables of type int 

int* p, q, r;  //appears to declare three pointers to ints, but actually

//creates one pointer and two ints. 

int * p, * q, * r; //correct way to declare three pointers to ints on one line
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 Pointers should be initialized to 0, NULL or an address 
when declared or in an assignment

 NULL Pointer
int* yPtr; 

yPtr = 0; 

--OR–

int* yPtr = 0; 

◦ 0 is the only integer literal that can be assigned to a pointer

◦ A pointer with the value 0 or NULL points to nothing, i.e. null 
pointer

◦ Initializing a pointer to NULL is equivalent to initializing it to 0

◦ In C++, 0 is used by convention

◦ Typically a placeholder to initialize pointers until their actual 
values are known
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 NULL Pointer continued…

◦ Initializing pointers prevents accessing unknown or 
uninitialized areas of memory

◦ If a pointer's value is unknown, it will likely be random 
memory garbage and unsafe to dereference.

◦ Don't try to dereference a null pointer - results in a 
segmentation fault

◦ If you always set pointers to null or another valid target, you 
can test prior to dereferencing as in,

if (yPtr != 0) // safe to dereference 

std::cout << *yPtr; 
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 address operator &

 indirection or dereferencing operator *
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 Address-of operator &

◦ Unary operator

◦ Obtains the memory address of its operand

◦ Below, &y means "address of y"

int y = 5; // declare variable y 

int* yPtr; // declare pointer variable yPtr 

yPtr = &y; // assign address of y to yPtr

◦ Note: Not the same as & in a reference variable declaration 
which is always preceded by a data-type name.
When declaring a reference, the & is part of the type.

int& count;
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 indirection or dereferencing operator *

◦ Returns an alias for the object to which its pointer operand 
points

◦ In the declaration statement, the type appears before the *

std::cout << *yPtr << std::endl; // prints the value of y 

--just as, 

std::cout << y << std::endl; // prints the vlaue of y

◦ After the declaration statement, the * is dereferencing 
the pointer to obtain the value

◦ You can return the actual data item or value by 
dereferencing the pointer

std::cout << "The data value is " << *yPtr; // prints the value
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◦ Repeating the code snippet from above, for simplicity suppose 
the address stored is 1234 (also see Fig 7.4 in text)

int y = 5; // declare variable y 

int* yPtr; // declare pointer variable yPtr 

yPtr = &y; // assign address of y to yPtr 

std::cout << "The pointer is: " << yPtr; // prints the pointer 

std::cout << "The data value is " << *yPtr; // prints the value 

// Output 

// The pointer is: 1234   // actual output depends on address 

// The value is: 5 

◦ Can also be used on the left side of an assignment statement. 
The following assigns 9 to y:

*yPtr = 9;
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// Fig. 7.4: fig07_04.cpp 

// Pointer operators & and *. 

#include <iostream> 

{ 

int a; // a is an integer 

int* aPtr; // aPtr is an int * which is a pointer to an integer 

a = 7; // assigned 7 to a 

aPtr = &a; // assign the address of a to aPtr 

std::cout << "The address of a is " << &a 

<< "\nThe value of aPtr is " << aPtr; 

std::cout << "\n\nThe value of a is " << a 

<< "\nThe value of *aPtr is " << *aPtr; 

std::cout << "\n\nShowing that * and & are inverses of " 

<< "each other.\n&*aPtr = " << &*aPtr 

<< "\n*&aPtr = " << *&aPtr << std::endl; 

} // end main
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 Pass-by-value

 Pass-by-reference with reference parameters

 Pass-by-reference with pointer parameters

 In an earlier lecture I used an actual reference parameter 
which was easier to see that it was passed as a reference in 
the call.  Consider the following

void cubeByReference( int & ); // prototype

…

int number = 5;

cubeByReference( number ); // pass number by reference void 

cubeByReference( int& number )
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 Use pointers and the dereference operator * to pass-by-
reference

 When calling a function with an argument that should be 
modified, pass the address

 The style of the call clearly indicates pass-by-reference, as 
opposed to a non-pointer reference

 The name of an array is the address of the first element of 
that array

 ***Direct access to value - modifies value directly***

 A function receiving an address as an argument must define a 
pointer to receive the address. (see the function header in 
following example)

 Following two slides compares pass-by-value to pass-by-
reference
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// Fig. 7.6: fig07_06.cpp 

// Pass-by-value used to cube a variable 

#include <iostream> 

int cubeByValue( int ); // prototype 

int main() 

{ 

int number = 5; 

std::cout << "The original value of number is " << number; 

number = cubeByValue( number ); // pass number by value to cubeByValue 

std::cout << "\nThe new value of number is " << number << std::endl; 

} // end main 

// calculate and return cube of integer argument

int cubeByValue( int n ) 

{ 

return n * n * n; // cube local variable n and return result 

} // end function cubeByValue
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// Fig. 7.7: fig07_07.cpp 

// Pass-by-reference with a pointer argument used to cube a variable's value 

#include <iostream> 

void cubeByReference( int* ); // prototype 

int main() 

{ 

int number = 5; 

int* ptrNumber = &number; 

std::cout << "The address of number &number is " << &number << '\n'; 

std::cout << "The address stored in ptrNumber is " << ptrNumber << "\n\n";

std::cout << "The original value of number is " << number; 

cubeByReference( &number ); // pass number address to cubeByReference 

// cubeByReference( ptrNumber) is identical, a pointer is an address

std::cout << "\nThe new value of number is " << number << std::endl; 

} // end main 

// calculate cube of *nPtr; modifies variable number in main

void cubeByReference( int* nPtr ) 

{ 

*nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr 

} // end function cubeByReference
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 Principle of Least Privilege

 The use of const enables you to inform the compiler that 
the value of a particular variable should NOT be modified

 Four ways to pass a pointer to a function: 

◦ Nonconstant Pointer to Nonconstant Data

◦ Nonconstant Pointer to Constant Data

◦ Constant Pointer to Nonconstant Data

◦ Constant Pointer to Constant Data
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 Nonconstant Pointer to Nonconstant Data

◦ Highest access granted

◦ Data can be modified through the dereferenced pointer

◦ Pointer can be modified to point to other data

◦ Read from right to left as "countPtr is a pointer to an integer“

int* countPtr;
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 Nonconstant Pointer to Constant Data

◦ Pointer can be modified to point to other data

◦ The data to which it points can NOT be modified

◦ Useful when passing an array to a function that will 
access all elements of the array but shouldn't modify 
the data

◦ Read from right to left as "countPtr is a pointer to a 
constant integer"

const int* countPtr;

Fig. 7.10 
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// Fig. 7.10: fig07_10.cpp

// Attempting to modify data through a 

// nonconstant pointer to constant data.

void f( const int * ); // prototype

int main()

{

int y;

f( &y ); // f attempts illegal modification

} // end main

// xPtr cannot modify the value of constant variable to which it points

void f( const int *xPtr )

{

*xPtr = 100; // error: cannot modify a const object

} // end function f
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 Constant Pointer to Nonconstant Data

◦ Pointer always points to the same memory location

◦ Data can be modified

◦ Pointer can NOT be modified to point to other data

◦ Since the pointer is const it must be initialized when declared

◦ An example is array name which is a constant pointer to the 
beginning of the array

◦ Read from right to left as "countPtr is a constant pointer to a 
nonconstant integer"

int* const countPtr = &x; //const pointer must be initialized when declared

Fig. 7.11
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// Fig. 7.11: fig07_11.cpp

// Attempting to modify a constant pointer to nonconstant data.

int main()

{

int x, y;

// ptr is a constant pointer to an integer that can

// be modified through ptr, but ptr always points to the 

// same memory location.

int * const ptr = &x; // const pointer must be initialized

*ptr = 7; // allowed: *ptr is not const

ptr = &y; // error: ptr is const; cannot assign to it a new address

} // end main
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 Constant Pointer to Constant Data

◦ Minimum access granted

◦ Pointer always points to the same memory location

◦ Data can NOT be modified

◦ Pointer can NOT be modified to point to other data

◦ Since the pointer is const it must be initialized when declared

◦ Read from right to left as "countPtr is a constant pointer to a 
constant integer"

const int* const countPtr = &x; //const pointer must be initialized when declared

Fig. 7.12
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// Fig. 7.12: fig07_12.cpp

// Attempting to modify a constant pointer to constant data.

#include <iostream>

int main()

{

int x = 5, y;

// ptr is a constant pointer to a constant integer. 

// ptr always points to the same location; the integer

// at that location cannot be modified.

const int *const ptr = &x; 

std::cout << *ptr << std::endl;

*ptr = 7; // error: *ptr is const; cannot assign new value

ptr = &y; // error: ptr is const; cannot assign new address

} // end main
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 sizeof Operator
◦ determines the size of any data type, variable or constant in 

bytes during program compilation
◦ When applied to the name of an array, it returns the total 

number of bytes in the array
 Return value is of type size_t which is an unsigned integer at least 

as big as unsigned int

Fig 7.14 and 7.15
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 Certain arithmetic operations may be performed on 
pointers

 Pointer arithmetic is only meaningful when performed on 
pointers that point to an array

 Arithmetic Operations
◦ Incremented (++) or Decremented (--)
◦ Integer may be added to (+ or +=) or subtracted from (- or -

=)
◦ Within contiguous data sets such as an array, one pointer may 

be subtracted from another of the same type resulting in the 
number of elements between the two

 Operations are not literal but instead add or subtract the 
number of units
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 An array name can be thought of as a constant pointer
 Array name (without subscript) points to first element of 

array
 Pointers can be used to do any operation involving array 

subscripting
◦ Assume the following declarations:

int b[5];  // create a 5-element int array b

int* bPtr; // create int pointer bPtr

◦ Assigning addresses
bPtr = b;      // assigns address of array b to bPtr

bPtr = &b[0];  // also assigns address of array b to bPtr

◦ Pointer/Offset notation
*( bPtr + 3 )  // alternate way to access array element b[3]

*( b + 3 )     // also refers to element 3; using pointer arithmetic

Fig. 7.18
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 Hidden Assumptions
◦ Null-terminated
◦ Memory has been allocated

 Character arrays
 Arrays of type char terminated with the null character ‘\0’
 Null character ‘\0’ marks where the string terminates in 

memory.
 Must allocate one extra space for the null terminator ‘\0’ in 

the last element in arrays of characters that are used as 
strings

 More memory management required due to null character
 C string functions do not handle or "worry about" memory 

management
 As a type, a C-String is nothing more than a pointer to  char
 Common in older legacy code
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 String literal
◦ Enclosed in double quotes
◦ Compiler allocates enough memory for a string , including the null 

terminator.
char name[ ] = “Tony”;  //”Tony” is a string literal

◦ The above array, name has a size of five characters.
◦ An empty string (“”) actually has space reserved for the null 

terminator.
◦ Both of the following create a five-element array color containing the 

characters ‘b’, ‘l’, ‘u’, ‘e’, and ‘\0’
char color[] = “blue”; 

char color[] = { ‘b’, ‘l’, ‘u’, ‘e’, ‘\0’ };

◦ ***ADVANCED*** but for comparison:
const char* colorPtr = “blue”;

 Creates a pointer variable colorPtr that points to the letter ‘b’ in the string 
“blue” (which ends in ‘\0’) and resides somewhere in memory
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 Arrays may contain pointers
 String Array – array of pointer-based strings

const char * suit [ 4 ] = 

{“Hearts”, “Diamonds”, “Clubs”, “Spades”};

suit[0]

suit[1]

suit[2]

suit[3]

 Pointer to constant char data
 Stored as null-terminated character strings, one character longer 

than the literal
 Only pointers are stored in the array, not strings
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‘H’ ‘e’ ‘a’ ‘r’ ‘t’ ‘s’ ‘\0’

‘D’ ‘i’ ‘a’ ‘m’ ‘o’ ‘n’ ‘d’ ‘s’ ‘\0’

‘C’ ‘l’ ‘u’ ‘b’ ‘s’ ‘\0’

‘S’ ‘p’ ‘a’ ‘d’ ‘e’ ‘s’ ‘\0’
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